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The forecast performance of the empirical ESTAR model of Taylor et al. (2001) is
examined for 4 bilateral real exchange rate series over an out-of-sample evaluation
period of nearly 12 years. Point as well as density forecasts are evaluated relative to
a simple AR(1) specification, considering horizons up to 22 steps head. The results
of this study suggest that no forecast gains over a simple AR(1) model exist at any of
the forecast horizons that are considered, regardless of whether point or density fore-
casts are used. Using simulation and non-parametric techniques in conjunction with
graphical methods, this study shows that the non-linearity in the point forecasts of the
ESTAR model decrease as the forecast horizon increases. Multiple steps ahead den-
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of skewness or bimodality. For an applied forecaster, there do not appear to exist any
gains in using the non-linear ESTAR model over a simple AR(1) specification.

Keywords: Purchasing power parity, regime modelling, non-linear real exchange rate
models, ESTAR, forecast evaluation, density forecasts, non-parametric methods.
JEL Classification: C22, C52, C53, F31, F47.

∗I would like to thank Adrian Pagan, Lance Fisher and Geoff Kingston for helpful comments on an earlier
versions of the paper. Financial support from ARC grant RM 02853 is gratefully acknowledged.

§Contact details: School of Economics, Australian School of Business, University of New South Wales,
Sydney 2052, Australia. Tel: +61(2) 9385 1145. Fax: +61(2) 9385 6337. Email: d.buncic@unsw.edu.au. Web:
http://www.dbuncic.googlepages.com.

1



1. Introduction

The Exponential Smooth Transition Autoregressive (ESTAR) model introduced by Granger

and Teräsvirta (1993) has become the workhorse statistical paradigm for the modelling of

real exchange rate data. As an example of its popularity, a search for “ESTAR” and “real

exchange rate” in the Google Scholar search engine returns over 16 000 hits. One partic-

ular study that has attracted considerable attention is the empirical study of Taylor et al.

(2001). This study has received nearly 300 citations in the Google Scholar citations index.

As a comparison, Kenneth Rogoff’s seminal paper entitled “The Purchasing Power Parity

Puzzle” that was published in 1996 has received about 1500 citations.1

Despite the heavy interest in modelling real exchange rates within a non-linear ESTAR

framework, little work appears to have been done with regards to the out-of-sample fore-

cast evaluation of these models.2 This is especially interesting to see given that these mod-

els were partially designed with foreign exchange dealers in mind who generally employ

a mix of fundamental and chartists trading strategies and thus rely on some kind of mea-

sure of the fundamental value of a currency (see, for example, the agent based models of

Westerhoff and Reitz, 2003 and De Grauwe and Grimaldi, 2005, 2006). The fundamental

value of a currency is often used in a two state model as the long-run value towards which

the exchange rate should be drawn. From a practitioners perspective, therefore, it is often

of interest to see how well the non-linear models perform over an out-of-sample period

before a decision regarding the implementation of such models is reached.

The objective of this study is to utilise the empirical model of Taylor et al. (2001) to

analyse its forecast performance relative to a simple linear AR(1) specification over the

out-of-sample period from January 1997 to June 2008 using the bilateral real exchange

rates of the UK, France, Japan and Switzerland vis-à-vis the US Dollar. The out-of-sample

forecast performance of the ESTAR model is analysed using point, as well as, density

forecasts, considering horizons of up to 22 steps ahead. An important secondary objective

of this study is to provide an intuitive representation of the forecast analysis that is carried

out. For that reason, this study makes substantial use of non-parametric and graphical

techniques to visualise what the models forecast. The empirical ESTAR model of Taylor

et al. (2001) is particularly suitable for a graphical analysis, as it is quite simple due to its

low dimensionality, relying only on one conditioning variable to form the forecast. Since

it is often the case that a visual assessment of the forecasts from two competing models

is more informative to the applied forecaster than the outcome of a statistical test, the

1Citations statistics were accessed on December 23rd, 2008.
2One notable exception is the study by Rapach and Wohar (2006), who assess the out-of-sample perfor-

mance of the Band-TAR as well as the ESTAR model of real exchange rates. However, the conclusions that
are drawn in this study appear to be misleading and counter intuitive, as claims of “forecasting gains at long
horizons relative to simple linear AR models” are raised by Rapach and Wohar (see pages 350 − 352).
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intention here is to illustrate how simulation and non-parametric methods can be used to

highlight where the forecasts from the two competing models differ and where one model

is likely to perform better than the other.

The results of this study suggest that no forecast gains can be realised from using the

non-linear ESTAR model over a simple AR(1) specification at any forecast horizon for the

four empirical real exchange rate series over the out-of-sample period that we consider.

This is regardless of whether point forecasts or density forecasts are used in the evaluation.

What appears to be particularly interesting to observe from the visualisation of the one

step ahead forecasts is that, due to the fairly weak non-linearity in the ESTAR model, the

difference between the conditional means of the ESTAR and AR(1) models is rather small,

given the variation in the data. More importantly, we show with the aid of a graphical

illustration that the non-linearity in the h step ahead point forecasts of the ESTAR model

diminishes as the forecast horizon h increases, converging to those of an AR(1) forecast.

Given that no forecast gains are realisable at the one step ahead horizon, where the non-

linearity in the conditional mean is the strongest, it becomes clear that no potential exist

at all for the ESTAR model to outperform a linear model at longer forecast horizons.

The analysis of the density forecasts from the ESTAR model showed that, despite the

know possibility of non-linear time series models to generate highly non-normal looking

forecast densities when forecasting multiple periods ahead, the forecast densities are ap-

proximately normal looking, with no indication of skewness and/or kurtosis. Moreover,

there does not seem to exist any visual evidence to suggest that the shape of the h step

ahead forecast density changes with the magnitude of the conditioning variable. This

was verified over a range of different percentile values of the conditioning variable in the

construction of the forecast density. An applied forecaster, whether interested in point or

density forecast, is unlikely to see any benefits from using a non-linear ESTAR model over

a simple AR(1) specification.

The paper is organised in the following sections. Section 2 gives a brief description of

the ESTAR model, the data that was used and how the model was estimate, with a short

discussion of the results. In Section 3, point and density forecasts are formed, visualised,

statistically tested and discussed. Section 4 concludes the study with a summary of the

findings.

2. Model, data and estimation

The non-linear ESTAR model, the empirical data and the estimation method that is em-

ployed in this study are described in this section. Since the model and the data have been

widely used in the literature, and as the estimation approach is considered to be rather

standard, the exposition is kept to a minimum.
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2.1. The ESTAR model

Taylor et al. (2001) specify the real exchange rate qt to evolve according to the following

non-linear process:

∆qt = − (qt−1 − η) Φ (γ, η; qt−1) +σηǫt

Φ (γ, η; qt−1) = 1 − exp
{

−γ (qt−1 − η)2
} (1)

where the error term ǫt is assumed to be independently and identically distributed, with

zero mean and unit variance.3 The exponential weighting function Φ (γ, η; qt−1) deter-

mines the regime that governs the evolution of qt in (1). In the extreme case, that is, when

Φ (γ, η; qt−1) is either 0 or 1, qt evolves either according to a random walk (RW) process

or an equilibrium correcting mechanism, with the long-run equilibrium level of qt being

equal to η. For all other values of Φ (γ, η; qt−1), qt evolves as a smooth and continuous

non-linear process with a continuum of regimes.

2.2. Data

As in Taylor et al. (2001), monthly nominal exchange rate and CPI data were obtained from

the IMF’s International Financial Statistics database for the US, the UK, Japan, France,

Germany, and also for Switzerland over the period from January 1973 to June 2008. The

real exchange rates for the UK, Japan, France, Germany and Switzerland — relative to the

US — are constructed in the standard way as qt ≡ log(CPIhome
t /CPIUS

t St), where St is the

home currency price of one US Dollar. The series are further normalized to be equal to

zero in January 1973. Figure 1 shows a time series plot of these five real exchange rates

from January 1973 to June 2008.4

Taylor et al. (2001) originally estimated the ESTAR model over a sample period from

January 1973 to December 1996 for the real exchange rates of the UK, Japan, France and

Germany only. This study extends the available data set by nearly 12 years to conduct

an out-of-sample evaluation of these models. In our analysis, we use the January 1973 to

December 1996 in-sample period to estimate the ESTAR models and then use the remain-

ing data up to June 2008 to evaluate the models out-of-sample. We also include the Swiss

real exchange rate series in this analysis.5 The reason for doing this becomes clear when

3One can impose the restriction that ǫt is Gaussian, however, this is not needed at the estimation stage.
4The data can be downloaded from http://www.dbuncic.googlepages.com/rer data.xls.
5The Swiss Franc is one of the seven most heavily traded currencies in the world. Although there are

other heavily traded currencies that could have been included in the forecast evaluation such as, for exam-
ple, the Australian, Canadian or the New Zealand Dollars, these are often labelled as commodity currencies,
due to their sensitivity to commodity prices. Since the influence of commodity prices can be fairly severe, it
becomes difficult to identify adjustment due to PPP deviations or commodity price movements.
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examining the evolution of the five series over the full sample data. As one can see from

Figure 1, since approximately the beginning of 1997 the German and French real exchange

rate series start to track one another extremely closely. This is evidently due to the ensuing

currency union that was formed in Europe. As the purpose of this study is to assess how

well the fitted non-linear ESTAR models perform over the out-of-sample period from Jan-

uary 1997 to June 2008, it is somewhat uninformative and rather repetitive to include both

series in the forecast evaluation. For that reason, we do not report the forecast evaluation

results for the German real exchange rate series.6

2.3. ESTAR estimation and discussion of results

The ESTAR model in (1) can be consistently estimated by standard non-linear least squares

estimation or alternatively, if one is willing to make the assumption that ǫt is Gaussian, by

maximum likelihood (see Gallant, 1987). The parameter estimates of all five real exchange

rate series over the in-sample period from January 1973 to December 1996, together with

robust standard errors (se), the maximum of the log-likelihood function (▲(γ, η) under

Gaussian assumption) and some misspecification tests are reported in the upper part of

Table 1.

It is evident from the results that are reported in Table 1 that the parameter estimates

of the UK, German, French and Japanese series correspond very closely to the values es-

timated in previous studies (see Taylor et al. 2001, p. 1029 and Rapach and Wohar 2006,

p. 344). Notice also that the estimates for the Swiss series are similar in magnitude to

those obtained for the French series and hence fall within the expected range of values

found in the literature. We should point out here that we do not provide any discussion of

model misspecification of the estimated ESTAR models, even though some standard mis-

specification tests are reported in Table 1. These tests are provided purely for reasons of

completeness of the in-sample estimation. The focus of this study is to evaluate the fitted

ESTAR models over the out-of-sample period from January 1997 to June 2008. Although

it could have been also possible to calibrated the ESTAR forecasting models at the values

found in previous studies, such as in Taylor et al. (2001), we preferred to fit the non-linear

models to our empirical data set.

3. Forecasts and forecast evaluation

In the forecast evaluation exercise we will focus on point and density forecasts only. Point

forecasts still appear to be widely used by practitioners as they are easy to implement and

6The results are quantitatively very similar to those for the French series and can be obtained upon
request.
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interpret. Nonetheless, point forecasts have the drawback of being least informative in the

sense that they do not provide any indication of the uncertainty surrounding the forecasts.

Probability density forecasts, on the other hand, are the most general and informative

forecast that can be computed, as the whole forecast density is constructed.

The benchmark model that is used in the forecast evaluation exercise is a simple AR(1)

specification for the real exchange rate, parameterised in the standard way as

∆qt = δ (qt−1 −µ) +σµǫt. (2)

The estimates of the AR(1) model parameters are — for reasons of completeness and again

without any discussion — reported in the lower part of Table 1.

It should also be mentioned here that the methodological approach of our forecast eval-

uation is a “genuine” out-of-sample forecast evaluation. In the terminology of McCracken

and West (2002) this is referred to as a “fixed” forecasting scheme. That is, we estimate the

model parameters on the in-sample period from January 1973 to December 1996 and do

not update (re-estimate) these as new data become available when constructing the out-

of-sample forecasts. Also, because we consider a test of equal mean squared error (MSE)

of two parametric models where the first order optimality conditions are essentially mo-

ment conditions that provide consistent estimates of the model parameters, no adjustment

to the standard errors in the computation of the Diebold and Mariano (1995) type test of

equal MSE needs to be made that would normally arise due to the parameters on which

the forecasts are based being sample estimates rather than population quantities (see pp.

312-313 in McCracken and West, 2002, for a detailed derivation of this result).7

3.1. Point forecasts

Recall that under a MSE loss function, the optimal point forecast of the change in the real

exchange rate series, h periods ahead, is IE(∆qT+h|ΩT), where ΩT = {QT ;M (θ)} is the

information set available to the forecasting agent at time T when the forecast is made,

QT is the full history of qt up to time T and M(θ) is the model with parameters θ used

to construct the forecast. The h−step ahead point forecast IE(∆qT+h|ΩT) is thus nothing

more than the implied conditional mean of ∆qt, given qt−h, evaluated at the out-of-sample

data points of the model under consideration.

7In the notation of McCracken and West (2002), the term F in equation 14.20 on page 309 is equal to
zero. Because we use MSE as the loss function in our out-of-sample testing, F corresponds to the first order
optimality condition in the in-sample estimation and is hence set to zero (see also Bao et al., 2007, page 9).
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3.1.1. Assessing one step ahead point forecasts

How different are the implied conditional means of the competing models at the one step

ahead forecast horizon? Before we proceed to provide any formal statistical evidence to

evaluate the out-of-sample forecast performance of the non-linear ESTAR model relative

to the simple AR(1) benchmark, it will be informative here to consider an informal graph-

ical approach to visually compare the one step ahead point forecasts of the two models.

Such an approach has recently been advocated by Pagan (2002) and Breunig et al. (2003)

to learn about models and their fit to data. In the current context we can informally assess

one step ahead point forecasts by examining plots of the conditional means implied by

the competing models over all out-of-sample data points.

Figure 2 shows the implied conditional means of the ESTAR and AR(1) models eval-

uated at the parameter estimates that are reported in Table 1 for the four real exchange

rate series that are considered in the forecast evaluation. We have also superimposed the

in-sample as well as the out-of-sample data by means of a scatter plot in Figure 2, and

additionally graph a non-parametric (NP) estimate of IE(∆qt|qt−1) (with 95% confidence

bands) to provide a purely data driven measure of IE(∆qt|qt−1).8 The dashed vertical lines

in Figure 2 show the 15th and 85th percentiles of the in-sample values of qt−1.9 The solid

vertical line for the UK series in panel (a) of Figure 2 marks the bound on the in-sample

data.

What can we see from Figure 2? Notice initially how the conditional means of the

ESTAR model and the AR(1) differ from one another. For the AR(1) model, adjustment

towards its long-run equilibrium occurs at a constant rate over all values of qt−1, so that

it does not matter how far away one is from PPP when adjusting to any deviations from

it. For the ESTAR model, on the other hand, this adjustment is evidently a non-linear

function of qt−1. The speed of adjustment towards PPP thus increases — with accelerating

speed — the further away qt−1 is from η. Nevertheless, despite these important model

specific differences between the conditional means of the linear and non-linear models,

it is evident from Figure 2 that overall the variation of the empirical data around the

conditional means is fairly substantial, so that a significant portion of the movement in

∆qt is left unexplained.

Notice here also that over the entire out-of-sample period that we consider, covering

nearly 12 years of data, only for the UK series are there a handful of observations that

8A local linear regression estimator was used to compute the NP conditional means (see Pagan and Ullah,
1999, p. 104 for details).

9Note here that the 15th and 85th percentiles were used as the lower and upper bounds on the η parameter
in the initial grid search of the estimation before a Newton-Raphson type maximisation algorithm was used.
In Threshold Autoregressive (TAR) models it is a common requirement to have at least 15% of the sample
data in each of the two regimes (see p. 84 in Franses and van Dijk, 2000).
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fall outside the in-sample data range. Not a single out-of-sample data point exists that

falls outside the in-sample range for the French, Japanese and Swiss real exchange rate

series. What is particularly interesting to see from panels (c) and (d) in Figure 2 is that for

the Swiss and Japanese series nearly all of the out-of-sample observations cluster around

the centre of qt−1, that is, in between the 15th and the 85th percentiles. Recall that in the

literature that models real exchange rates with a threshold type model, ie., Obstfeld and

Taylor (1997), this region coincides with what is labelled the “inner regime”, where ∆qt is

assumed to be inside the no adjustment threshold band and within which qt thus follows a

random walk process. Given that the conditional means of the ESTAR and AR(1) models

overlap fairly closely over this range, one can anticipate that statistical tests will have

difficulties in decisively rejecting the (null) hypothesis of no forecast improvement of the

ESTAR model over the AR(1).

Examining the plots of the UK and French real exchange rate series shown in panels

(a) and (b) of Figure 2, one can notice that the out-of-sample data points show a somewhat

wider dispersion, with a number of them falling outside the 15th to 85th percentile range.

Nonetheless, it is evident also that only very few observations fall close to the extreme tail

ends of the density of qt−1, where the non-linearity in the conditional means, and hence

the forecasts of the ESTAR model, is most pronounced compared to the linear model.

Notice here also that the spread of the out-of-sample data points across the conditional

means of the two models is again fairly substantial, so that one can once again anticipate

that it will be difficult for a formal forecast evaluation test to differentiate between the two

models.

In order to provide some formal statistical evidence of the conjectured forecast fail-

ure of the non-liner ESTAR model at the one step ahead horizon, let the one step ahead

forecast errors of the two competing models be defined as

εESTAR
T+1|T = ∆qT + (qT − η) Φ (γ, η; qT) (3)

and

εAR
T+1|T = ∆qT − δ (qT −µ) , (4)

where T is the last observation of the in-sample data set. The loss function at time T + 1

that we employ to assess the models is a squared error loss function formed as

dT+1 ≡ (εAR
T+1|T)2 − (εESTAR

T+1|T )2. (5)

To evaluate the competing models, it is necessary to investigate how likely it is that the

squared error loss dT+1 has a population expectation that is different from zero. That is, it
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is necessary to test the null hypothesis

H0 : IE(dT+1) = 0

against the alternative

HA : IE(dT+1) > 0.

We use two standard statistical tests to assess this. These are the Diebold and Mariano

(1995) (DM) test, using the correction factor of Harvey et al. (1997) and a weighted version

of the DM test, adapted from van Dijk and Franses (2003). The weighted version of the

DM test is designed to give more weight to out-of-sample observations that fall towards

the extremes of the density of qt−1, where the non-linearity in the ESTAR model is at its

strongest.10 It should thus be more apt in picking up forecast gains stemming from non-

linearity in the tails of qt−1.

The results of the DM tests for the one step ahead point forecasts are reported in Table 2

below. These tests confirm the impressions that were formed from the visual inspection

of the implied conditional means in Figure 2. All null hypotheses of equal forecast per-

formance cannot be rejected for any of the four empirical series that are considered in the

forecast evaluation study, at any conventional significance levels. Notice that the t−ratios

remain well below unity in absolute value, suggesting that this is a fairly strong failure

to reject the null hypothesis. Notice here also that for the UK and Japanese series, the

DM test statistic is, in fact, negative, indicating that the ESTAR model generates larger

forecast errors than the AR(1) model. Overall, therefore, we can conclude that it is highly

unlikely that the ESTAR models that are considered here can outperform a simple AR(1)

specification at the one step ahead forecast horizon.

3.1.2. Assessing multiple steps ahead point forecasts

How likely is it for the non-linear ESTAR model to generate any gains when forming a

multiple periods ahead point forecast? We can again informally answer this question by

looking at how different the implied conditional means of the ESTAR and AR(1) models

are from one another. Moreover, since we saw that the non-linearity in the conditional

means of the ESTAR models was quite mild at the one step ahead horizon, given the

variation in the empirical data, it will be interesting to observe graphically how the non-

linearity in the conditional mean changes as the forecast horizon increases. It should be

clear that, because the ESTAR models that were estimated here are stable and stationary,

10See van Dijk and Franses (2003) for the computational details of the weighted version of the test. The

weights ωT+1 were computed as 1 − f̂ (qT+1)/max[ f̂ (qT+1)] where f̂ (qT+1) is an estimate of the density
function of qT+1, evaluated at the out-of-sample data points. A Gaussian kernel with a plug-in bandwidth

were used to compute f̂ (qT+1).
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the h step ahead conditional mean should converge to the unconditional mean of ∆qt,

as h goes to infinity. Since the same holds true for the AR(1) model, one can expect the

difference between the forecasts of the two models to disappear as h increases.

Constructing multiple step ahead forecasts for the AR(1) model is straight forward

and can be computed recursively in closed form. For the ESTAR model, nevertheless, this

is not possible as it is necessary to integrate out non-linear transformations of all future

shocks, therefore requiring numerical techniques. The approach that is employed here is

Monte Carlo (MC) integration (cf. Franses and van Dijk, 2000, Section 3.5). To implement

this, we simulate a large number of pseudo realisations of qT+h, ∀ h > 1, conditional on

qT, using the following recursion

q̃
j

T+1|T
= qT − (qT − η) Φ (γ, η; qT) +σηǫ̃

j
T+1

q̃
j

T+2|T
= q̃

j

T+1|T
− (q̃

j

T+1|T
− η)Φ(γ, η; q̃

j

T+1|T
) +σηǫ̃

j
T+2 (6)

...

q̃
j

T+h|T
= q̃

j

T+h−1|T
− (q̃

j

T+h−1|T
− η)Φ(γ, η; q̃

j

T+h−1|T
) +σηǫ̃

j
T+h.

The realisation q̃
j

T+h|T
is thus the jth h step ahead pseudo value of qT+h, given qT and

shock sequence {ǫ̃
j
T+i}

h
i=1. The h step ahead point forecasts can then be approximated by

computing the arithmetic mean over the J simulated q̃
j

T+h|T
entries, that is, one computes

IEJ(q̃T+h|T) = J−1

J
∑

j=1

q̃
j

T+h|T
(7)

which will have the property that limJ→∞
IEJ(q̃

T+h|T) = IE(qT+h|qT). To get the con-

ditional mean for the changes in the qt series, one simply constructs IE(∆qT+h|qT) as

IEJ(q̃
T+h|T) − IEJ(q̃

T+h−1|T).

Although it is useful to employ this approach to generate multiple steps ahead fore-

casts of ∆qt, one drawback when computing the conditional means for visualisation pur-

poses is that the quantity IE(∆qT+h|qT) will only be available at the empirical out-of-

sample data points. A useful alternative approach that can be employed to obtain the

entire h step ahead implied conditional mean is to simulate a large number of realisa-

tions of qt from the ESTAR model in (1) and then use non-parametric methods to compute

IE(∆qt|qt−h) directly. The benefit of this approach lies in its ease of implementation and

its ability to cover an arbitrary range of values of qt. This way one can evaluate forecasts

at a sufficient number of points over a given interval so that a line can be drawn to ex-

amine IE(∆qt|qt−h) graphically. As with the visualisation at the one step ahead horizons
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discussed in Section 3.1.1, any non-linearities in the conditional forecasts should then be

identifiable from the plots of the non-parametric estimates of IE(∆qt|qt−h).

To illustrate how this approach can be implemented to examine the non-linearity of

multiple steps ahead forecasts, we simulate 1 million observations of qt from (1), cali-

brated at the parameter estimates of the UK series provided in Table 1. The ǫt were drawn

from a standard normal distribution.11 We use 1000 equally spaced points in the inter-

val [min (qt), max (qt)] to compute and plot the non-parametric estimate of IE(∆qt|qt−h).12

Note that the reason for using the parameter settings of the UK series is that it yields the

largest estimate of the transition function parameter γ. Recall that the strength of the non-

linearity in the ESTAR model is governed by the size of the γ parameter, where values

close to 0 indicate weaker non-linearity and larger ones stronger non-linearity. To visu-

alise how the non-linearity changes at different forecast horizons, we plot IE(∆qt|qt−h)

for two sets of forecast horizons. These are h = [1, 2, 3, 5, 6] and h = [7, 10, 14, 18, 22] in

panels (a) and (b) of Figure 3, respectively. Notice from panel (a) of Figure 3 that the non-

linearity in the forecasts is strongest at the one step ahead horizon, that is, when h = 1.

Both, the curvature, as well as the steepness, of the conditional means decreases at the

transition points as the forecast horizon increases. For longer horizons shown in panel (b)

of Figure 3, it is evident that for forecasts of 10 steps ahead or longer (ie., when h ≥ 10) no

visual signs of non-linearity remain to be seen.

Why might one find this information useful? If the non-linearity in the conditional

mean of the ESTAR model decreases monotonically as the forecast horizon increases, be-

ing at its strongest level at the one step ahead horizon, than it seems highly unlikely that

any statistical tests evaluating the performance of the ESTAR model at longer forecast

horizons will reject the null hypothesis of equal forecast accuracy. We can remind our-

selves here again of the results obtained from the plots of the one step ahead conditional

forecasts shown in Figure 2. Recall that not only was the difference between the condi-

tional means of the competing models fairly small, but that the spread of the data around

the conditional means was also substantial, so that it was impossible to statistically dis-

criminate between the ESTAR and AR(1) models at the one step ahead out-of-sample data

points. Since the non-linearity in the forecasts decreases as h increases, converging to

the AR(1) forecast of the unconditional mean of ∆qt, and since the variation of the data

around the conditional means remains fairly large, one should be convinced that no pos-

sibility exists for the considered ESTAR models to outperform the AR(1) models at any

forecast horizon.

11Note here that one could also use a non-parametric bootstrap and re-sample the empirical residuals
series for the UK series if one finds the normality assumption too restrictive. However, since there are only
288 in-sample data points and a fairly large number of draws are needed, we preferred to generate the ǫt

sequence parametrically from a standard normal density.
12The min (qt) and max (qt) values are those of the full sample data.
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We once again provide some formal statistical evidence in support of this conjecture

by computing the weighted DM test for multiple step ahead forecasts at horizons h =

[2, 3, 5, 6, 7, 10, 14, 18, 22]. The results of this test are reported in Table 3 below.13 The mul-

tiple steps ahead point forecasts from the ESTAR model — necessary to compute the DM

test statistic — were constructed from the recursive scheme that was outlined in (6), where

J was set to 10 000 and the ǫ̃
j
T+h were drawn from a standard normal distribution. It is

evident form the results reported in Table 3 that the statistical tests confirm the conjec-

tured failure of the ESTAR model. The null hypothesis of equal forecast accuracy cannot

be rejected at any conventional significance levels and forecast horizon that we consider.

Notice that for the UK series, the test statistic yields negative values which in some cases

are large enough to suggest that the AR(1) model provides forecast gains over the non-

linear model. Despite these results, however, it should be kept in mind here that the

forecasts that the linear and non-linear models generate are very similar at higher forecast

horizons. To see how similar they in fact are, regardless of their statistical significance, we

show plots of the 10 step ahead point forecasts for all four series in Figure 4.14 Notice how

closely the conditional means of the competing models overlap, especially over intervals

where the bulk of the out-of-sample data lies. From a practical forecasting perspective,

therefore, there does not seem much to be gained from using the non-linear model over

the linear one.

In conclusion of this section, it should be mentioned here that our finding of no forecast

gains in favour of the ESTAR model is in contrast with the results reported in Rapach and

Wohar (2006), who conclude that “...ESTAR models offer forecasting gains at long horizons

relative to simple linear AR models for some countries, especially when we use a weighted MSFE

criterion. ”(see Rapach and Wohar, 2006, pp. 350-352).

3.2. Density forecasts

Density forecasts play a fundamental role in the finance literature. In risk management,

for example, density forecasts form a building block for risk measures such as Value-at-

Risk and Expected Shortfall. As it is often reported in the literature that non-linear models

can generate highly skewed and/or bi-modal forecast densities, especially when consid-

ering forecasts multiple periods ahead, it is important to analyse how the conditional

13The reason why only the results of the weighted test are reported here is purely to avoid repetition
and to allow any potential non-linearity in the tails of qt to be weighted favourably in the evaluation of the
ESTAR forecasts. There is, nevertheless, qualitatively no difference in the results between the unweighted
and weighted versions of the DM test.

14The contents of the plot are the same as in Figure 2. The ESTAR conditional mean (solid green line) was
computed non-parametrically from 1 million simulated draws. Figure 4 also shows a scatter of the 10 step
ahead conditional forecast constructed with the recursive scheme outlined in (6). These are superimposed
onto the solid green line with black circles to show how they compare to one another.
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forecast densities of the fitted ESTAR and AR(1) models differ from one another. Un-

derstanding these differences will be of particular interest to a practitioner who relies on

forecasts of the conditional distributions to price financial derivatives in risk management

scenarios. Throughout this section, we will once again employ informal graphical tech-

niques extensively to provide an intuitive visual assessment of the forecast densities. As

in the previous section, formal statistical tests are then used to supplement and validate

any conjectures drawn from the visual assessment.

3.2.1. Assessing one step ahead density forecasts

In the given context, ie., under the assumption that the ǫt are distributed as a standard

normal random variable, it is trivial to compute the one step ahead forecast densities for

the AR(1) and ESTAR models. These are, respectively

f AR
T,1 (∆qT+1) = N

(

δ (qT −µ) ,σ2
µ

)

(8)

and

f ESTAR
T,1 (∆qT+1) = N

(

− (qT − η) Φ(γ, η; qT),σ2
η

)

, (9)

where N(a, b) denotes the Gaussian density function with location and scale parameters a

and b respectively.

Notice from (8) and (9) that, because of the same assumption regarding the functional

form of the density of ǫt, a comparison of the one step ahead forecast densities reduces

to one of equal conditional means if σ2
η = σ2

µ, and therefore boils down to an evaluation

of the point forecasts as in Section 3.1. A statistical test of equal density forecasts should,

therefore, lead to the same qualitative conclusion as a test of equal conditional means. Al-

though it is not clear whether the population quantities are such that σ2
η = σ2

µ, it is evident

from the estimates of σ2
η and σ2

µ reported in Table 1 that the difference between the sample

quantities is very small. It can be conjectured here that there exists very little evidence to

suggest that the forecast densities of the AR(1) and ESTAR models differ from one another

at the one step ahead horizon, given that the conditional means were found to be statisti-

cally indistinguishable in Section 3.1 and the difference between sample quantities of σ2
η

and σ2
µ is small.

This conjecture can be tested formally by comparing the performance of the two den-

sity forecasts f AR
T,1 (∆qT+1) and f ESTAR

T,1 (∆qT+1) relative to the true, but unobserved, den-

sity of ∆qT+1. The statistical approach implemented here is a logarithmic scoring rule that

is based upon the difference of the Kullback-Leibler Information Criterion (KLIC) of the

competing density forecasts (see Mitchell and Hall, 2005, Bao et al., 2007 and Amisano and

Giacomini, 2007). Taking the difference of the KLICs of the competing densities ensures
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that the term involving the true but unknown density of ∆qT+1 drops out, so that the

comparison based on the KLICs boils down to a comparison of the logarithmic scores.15

The idea is to give a higher (lower) score to a density forecast if a given out-of-sample

observation falls within a high (low) probability region. The density forecast that yields

the highest average score is then preferred. The difference between the average scores can

be tested statistically by defining the (log) score difference

dS
T+1 = log f ESTAR

T,1 (∆qT+1) − log f AR
T,1 (∆qT+1) (10)

and evaluating the null hypothesis of equal average scores by means of a DM type test

as in Section 3.1. Given that both forecast densities follow a Gaussian distribution, (10)

reduces to

dS
T+1 = − log

(

ση

σµ

)

−
1

2





(

εESTAR
T+1|T

ση

)2

−

(

εAR
T+1|T

σµ

)2


 (11)

which can then be used to compute the average score over the out-of-sample observations

and the corresponding DM test of equal density forecasts.16

The results of the DM test of equal density forecasts at the one step ahead horizon

are reported in the first row of Table 4. Recall here that the preferred model is the one

that yields, on average, the highest log score. Since dS
T+1 in (10) is written in such a way

that the AR log density is subtracted from the ESTAR log density, we again form the null

hypothesis of equal density forecasts

H0 : IE(dS
T+1) = 0

against the alternative

HA : IE(dS
T+1) > 0

to test for the superiority of the ESTAR density forecasts. A significantly large positive

value of the out-of-sample average of dS
T+1 would, thus, suggest that the ESTAR density

outperforms the simple AR(1). Nevertheless, all t−statistics with positive entries remain

well below one, whereas those of the UK and Japanese series yield negative entries. We

can conclude here, therefore, that no statistical evidence exists to suggest that the densities

differ from one another.

15The use of the term score here should not be confused with the first order condition in Maximum Like-
lihood estimation, which is commonly referred to as the Fisher Score.

16Notice here, that, as discussed before, when ση = σµ , then the first term involving the logs disappears,
and the second term becomes (2σ2

µ)−1[(εAR
T+1|T)2 − (εESTAR

T+1|T
)2]. This is thus a scaled version of the DM test

of equal conditional means given previously in (5).
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3.2.2. Assessing multiple steps ahead density forecasts

For the AR(1) model, multiple steps ahead density forecasts are available in closed form,

given the assumption that the ǫt are distributed as a standard normal random variable.

The h step ahead forecast density takes the form

f AR
T,h (∆qT+h) = N

(

δρ(h−1) (qT −µ) ,

[

σ2
µ +

σ2
µδ2

(1 − ρ2)

(

1 − ρ2(h−1)
)

])

(12)

where ρ = δ + 1 and σ2
µ +

σ2
µδ2

(1−ρ2)
is the unconditional variance of the ∆qt process in (2).

For the ESTAR model, nevertheless, no such closed form is available so that it is again

necessary to resort to the Monte Carlo simulation scheme of (6) to construct the h step

ahead forecast density of ∆qT. This can be done by employing non-parametric methods.

That is, given the sequence of draws {q̃
j

T+h|T
}J

j=1 we can obtain an approximation of the

h step ahead forecast density from the ESTAR model by constructing ∆q̃
j

T+h|T
= q̃

j

T+h|T
−

q̃
j

T+h−1|T
, ∀ j = 1, ..., J generated according to (6) and then compute an estimate of the

density of f ESTAR
T,h (∆q̃T+h|T) non-parametrically. The kernel density estimate can then be

utilised for visualisation purposes and to compute the average of the log score in the DM

test.

One drawback of this approach when considering informal graphical methods is that

one will only be able to visualise the h step ahead density at the actual out-of-sample

values that are conditioned upon. Thus, one will not be able to get a feel for how the

forecast density changes as the size of the conditioning variable changes, unless there is

substantial variation in the actual out-of-sample observations. As an example, consider

the plot of the 10 step ahead conditional point forecasts for the Japanese series shown in

Panel (c) of Figure 4. Notice that the out-of-sample values of the conditioning variable

denoted by the black asterisks cluster largely around a value of 0.5. If we use the Monte

Carlo scheme of (6) to generate 10 000 paths from each of the given qT to compute the

forecast density, we will not know whether the forecast density takes on a different shape

when qT is closer to the extreme tail ends of either 0 or 1. A more informative approach

is to simulate again a large number of draws from the ESTAR models in (1) and then

compute an estimate of the conditional density of ∆qt|qt−h directly using non-parametric

methods. That is, compute

f̂ NP (∆qt|qt−h) =
f̂ NP (∆qt, qt−h)

f̂ NP (qt−h)
, (13)

where f̂ NP (·) is a non-parametric estimate of the density. The values of qt−h that are
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conditioned upon could then be chosen to be some percentiles of interest of qt−h.

To illustrate how the h step conditional density estimate f̂ NP (∆qt|qt−h) can be visu-

alised, we simulate 1 million draws from the ESTAR model in (1) under the parameter

settings of the UK series and set the conditioning values at the 5th, 25th, 50th, 75th and

95th percentiles of qt−h. A Gaussian kernel and a plug in bandwidth that is propor-

tional to the covariance matrix of (∆qt qt−h) were used in the construction of the den-

sity estimates. Plots of the estimates of the conditional densities of f NP(∆qt|qt−h), ∀h =

[2, 3, 5, 6, 7, 10, 14, 18, 22] are shown in Figure 5. What is particularly interesting to notice

from Figure 5 is that there is no obvious visual indication of skewness or bi-modality in

the forecast densities. This is regardless of the forecast horizon considered and the condi-

tioning values from which the forecasts were initiated.

Two other features that are interesting to observe from Figure 5 are the lack of a visual

widening in the spread of the forecast densities as h increases and the close overlap of

the forecast densities at the different percentiles of qt−h. Both of these are due to the

weak correlation between ∆qt and qt−1, or alternatively, the high persistence in qt. The

easiest way to see why this is the case, consider the AR(1) representation for ∆qt in (2)

to be the true process for ∆qt. If δ = 0, then ∆qt and qt−1 are uncorrelated and hence

independently distributed so that f (∆qt|qt−h) = f (∆qt) ∼ N(0,σ2
µ). Thus for all values of

qt−h the location of f (∆qt|qt−h) is at 0. Similarly, the spread of the density at the different

forecast horizons will be fixed at σ2
µ. Although it is clear here that ∆qt and qt−1 are not

independent processes as they were simulated from the ESTAR model in (1), it is evident

from Figure 5 how closely the densities overlap at the different conditioning values of qt−h

and how the spread in the densities remains observationally constant. This is indicative

of a relatively weak relationship between ∆qt and qt−1.

Before we proceed to provide some formal statistical evidence to support any of our

conjectures, it will be useful here to do a side-by-side comparison of the forecast densities

of the two competing models. As we have ruled out that the shape of the ESTAR forecast

density changes for different conditioning values of qT, we can choose a fixed value of

qT and plot the forecast density fT,h (∆qT+h) for the AR(1) together with its approximate

form for the ESTAR model at the forecast horizons of interest to us. Such a comparison

is shown in Figure 6 again only for the UK series. The conditioning value used here is

approximately 0.5 (the November 2007 entry of qT) which is the (full sample) maximum

value of qT for the UK real exchange rate series. The forecast density of the ESTAR model

was constructed with standard non-parametric kernel density estimation methods using

the 10 000 pseudo observations {q̃
j

T+h|T
}J

j=1 drawn from the scheme in (6).

The comparison of the multiple step ahead densities plotted in Figure 6 shows a num-

ber of interesting features. Although these were partially discussed and anticipated ear-

lier, it is nevertheless informative to discuss these once more with a visual reference to

16



Figure 6. Firstly, notice that at the 2 to 7 step ahead forecast horizon the densities are

somewhat offset and do not overlap, however, there is no indication of a markedly differ-

ent shape or spread of the densities. Evidently, this discrepancy arises due to the differ-

ences in the conditional means that the models forecast. For example, at the 2 step ahead

horizon, the ESTAR and AR(1) models predict mean changes of about −0.025 and −0.012,

respectively. The conditioning value of qT ≈ 0.5 for November 2007 was particularly cho-

sen here to amplify this difference in the location of the forecast densities. Secondly, notice

how there is no obvious visual increase in the spread of the densities as h increases from 2

to 22. For the AR(1) model, where an analytic expression for the forecast standard error is

available, the values range narrowly between 33.4590 × 10−3 and 33.6246 × 10−3 at hori-

zons 2 and 22, respectively. With the unconditional standard error of ∆qt under the AR(1)

specification in (2) being 33.6952 × 10−3 which is the limit at the h step horizon as h → ∞,

it is clear that the overall increase in the spread is fairly small, so that any differences are

hard to detect visually from Figure 6.

Formal statistical test results of equal h step ahead density forecasts are reported in

Table 4. The unweighted version of the DM test was used in the computation of the log

score difference in Table 4, employing the small sample correction factor of Harvey et al.

(1997). For all 4 series of interest — at all forecast horizons that we consider — the null hy-

pothesis of equal average log scores cannot be rejected at conventional significance levels.

It is again noticeable here that there are a number of entries for the UK and Japanese series

that yield negative test statistics. Despite this, we should keep in mind that, particularly

at longer forecast horizons, the conditional densities overlap rather closely. Hence, no ev-

idence seems to exist to indicate that the considered ESTAR model generates any forecast

gains over a simple AR(1) specification, regardless of whether point or density forecasts

are utilised.

4. Conclusion

This study assess the forecast performance of the widely employed ESTAR model of Tay-

lor et al. (2001) over the out-of-sample period from January 1997 to June 2008. More

specifically, we construct and evaluate point and density forecasts for four empirical real

exchange rate series using a simple AR(1) as the benchmark model. Throughout the

study we make heavy use of graphical methods in conjunction with simulation and non-

parametric techniques in addition to standard formal statistical tests to analyse and eval-

uate the out-of-sample forecast performance.

The results of this study show that there exist no forecast gains from utilising a non-

linear ESTAR model over a simple AR(1) specification at any forecast horizon over the

sample period that we consider. This holds true for conditional mean (or point) forecasts
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as well as for density forecasts. More importantly though, this study shows why no fore-

cast gains are realised. When considering one step ahead point forecasts it is interesting to

observe that, due to the fairly weak non-linearity in the ESTAR model, the differences be-

tween the conditional means of the ESTAR and AR(1) models are rather small relative to

the variation in the data. At longer forecast horizons, we show that the non-linearity in the

point forecast decreases as the forecast horizon increases. This implies that given that no

forecast gains exist at the one step ahead horizon due to the relatively weak non-linearity

in the ESTAR forecasts and substantial variation in the empirical data, there exists no po-

tential whatsoever for the ESTAR model to generate forecast gains at longer horizons. This

result is presented intuitively by means of a simulation and graphical illustration.

The out-of-sample assessment of the forecast densities of the two competing models

reveals that despite the known possibility of non-linear models to generate highly non-

normal and multi-modal forecast densities, our simulation results indicate that multiple

steps ahead density forecasts from the ESTAR model are approximately normal looking

and uni-modal, with no signs of skewness and/or kurtosis in the density. Moreover, what

is interesting to observe is that this is true regardless of the size of the conditioning vari-

able; that is, the shape of the multiple step ahead forecast density of the ESTAR model

does not change with different values of the conditioning variable. The values that we

considered were the 5th, 25th, 50th, 75th and 95th of percentiles of qt−1.

An interesting empirical finding of this study is that for the Japanese and Swiss real

exchange rate series the majority of the out-of-sample data fall close to the centre of the

distribution of the conditioning variable, ie., between the 15th and 85th percentiles of qt−1.

For the Japanese series in particular, most of the out-of-sample data cluster around the

unconditional mean value of qt at about 0.5. From an applied forecasters perspective,

there does not appear to exist any benefit in implementing an ESTAR forecasting approach

to reap any gains over a simple linear time series model.
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Figures and Tables
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Figure 1: Time series plot of the normalised real exchange rates over the period from January 1973 to
June 2008. The non-shaded and shaded areas denote the in-sample (January 1973 – December 1996) and
out-of-sample (January 1997 – June 2008) periods, respectively.
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Table 1: ESTAR and AR(1) in-sample parameter estimates.

ESTAR UK Germany France Japan Switzerland

γ
(se)

0.5056
(0.0727)

0.2933
(0.2254)

0.3536
(0.2523)

0.1819
(0.1229)

0.3742
(0.2391)

η
(se)

0.1125
(0.4103)

−0.0115
(0.0693)

0.0059
(0.0614)

0.5102
(0.0776)

0.3142
(0.0624)

ση 0.033324 0.034502 0.033061 0.033390 0.038275

▲(γ, η) 569.99 560.02 572.94 569.42 530.23

LMAR(1)
[p−value]

0.1691
[0.6812]

0.1478
[0.7009]

0.1561
[0.6930]

0.1656
[0.6843]

0.0818
[0.7751]

LMAR(1−4)
[p−value]

0.1781
[0.9496]

0.1750
[0.9511]

0.1725
[0.9523]

0.1753
[0.9510]

0.13386
[0.9699]

LMNL3
[p−value]

1.0697
[0.3623]

1.1747
[0.3197]

1.0856
[0.3554]

0.4142
[0.7429]

0.9334
[0.4248]

AR(1) UK Germany France Japan Switzerland

δ
(se)

−0.0297
(0.0199)

−0.0219
(0.0157)

−0.0233
(0.0166)

−0.0147
(0.0096)

−0.0288
(0.0154)

µ
(se)

0.1759
(0.0756)

0.1317
(0.0992)

0.1413
(0.0891)

0.5981
(0.1907)

0.4158
(0.0864)

σµ 0.033444 0.034640 0.033117 0.033579 0.038385

▲(δ, µ) 568.96 558.87 571.78 567.81 529.41

Notes: ESTAR and AR(1) parameter estimates over the in-sample period from January 1973 to December 1996. The
maximum of the log-likelihood is denoted by▲(·). LMAR(1) and LMAR(1−4) are F−statistics of Langrange Multiplier
(LM) test for first and first to fourth order serial correlation in the residuals, constructed as in Eitrheim and Teräsvirta
(1996). LMNL3 is the F−statistics for a test for remaining ESTAR non-linearity (see Eitrheim and Teräsvirta, 1996,
page 65).
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Figure 2: One step ahead point forecasts. The thick green and thin blue lines show the one step ahead condi-
tional forecasts of the ESTAR and AR(1) models, respectively. Red circles are the non-parametric conditional
means, with 95% confidence intervals drawn as blue shading. Grey crosses mark the in-sample data. Vertical
dotted lines are drawn at the 15th and 85th percentiles of qt−1. Black asterisks denote the out-of-sample data.
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Table 2: Unweighted and weighted DM test results for one step ahead point forecasts.

DM statistic UK France Switzerland Japan

d
(se)

[t−statistic]

−3.37 × 10−5

(2.51×10−5)
[−1.3406]

9.68 × 10−6

(2.08×10−5)
[0.4645]

9.71 × 10−7

(1.41×10−5)
[0.0688]

−1.59 × 10−6

(8.87×10−6)
[−0.1792]

ωd
(se)

[t−statistic]

−2.32 × 10−5

(1.78×10−5)
[−1.3048]

6.66 × 10−6

(1.47×10−5)
[0.4538]

3.51 × 10−7

(6.08×10−6)
[0.0577]

−1.05 × 10−6

(1.31×10−6)
[−0.8013]

Notes: Standard (d) and weighted (ωd) Diebold and Mariano (1995, DM) test statistics. Standard errors (se) are of
the Newey and West (1987, NW) type. d was calculated as the arithmetic mean of dT+1 ≡ (εAR

T+1|T)2 − (εESTAR
T+1|T

)2

over the out-of-sample data, with εAR
T+1|T and εESTAR

T+1|T
being the one step ahead forecast errors from the AR(1) and TPS

models, respectively. The small sample correction factor of Harvey et al. (1997) was used in the construction of both
test statistics. ωd was computed as the arithmetic mean of ωT+1dT+1, where ωT+1 = 1 − f̂ (qT+1)/max[ f̂ (qT+1)]

and f̂ (qT+1) is an estimate of the density function of qT+1, evaluated at the out-of-sample data points. A Gaussian
kernel with a plug in bandwidth were used to compute the density estimate.
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Figure 3: Conditional means corresponding to h step ahead forecast. These were obtained as non-parametric
estimates of the conditional mean from 1 million simulated pseudo observations from the ESTAR model of
TPS under the parameter setting of the UK series. The conditional mean IE(∆qt|qt−k) was computed at 1000
equally spaced points over the interval [min (qt), max (qt)].
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Table 3: Weighted DM test results for multiple step ahead point forecasts.

DM statistic h UK France Switzerland Japan

ωd
(se)

[t−statistic]

2 −1.74 × 10−5

(1.25×10−5)
[−1.3991]

6.80 × 10−6

(1.35×10−5)
[0.5021]

−1.07 × 10−6

(5.35×10−6)
[−0.2003]

−1.17 × 10−6

(1.37×10−6)
[−0.8544]

ωd
(se)

[t−statistic]

3 −1.60 × 10−5

(8.70×10−6)
[−1.8420]

3.34 × 10−6

(1.20×10−5)
[0.2779]

−1.99 × 10−6

(5.24×10−6)
[−0.3789]

−1.44 × 10−6

(1.55×10−6)
[−0.9292]

ωd
(se)

[t−statistic]

5 −7.84 × 10−6

(3.90×10−6)
[−2.0083]

2.32 × 10−6

(1.02×10−5)
[0.2288]

1.18 × 10−6

(4.52×10−6)
[0.2613]

−8.85 × 10−7

(9.86×10−7)
[−0.8979]

ωd
(se)

[t−statistic]

6 −4.39 × 10−6

(2.89×10−6)
[−1.5161]

9.68 × 10−7

(9.20×10−6)
[0.1051]

1.80 × 10−6

(3.76×10−6)
[0.4792]

5.89 × 10−7

(1.00×10−6)
[0.5858]

ωd
(se)

[t−statistic]

7 −3.20 × 10−6

(2.30×10−6)
[−1.3896]

4.38 × 10−6

(7.78×10−6)
[0.5629]

1.39 × 10−6

(3.73×10−6)
[0.3725]

4.55 × 10−7

(9.53×10−7)
[0.4774]

ωd
(se)

[t−statistic]

10 −2.65 × 10−6

(9.40×10−7)
[−2.8219]

2.59 × 10−7

(6.63×10−6)
[0.0391]

−1.86 × 10−6

(3.04×10−6)
[−0.6113]

2.86 × 10−7

(8.02×10−7)
[0.3573]

ωd
(se)

[t−statistic]

14 −1.48 × 10−6

(9.78×10−7)
[−1.5170]

−6.98 × 10−7

(4.46×10−6)
[−0.1565]

−2.11 × 10−6

(2.29×10−6)
[−0.9221]

4.80 × 10−7

(7.13×10−7)
[0.6732]

ωd
(se)

[t−statistic]

18 −1.39 × 10−6

(7.89×10−7)
[−1.7564]

−3.08 × 10−6

(3.93×10−6)
[−0.7843]

−1.84 × 10−6

(1.98×10−6)
[−0.9306]

4.81 × 10−7

(3.34×10−7)
[1.4395]

ωd
(se)

[t−statistic]

22 −6.10 × 10−7

(5.88×10−7)
[−1.0378]

−1.82 × 10−6

(3.40×10−6)
[−0.5347]

−1.16 × 10−6

(1.33×10−6)
[−0.8718]

−1.09 × 10−7

(3.05×10−7)
[−0.3581]

Notes: The weighted DM test statistic ωd and its standard error (se) for multiple step ahead point forecasts. The
statistics were computed as documented in Table 2.
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Figure 4: 10 step ahead point forecasts. The contents are the same as in Figure 2. Black circles are
superimposed onto the NP conditional mean (solid green line) to mark the 10 step-ahead conditional forecast
computed from the recursive scheme outlined in (6) to facilitate the comparison to the NP conditional mean
computed directly from 1 million simulated ESTAR realisations.
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Figure 5: Multiple step ahead density forecasts of the ESTAR model. These were constructed by means of
non-parametric density estimation on 1 million simulated realisations of the ESTAR model in (1) under the
parameter setting of the UK series. Gaussian univariate and bivariate kernels were used, together with plug in
bandwidths that are proportional to the covariance matrix of the data (see Scott, 1992).
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Figure 6: Comparison of the multiple step ahead density forecasts of the AR(1) and ESTAR models for the
UK real exchange rate series. The AR(1) densities were calculated from (2). The ESTAR densities were
computed non-parametrically, using the 10 000 simulated pseudo draws constructed recursively from (6). The
conditioning value of qT is approximately 0.5 (November 2007 value) from which the forecasts were initiated.
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Table 4: DM test statistic for multiple step ahead density forecasts.

DM statistic h UK France Switzerland Japan

dS

(se)
[t−statistic]

1 −1.33 × 10−2

(1.13×10−2)
[−1.1803]

5.63 × 10−3

(9.49×10−3)
[0.5934]

9.94 × 10−4

(4.81×10−3)
[−0.2067]

−5.89 × 10−4

(4.61×10−3)
[−0.1279]

dS

(se)
[t−statistic]

2 −4.19 × 10−2

(3.39×10−2)
[−1.2369]

4.20 × 10−2

(3.63×10−2)
[1.1556]

2.22 × 10−2

(2.15×10−2)
[1.0342]

−2.54 × 10−2

(7.73×10−2)
[−0.3285]

dS

(se)
[t−statistic]

3 −2.97 × 10−2

(2.68×10−2)
[−1.1111]

3.41 × 10−2

(3.51×10−2)
[0.9721]

1.90 × 10−2

(2.08×10−2)
[0.9141]

−1.73 × 10−2

(3.19×10−2)
[−0.5436]

dS

(se)
[t−statistic]

5 −1.24 × 10−2

(1.93×10−2)
[−0.6444]

2.69 × 10−2

(3.45×10−2)
[0.7777]

1.51 × 10−2

(2.05×10−2)
[0.7359]

−1.18 × 10−1

(1.69×10−1)
[−0.7002]

dS

(se)
[t−statistic]

6 −7.64 × 10−3

(1.74×10−2)
[−0.4401]

2.33 × 10−2

(3.25×10−2)
[0.7162]

1.30 × 10−2

(2.00×10−2)
[0.6506]

2.16 × 10−2

(2.95×10−2)
[0.7318]

dS

(se)
[t−statistic]

7 −1.10 × 10−3

(1.61×10−2)
[−0.0684]

2.25 × 10−2

(3.10×10−2)
[0.7234]

6.77 × 10−3

(1.97×10−2)
[0.3437]

1.16 × 10−2

(2.91×10−2)
[0.3971]

dS

(se)
[t−statistic]

10 1.07 × 10−3

(1.28×10−2)
[0.0833]

1.30 × 10−2

(2.81×10−2)
[0.4642]

2.83 × 10−3

(1.77×10−2)
[0.1605]

−1.38 × 10−1

(1.79×10−1)
[−0.7683]

dS

(se)
[t−statistic]

14 5.38 × 10−3

(1.20×10−2)
[0.4500]

6.92 × 10−3

(2.45×10−2)
[0.2824]

−1.75 × 10−4

(1.48×10−2)
[−0.0118]

−1.40 × 10−2

(5.40×10−2)
[−0.2599]

dS

(se)
[t−statistic]

18 5.09 × 10−3

(9.65×10−3)
[0.5271]

5.16 × 10−3

(2.11×10−2)
[0.2442]

−4.30 × 10−3

(1.32×10−2)
[−0.3267]

−2.75 × 10−2

(5.86×10−2)
[−0.4692]

dS

(se)
[t−statistic]

22 2.00 × 10−3

(8.51×10−3)
[0.2346]

1.26 × 10−3

(1.77×10−2)
[0.0708]

−5.14 × 10−3

(1.08×10−2)
[−0.4750]

−4.60 × 10−2

(7.63×10−2)
[−0.6025]

Notes: The DM test statistic dS on the log score difference and its standard error (se) for multiple step ahead density
forecasts. The DM statistics were computed as documented in Table 2, using the correction factor of Harvey et al.

(1997).
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