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Abstract— In contrast to forwards and futures on storable 

commodities, prices of long-term electricity forwards exhibit a 

dynamics different to that of short-term and mid-term prices. We 

model long-term electricity forward prices through demand and 

supply for electricity, adjusted with a risk premium. Long-term 

prices of electricity, oil, coal, natural gas, emission allowance, 

imported electricity and aluminum are modeled with vector 

autoregressive model. To estimate the model we use weekly 

prices of far-maturity forwards relevant for Nordic electricity 

market. Electricity prices experienced few substantial shocks 

during the period we analyzed, we, however, found no evidence 

of a structural break. Cointegration analysis indicates two 

stationary cointegrating vectors. Nord Pool price is found 

significant in the short- and the long-run model, while the gas 

price is insignificant in both. Other variables are significant only 

in the long-run model. The model shows some influence of the 

risk premium, however not on the long-term electricity forwards 

from Nord Pool.  

 
Index Terms— Electricity prices, long-term forward prices, 

VAR modeling, cointegration. 

I. INTRODUCTION 

OMMODITY forward markets are normally focused on 

contracts with time to maturity up to 1.5 years. Since the 

correlation between the short-term and long-term prices is 

high in many markets, long-term risks can be hedged with 

roll-over hedging using short-term and mid-term forwards and 

futures. Unlike most commodities, electricity cannot be stored 

to any great extent. In an empirical analysis of forwards from 

Nord Pool, Koekebakker and Ollmar [1] show that the 

correlation between short-term and long-term electricity 

futures is low and conclude that short-term contracts are not 

appropriate for hedging long-term exposures in electricity 

markets such as long-term procurement costs and production 

revenues. While far-maturity exposures can normally be 

hedged with short-term positions, electricity companies can 

only properly hedge them with long-term trading. Although 

the liquidity of long-term electricity forwards is still often 

low, their maturities lie up to 6 years in the future.  

Long-term electricity forward prices also serve as 

important information carriers in that they provide valuation 

signals for strategic decisions like investments, mergers & 

acquisitions and financing of new long-term generation assets. 

In recent years these decisions are also influenced by the 

environmental pressure on the technology shift from 
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traditional coal and nuclear to natural gas and renewable 

sources. Investment and disinvestment decisions are triggered 

by changes in the relative economics of technologies, driven 

by changes in underlying commodity prices. The real options 

theory comprehensively described in [2] is appropriate for 

analyzing such decisions. The real option theory suggests 

using forward prices instead of projected future spot prices. 

The use of forward prices bypasses the problem of risk 

adjustment of the discount interest rates, allowing the assets to 

be valued over time with a risk neutral pricing. 

Since forward contracts are not traded far enough to be 

used in real asset valuation the forward prices beyond the 

traded horizon need to be forecasted. Extrapolation of quoted 

forward prices might not give the best estimate; since it 

ignores the available information about the long-term supply 

and demand. Forward contracts towards the end of the term 

structure are often illiquid, reducing the trust in extrapolation. 

More sophisticated models that focus on modeling long-term 

supply and demand and risk adjustment are therefore 

necessary to produce a better estimate of forward prices 

beyond the term structure. Since such models involve the 

understanding of what influence the prices of traded far-

maturity forwards, they might also prove useful in speculative 

trading.      

Long-term electricity prices are traditionally modeled with 

long-term production-cost models [3], [4]. In a restructured 

market, however, electricity prices do not necessarily equal 

production costs. Different extensions of production cost 

models were proposed to better reflect the real prices observed 

in the deregulated market. A hybrid approach, in which 

bottom-up models based on production cost variables are 

calibrated on market data, has gained increasing attention in 

recent years [5], [6]. Nonetheless, the literature on long-term 

electricity forwards is still scant, due to the lack of trusted 

long-term market data. Long-term forward prices are more 

often modeled as an extension of short-term forward-price 

modeling. Schwartz [7] uses models estimated on short-term 

oil futures and tests their performance on the available long-

term oil futures. The correlation between long-term electricity 

forward prices and short- or mid-term electricity forward 

prices, as shown in Koekebakker and Ollmar [1], is, however, 

low in many markets. This indicates that short-term models 

are unable to explain the dynamics of long-term electricity 

forward prices. An example of long-term electricity forward 

price modeling is provided in [8], which reports on a forward-

price and volatility-forecasting model that combines risk 

adjustment and external long-term forecasting models.  

In this paper we focus on modeling the dynamic structure 

of long-term electricity forwards. To model these prices we 

try to identify the long-term information that influences the 

expected long-term electricity supply, demand and risk 

premium. We analyze the weekly prices of Nord Pool’s long-
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term electricity forwards and how these are influenced by 

long-term forward prices of fuels, emission allowances and 

imported electricity. Due to possible endogeneity we use 

vector autoregressive model, which do not require any ad-hoc 

assumptions on exogeneity.  

This paper is organized as follows. Section 2 identifies the 

long-term electricity forward price process. The use of the 

data and univariate model representation is presented in 

Section 3. Section IV starts with descriptive analysis of 

variables and multivariate representation. This is followed by 

cointegration analysis and estimation of vector error 

correction model. Section 5 draws the conclusions.  

II. LONG-TERM FORWARD PRICE FORMATION 

We define long-term electricity forward prices as prices of 

electricity forwards with a delivery period of one year and a 

time to maturity of more than one year (T - t ≥ 1 year).  

 
Fig. 1 presents an example of the price dynamics for a 

forward contract from the Nordic electricity exchange Nord 

Pool with delivery in 2007. These contracts, though named 

forwards, correspond to the definition of swaps, having a 

stream of cash flows that depends on the difference between 

the realized spot price and the fixed contract price. We will 

continue to denote them forwards. Fig. 1 demonstrates that the 

forward-price dynamics is different from the spot-price 

dynamics when T >> t. As the delivery period closes (T ≈ t) 

the forward-price dynamics becomes more similar to the spot-

price dynamics. Long-term forward prices and short-term 

forward prices (spot prices) are, therefore, governed by 

somewhat different laws, which indicate the need to model 

them separately. 

A. Setup 

The non-storability of electricity has important 

implications on electricity trading and the valuation of 

forward contracts. While the cost-of-carry arbitrage is usually 

applied in valuation of commodity forwards, it cannot be used 

in case of electricity forwards, since electricity cannot be 

bought today at the spot price St and stored for subsequent sale 

at the forward price Ft,T. As an alternative to the cost-of-carry 

arbitrage one can use an equilibrium approach [9]  

( )( )
, , 1

T t

t T t TF S r λ −= + −  (1) 

where the forward price Ft,T is the (rational) expectation about 

the spot price at delivery time, Et[ST] (or simply St,T) 

discounted with the risk-free interest rate r and the risk 

premium λ. Due to the uncertainty of the expected spot price, 

St,T, market participants require a compensation for bearing the 

spot-price risk, i.e., they determine their own risk premium. 

When individual risk preferences are matched (e.g., on the 

exchange) the aggregated risk premium is obtained; this is 

also referred to as the market price of risk. In (1) the forward 

price formation is therefore an equilibrium process. If one is 

able to obtain an unbiased estimate of the expected spot price 

St,T, the supply and demand for bearing the spot price risk 

determines the risk premium λ.  
Transforming (1) to logs gives 

, ,ln ln ( ) ln(1 )t T t TF S T t r λ= + − + −  (2) 

Assuming constant risk risk-free interest rate r and risk 

premium λ and writing time to maturity (T – t) as Tm, (2) can 

be rewritten to  

, ,ln lnt T t T mF S RT= +   (3) 

where R is the risk premium parameter defined as ln(1 + r – 

λ). In (3) the risk premium therefore depends only on time to 

maturity. In modeling fixed income markets, foreign exchange 

markets or commodity markets this is a very common 

assumption. In case of electricity an assumption that risk 

premium depend only on time to maturity is also often applied 

[10], despite some empirical findings, which indicate that the 

risk premium in short-term electricity forwards might be 

influenced by the probability of price spikes (load seasonality) 

and the level of prices [11], [12]. Some investigations, which 

also extends to far-maturity contracts, however, indicate that 

the magnitude and the variability of the risk premium in far-

maturity electricity forwards is low [13], [14].  

In (3) the forward prices are therefore mainly driven by the 

expected spot prices, subject to information sets available to 

market participants. We assume that information sets in our 

case include past information about Ft,T as well as the 

information that influence the expected spot price St,T, i.e. 

variables that influence the expected supply and demand. We 

assume all participants (i.e. producers, buyers and traders) 

have the same information set. 

B. Modeling the long-term expected spot price 

We define the long-term forwards as the contracts with 

delivery period of one year, having a payoff that depends on 

the realized spot price over the delivery year. The long-term 

expected spot price St,T therefore represents the expected price 

of 1 MW of annual base-load electricity. Expected electricity 

spot prices a few years into the future are influenced by the 

expected supply and demand at the delivery time T. The 

supply and demand are however not observable variables. 

Instead we can use fundamental variables that influence the 

supply and demand to estimate their influence on the expected 

spot price. Electricity demand can sufficiently be explained 

with weather, economic activity and demography, whereas the 
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variables influencing the supply can be grouped into five 

groups:  

1. Fuel prices (coal, natural gas, oil),  

2. Water-reservoir level in hydro-rich systems,  

3. Emission allowance prices (CO2),  

4. Supply capacity (market structure, available capacity)  

5. Electricity prices in neighboring markets (in the case that 

a significant share of electricity is imported or exported)  

When estimating the expected spot price in the long-term we 

seek reliable information about the expected values of the 

fundamental variables mentioned above. In the short term (T ≈ 

t) the fundamental variables can be predicted with high, 

though not complete, accuracy. As the time to maturity 

increases, the variance of these variables increases and their 

mean values are harder to predict. Still, there is a difference 

between variables that are considered stationary and 

integrated variables. With stationary variables the 

unconditional variance is bounded and the unconditional mean 

is based on historical average and expected growth. Such are 

the hydro reservoir levels, supply capacity and electricity 

demand, which can be predicted based on historical average 

value and expected long-term growth. The unconditional 

mean for hydro reservoir level equals historical average 

reservoir level, since the weather cannot be predicted any 

better than using the historical average. The expected long-

term demand can be estimated on the basis of expected long-

term growth, which is influenced by economic and 

demographic drivers. The long-term expected supply capacity 

can be predicted on the basis of known plans about the 

commissioning of new power plants and the decommissioning 

of old power plants. Integrated variables on the other hand 

have no unconditional distribution since the shocks in these 

variables will persist and their unconditional variance is 

therefore unbounded. In our case these are fuel prices, 

emission allowance prices and prices of electricity in 

neighboring markets. Fortunately the market offers securities 

to hedge their uncertain future evolution. Among these 

securities, we use long-term forward prices of fuels, emission 

allowances and electricity in neighboring markets to explain 

the dynamics of long-term electricity price. 

Information on the forward prices for fuels, emission 

allowances and imported electricity, changes on a daily basis, 

since these forwards are usually traded each working day. 

Information on the long-term expected demand and the 

expected supply capacity changes only when new information 

on the underlying factors (GDP, construction and retirement 

plans) becomes available; this information changes less 

frequently (e.g., monthly, quarterly or yearly). The problem 

with this data is also that it is not as reliable as market-based 

information. Unless it is published as a part of exchange 

information, market participants need to estimate the expected 

demand and supply capacity themselves. The expected spot 

price is, therefore, influenced by high-resolution market-based 

information (forward prices of fuels, emission allowances and 

neighboring-market electricity) and by low-resolution 

estimated information (expected demand and supply capacity).  

Due to the different resolutions of both types of 

information an estimation of the influence of these variables 

on electricity forward prices is challenging. In this paper we 

use only high resolution market-based information, whereas 

low-resolution estimated information is the additional source 

of uncertainty and influence the variance structure of expected 

long-term electricity spot prices. Our model for the expected 

long-term spot price of electricity is therefore 

, , , , , , ,
ln ln ln lnfuel ea nm

t T i t T i j t T j k t T k

i j k

S F F Fα β γ= + +∑ ∑ ∑  (4) 

where ,t TS  is the expected electricity spot price, , ,

fuel

t T iF  is the 

forward price of fuel i, , ,

ea

t T jF  is the forward price of the 

emission allowance j and , ,

nm

t T kF  the forward price of electricity 

in a neighboring market k.  

 

III. DATA AND DESCRIPTIVE ANALYSIS 

 

We test the proposed model on the long-term electricity 

forwards from the Nordic electricity exchange Nord Pool. 

Nord Pool is one of the oldest electricity exchanges, covering 

the area of four Nordic countries: Norway, Sweden, Finland 

and Denmark. In 2005 most of the electricity in the Nordic 

electricity market was supplied by hydroelectric plants (54%), 

with the rest coming from nuclear (22%), renewable (8%), 

coal (6%), natural gas (5%), imports (3%), oil (1%) and other 

sources (1%). In 2005 the Nord Pool financial market volume 

was 786 TWh, physical volume was 176 TWh, whereas the 

total production in the market was 404 TWh. The market went 

through a number of structural changes, the latest being the 

introduction of the European emission trading scheme (ETS) 

in 2005. Since this changed the overall price formation, we 

choose to analyze only the prices from the start of 2005 to the 

end of 2007. Our sample is constructed in a way to include 

only prices of yearly contracts with time to maturity between 1 

year and 2 years as shown in Table I. For observation period 

2005, ENOYR07 is used, and this contract is replaced with 

ENOYR08 with the start of 2006 and with ENOYR09 with 

the start of 2007. This way we avoid the price shift when two 

consecutive contracts are rolled over. Since contracts with 

delivery period 2 and 3 years ahead move very similar, the 

difference between them is very small. For other variables, 

defined in the following of the paper, we use forward prices 

with the same observation and maturity period. 

 

The analysis of high-resolution financial data often 

involves the problem of non-synchronous trading. The prices 

in our analysis are quoted at different times, and due to the 

time mismatch, the integration between them is not clear. We 

use weekly resolution instead of daily resolution, since the 

relative time mismatch is much lower in the case of weekly 

sampling. Although the weekly sampling tends to smooth out 

the magnitude of price jumps, the volatility structure should 

 

TABLE I 

SAMPLE CONSTRUCTION 

CONTRACT MATURITY PERIOD T OBSERVATION PERIOD  t 

ENOYR07 2007 2005 

ENOYR08 2008 2006 

ENOYR09 2009 2007 
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not be significantly different to that when using the daily 

sampling. We use the closing price from each Wednesday as 

the reference weekly price for all the variables, giving the 

sample size of N=156.  

As shown in Fig. 2, there are no significant shifts at the 

time of rollover. The sample, however, shows a significant 

price shock in April 2006 corresponding to observations 67 to 

70. Before this shock, CO2 emission allowance prices were 

pushing electricity prices up significantly, however, when the 

report on actual emissions in EU was published in April 2006, 

the prices of emission allowances dropped dramatically, 

which had a significant effect on electricity prices. We will 

investigate this effect by testing whether this shock can be 

considered as a structural break in the relationship between 

the variables.  

 

A. Fuel prices 

Fuel prices can be divided into two groups, based on data 

availability. In the first group are the fuels that are not traded 

on an exchange, and so no transparent information about their 

prices exists. These fuels are uranium, biomass, water, wind, 

solar and other renewable sources. Prices of these fuels are 

uncertain and they influence the variance structure of 

electricity prices. In the second group are the fuels that are 

traded on an exchange, and at least some information about 

their long-term prices is available. These are oil derivatives, 

natural gas and coal. Although their use in electricity 

production in the Nordic market is small, they are often the 

marginal source of production and can have a significant 

influence on electricity prices. We model the fuel price 
, ,

fuel

t T iF  

with the forward prices for coal ,

coal

t TF , natural gas ,

gas

t TF  and 

crude oil ,

oil

t TF , which also represents the price of all oil 

derivatives. 

, , 0 1 , 2 , 3 ,ln ln ln lnfuel oil coal gas

i t T i t T t T t T

i

F F F Fα α α α α= + + +∑  (5) 

For the crude-oil price we use the NYMEX WTI light 

sweet crude oil data. Although the Brent crude oil data from 

the Intercontinental Exchange (ICE) might be a better choice 

for Nordic countries, the availability of long-term oil prices is 

much better at NYMEX. The long-term crude-oil price is 

influenced by the global long-term supply and demand. The 

long-term NYMEX WTI price therefore represents a global 

price indicator of the world oil price in the long term.  

The steam-coal market cannot be characterized as a global 

market like crude oil. The majority of coal is still traded over 

the counter, mostly because coal is hard to standardize, due to 

its different energy values. Exchange forward trading with 

coal is still in its early stages. Instead, we use the TFS API2 

index as a reference for coal prices in the Nordic area. TFS 

API2 is a price index for coal delivered in Amsterdam, 

Rotterdam and Antwerp harbor and should, therefore, also 

represent the coal prices in the Nordic area. 

The natural gas consumed in the Nordic area comes 

mainly from North Sea resources. Natural gas forwards of 

North Sea gas is also traded on ICE. We use the ICE quarterly 

prices of natural gas forwards to construct the yearly forward 

prices for natural gas.  

B. Emission allowance prices 

The price of emission allowances in our model include 

only the price of the European CO2 emission allowance 

(EUA) which were introduced by European emission trading 

scheme (ETS) in 2005 for carbon oxide (CO2) emissions. The 

second part of (4) is therefore  

, , 1 ,
ln lnea eua

j t T j t T

j

F Fβ β=∑  (6) 

where ,

eua

t TF  is the forward price of the EUA. We use the data 

on EUA prices from Nord Pool. Since Nord Pool began 

trading with EUAs in March 2005, we use the Spectron EUA 

prices which precede that date. Combining the EUA price 

from two different exchanges is possible, since CO2 allowance 

is a global commodity that can be purchased and used 

anywhere in Europe. The difference in the EUA prices 

between Spectron and Nord Pool is negligible. 

C. Neighboring-market price 

The Nordic electricity market imports electricity from 

Russia, Germany and Poland. We have no information on 

import prices from Russia, so we use only the European 

Energy Exchange (EEX) long-term forward price as a 

reference price for the electricity imported from Germany and 

Poland. The neighboring-market price is, therefore, the EEX 

long-term electricity forward price. 

, , 1 ,ln lnnm eex

k t T k t T

k

F Fγ γ=∑  (7) 

We expect that the EEX price represents a rich source of 

information. Firstly, it influences the total market price 

through import and export and secondly, it could be 

influenced by similar information that influences the Nord 

Pool price.  

Combining (3), (4), (5), (6) and (7) gives the following 

regression model describing the long-term electricity forward 

prices from Nord Pool. 

, 0 1 , 2 , 3 ,

1 , 1 , ,

ln ln ln ln

ln ln

np oil coal gas

t T t T t T t T

eua eex

t T t T m t T

F F F F

F F RT u

α α α α

β γ

= + + +

+ + + +
 (8) 
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In (8) we include an error term εt,T, which represents the 

uncertainty in the expected spot price and the uncertainty in 

explanatory variables. We assume the error term ut,T follows a 

normal distribution.  

IV. MULTIVARIATE MODEL 

Model (8) defines the univariate relationship between a 

dependent variable and explanatory variables on the right-

hand-side. The drawback of such representation is that 

explanatory variables are assumed to be exogenous, which is 

an assumption that should be tested rather than assumed a 

priori. Another drawback of representation in (8) is that it 

fails to validly estimate all the long-term relationships 

between the variables, particularly when variables are non-

stationary and cointegration between variables is present. In 

our model we cannot assume exogeneity or stationarity, since 

the prices of interdependent commodities are often 

cointegrated and non-stationary. A model that overcomes the 

deficiencies of single equation models is a vector 

autoregressive model (VAR). VAR model assumes that all 

variables are endogenous; hence all variables are modeled as a 

function of own past values and past values of other 

endogenous variables. We define a general Gaussian vector 

autoregressive model 

0 ,

1 1 1

k m n

t i t i j t j j j t t

i j h

− −
= = =

= + + Ψ + Θ +∑ ∑ ∑Y A A Y Z w u  (9) 

where Yt is a vector of endogenous variables, Zt vector of 

exogenous variables and wj,t intervention dummies to render 

the residuals ut well-behaved. We use the logs of 

,

np

t TF , ,

oil

t TF , ,

coal

t TF , ,

gas

t TF , ,

eua

t TF , ,

eex

t TF , as endogenous variables and 

we denote them as np, oil, coal, gas, eua and eex respectively. 

Time to maturity Tm is considered exogenous.   

A. Sample analysis 

Table II gives descriptive analysis of variables in (9). The 

variables are clearly not normally distributed; particularly the 

skewness in gas and kurtosis in np and gas are very high. 

Non-stationarity cannot be rejected in all cases except for oil 

and eua. Both stationarity tests are strongly reject the non-

stationarity in first differences (not presented here). Variables 

np, coal, gas, and eex are therefore integrated of order I(1), 

while oil and eua may be I(0), although the results are not 

strongly significant.   

 

B. VAR Setup 

Based on stationarity test we will assume that none of the 

variables is I(2) and the system is therefore adequately 

modeled as I(1). The model (9) with lag length set to k = 2 is 

estimated and results together with diagnostics are presented 

in Table II. No intervention dummies wj,t are included at this 

point.  

 
All endogenous variables in VAR are significant. Significance 

test (Fsig) on deterministic components show that constant is 

marginally significant, while time to maturity Tm is not. The 

diagnostic tests involve F-tests that there is no residual 

autocorrelation (Far, against 4th order autoregression), that 

residuals are normally distributed (χ2
nd), that there is no 

heteroscedasticity (Fhet) and that there is no autoregressive 

conditional heteroscedasticity (Farch, against 4th order). 

Misspecification tests reveal significant problems with all of 

these tests, particularly when vector tests are considered. 

Since VAR estimates are more sensitive to skewness than 

kurtosis, residuals skewness is also reported.  

To overcome the undesired properties of residuals in Table II 

we first focus on the structural specification of the model. 

Increasing the lag length k does not help to remove residual 

autocorrelation. Since residual autocorrelation also suggests 

an omission of important variables that influence the dynamic 

structure of our model, we analyze the price movement during 

this period and search for additional variables that might also 

be included in the model. Among much non-quantifiable 

information we find that aluminum prices also affected the 

prices of electricity in Scandinavia and Europe during this 

period. Aluminum prices rose significantly during this period 

and this triggered some decisions to postpone the 

decommissioning of some aluminum smelters, which could 

sell aluminum under increased long-term aluminum prices, 

with long-term electricity forwards as hedging instruments. 

The long-term aluminum prices therefore reflect changes in 

part of future electricity consumption and influence the 

demand for long-term electricity forwards. Descriptive 

analysis for aluminum forward price (alu) from London Metal 

Exchange also show a non-normal distribution, while the 

values of ADF and Phillips-Peron test are -1.46 and -1.28 

(cv1%=-4.02) indicating integration of order I(1).  

We also introduce a few dummies to the system to account 

for the shocks, which are known to induce erratic behavior 

 

TABLE II 

VAR(2) DIAGNOSTIC TESTS 

TEST Far(4,136) χ2
nd(2) SKEW.  Fhet(26,113) Farch(4,132)      SE 

np 1.11 19.7** -0.33      4.56**     6.81** 0.0252

oil 1.35 2.15 -0.14      1.08     0.40 0.0262

coal 3.57** 6.26*   0.26      0.90     0.55 0.0193

gas 0.82 21.3**   0.73      0.99     5.75** 0.0313

eua 0.98 11.4**   0.11      1.66*     3.79** 0.0635

eex 1.84 29.6**   0.36      2.06**     8.33** 0.0179

CONST.: Fsig(6,135) = 2.72*,   Tm:  Fsig(6,129) = 0.60,      LLF=2207.1

VECTOR: Far(144,656)=1.37**,  χ2
nd(12)=59.0**,  Fhet(546,1610)=1.15* 

* rejects the null hypothesis at 5% significance level 

** rejects the null hypothesis at 1% significance level 

 

TABLE II 

DESCRIPTIVE ANALYSIS OF VARIABLES 

VARIABLE  np   oil   coal   gas   eua   eex 

MEAN   3.68    3.87    3.94   4.12    2.94    3.90

STD. DEV.   0.18    0.16    0.09   0.24    0.29    0.17

SKEWNESS -0.71  -1.70    0.65  -0.84  -1.70  -0.92

EXC. KUR. -0.48    2.46    0.41  -0.06    3.51  -0.57

ADF TEST -2.33  -3.46*  -2.03  -2.68  -3.84**  -1.54

PP TEST -2.21  -3.50**  -2.01  -2.56  -2.93*  -1.51

* rejected at 5% significance level. 

** rejected at 1% significance level 
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and nonlinear dynamics. First we introduce a blip dummy to 

set the residuals from 67 to 70, to zero, which correspond to 

eua price shock in April 2006. A blip dummy Db67 of a type 

(…0,1,0…) with three lags is used for this purpose. Next we 

add one transitory dummy Dtr of a type (…0,1,0,-1,0…) to 

remove the effect of transitory shock in observations 27 and 

29. Additionally three blip dummies Db33, Db57 and Db117 are 

used to remove the largest outliers. The diagnostics of VAR 

that include these changes is presented in Table III. 

 
The results in Table III show that aluminum price and 

dummies help to improve the properties of VAR. Most single 

equation and vector misspecification tests are improved. There 

is a still slight autocorrelation present in coal and alu, but we 

will not pursue this further, since we expect these two 

variables are weakly exogenous and they do not have to be 

modeled themselves. The vector tests on the other hand reject 

the autocorrelation and heteroscedasticity in residuals. While 

strict normality is still not achieved, we managed to reduce the 

skewness, which is more critical than kurtosis.  

 
We test this specification for parameter constancy. In 

particular we are interested in the influence of eua price shock 

in April 2006. The shock had a significant effect on the Nord 

Pool forward price as seen in figure 2 and also the EEX 

forward price. To test whether this shock or any other shock 

during this period, changed the overall structure of the data 

generating process, we use the Chow test for structural break 

[15]. Figure 2 shows recursive break-point Chow test for each 

equation in the system and for the system as a whole. The 1% 

significance level of the break-point test is never exceeded 

indicating that parameters of individual equations and the 

system as a whole are constant throughout the sample. The 

eua price shock can therefore be considered as a transitory 

shock, which can be removed with intervention dummies, 

rather than a structural break. 

VAR in Table III is also tested for stability by checking 

the roots of the companion matrix. All the roots lie inside the 

unit circle with the moduli of the three largest roots being 

0.981, 0.981 and 0.948 respectively indicating that this 

representation of VAR is stable. 

C. Cointegration analysis 

Since unit root testing indicate that first differences are 

I(0), we convert the model (9) to first difference model. This 

model explains only the short-run dynamics of the system, 

while the long-run relationship between variables, which is 

important if variables are cointegrated, is lost. Cointegration 

between non-stationary variables can be captured with 

equilibrium error correction model:  
1
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which has the same innovation process ut, since no restrictions 

have been imposed by transformation from (9) to (10). In (10) 

the R.H.S. contains information about the short- and the long-

run adjustment to changes in Yt. If Yt contains I(1) variables, 

then ΔYt-i is I(0), while ПYt-1 must also be I(0) for ut to be a 

white noise process.  Matrix П can be decomposed to П = αβ’ 

where α represent the speed of adjustment to disequilibrium 

and β’ is the matrix of long-run coefficients such that β’Yt-1 

represents up to n – 1 stationary cointegrating relationships, 

which ensure that Yt converge to their long-run steady state 

solution. A note however is necessary that since Yt contains 

two variables that are possibly I(0) in levels, they form a 

cointegrating relation by itself adding to the total number of 

cointegrating relations. A0 is unrestricted constant which 

accounts for a constant in the short-run model (trend in levels) 

and a constant in cointegration space.  

To test for cointegration between variables we employ 

Johansen testing procedure [16] which concentrates on testing 

whether the eigenvalues λi of the matrix П in (10) are 

significantly different from 0. We test whether П has a 

reduced rank r ≤ (n – 1), indicating that there are r stationary 

cointegrating relationships between non-stationary variables 

in VAR. If r = n, this would indicate that all variables are 

stationary, while r = 0 would indicate no stable cointegrating 

relationships and the VAR with first differences only would 

be adequate. To determine the rank r we use the trace test 

statistics 

( )trace

1

ˆlog 1
n

i

i r

Tλ λ
= +

= − −∑   (11) 

 

TABLE III 

VAR(2) DIAGNOSTICS TESTS 

TEST Far(4,126) χ2
nd(2) SKEW.  Fhet(28,101) Farch(4,120)  SE 

np 1.12 13.6** -0.20      1.02 0.48 0.0201 

oil 2.31 4.41 -0.11      1.04 0.43 0.0256 

coal 2.86* 4.15   0.03      1.13 1.35 0.0183 

gas 0.27 19.4**   0.13      0.99 0.40 0.0289 

eua 0.95 4.11   0.22      1.09 1.44 0.0536 

eex 0.58 4.61   0.08      1.15 0.22 0.0136 

alu 2.73* 10.1*   0.00      0.74 1.06 0.0210 

CONST.: Fsig(7,124) = 7.54**,  Tm:  Fsig(7,124) = 1.86,   LLF=2731.0 

VECTOR: Far(196,665)=1.13,  χ2
nd(14) = 43.4**,  Fhet(784,1601)=0.86 

* rejects the null hypothesis at 5% significance level 

** rejects the null hypothesis at 1% significance level 
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Fig. 3.  Recursive break-point Chow test 



 7

where T is the sample size and ˆ
iλ  are the estimated 

eigenvalues of П. The results of the cointegration rank test, 

presented in Table IV, show that λ1 is strongly significant 

while λ2 and λ3 are on the borderline of significance with p 

values 0.019 and 0.074 respectively. It is hard to know exactly 

if they form a stationary cointegrating vector or not. 

 
Since the choice of cointegration rank is crucial in 

modeling cointegrated systems, we look for additional 

indicators for determining r, as specified in [17]. First we look 

at the moduli of the largest characteristic roots of the model, 

and see how they are changing for the hypotheses in question, 

i.e. r = 1, 2 and 3. Table IV again show indecisive results for r 

= 2 and r = 3. It is hard to know exactly whether a moduli of 

0.910 represent a unit root or not.  Next we look at the 

significance of parameters of loading matrix α. The t-value of 

α2,2 is -4.20 and for α5,3 is -3.28 indicating that the second 

vector adds additional explanatory power to the oil equation 

and third cointegrating vector to the eua equation. Finally we 

look at the graph of the first six cointegrating vectors 

presented in Fig. 2.  

 
The first two cointegrating vectors look stationary and the 

last three are clearly not. For the third cointegrating vector it is 

hard to decide, so we test the third vector with ADF test and 

Phillips-Perron test. Both of them reject stationarity with 

probability of 0.115 and 0.153 respectively. Based on these 

finding we choose cointegration rank r = 2. Although the third 

vector might also help explain the long-term relationship in 

eua equation, it is not stationary. 

To identify the two vectors we test the restrictions on 

estimated α and β. We first rotate the cointegration space by 

normalizing β with respect to np and oil. This way beta is 

exactly identified and the significance of each variable in 

cointegration space can be tested by putting additional 

restrictions on parameters in β. These tests based on standard 

LR test show that in the second vector only the oil parameter 

is significant, indicating that the second vector is exactly oil, 

consistent with the unit root test results showing oil being 

stationary in levels. The first cointegrating vector is a linear 

combination of np, coal, eua, eex and alu. Gas price is 

insignificant in both cointegrating vectors and therefore have 

no long-run explanatory power. Testing all the restrictions 

gives the following representation of β, with the standard 

errors below. 

 
( ) ( ) (0.10) ( ) (0.03) (0.17) (0.16)

( )( ) ( ) ( ) ( ) ( ) ( )

ˆ 1 0 0.72 0 0.13 0.93 0.96

0 1 0 0 0 0 0

np oil coal gas eua eex alu

− − −

−− − − − − −

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β  

In the second step we test the restrictions on loading 

matrix α, which is also known as the test for weak exogeneity. 

The test involves testing the restrictions that particular row in 

the estimated loading matrix α is insignificantly different from 

zero. The parameters of α explain how the short-run model 

(i.e. the first difference model) is adjusted to the 

disequilibrium represented by cointegrating vectors β’Yt-1. If 

the entire row in α is zero this indicates that none of the 

cointegrating vectors enter the equation associated with this 

row. This equation can therefore be excluded from VECM, 

and this variable is called weakly exogenous. Testing these 

restrictions additionally to restrictions on β shows that coal 

and alu are weakly exogenous in our model, while other 

variables are endogenous.  

Based on cointegration test and weak exogeneity test we 

form a VECM as in (10). Yt now includes endogenous 

variables np, oil, gas, eua and eex, while Zt includes two 

weakly exogenous variables coal and alu and time to maturity 

Tm. Estimation of (10) includes one lag of first differences of 

endogenous variables, the first lag of two cointegrating 

vectors, the first lag of weakly exogenous variables, eight 

dummy variables and a constant, giving 25, 10, 15, 40 and 5 

parameters respectively, a total of 95 parameters to estimate. 

We reduce the model size with the standard F-test, which 

seeks the balance between the goodness of fit and the degrees 

of freedom. The reduced model shows that gas is also 

insignificant in the short-run model so we completely remove 

gas from the system. The 4 dimensional model now include 

40 parameters and the value of F-test on reduction is 

F(30,526)=1.06. The reduced model includes the first lag of 

Δnp, two cointegrating vectors, a constant, ΔTm and five 

dummies only. The diagnostic tests presented in Table V show 

that the main properties of residuals remained unchanged with 

standard errors very close to values in Table III. Since coal, 

alu and gas equation are removed from the system, vector 

autocorrelation and heteroscedasticity tests are improved. 

Normality test, however, show no improvement. Both 
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TABLE IV 

COINTEGRATION RANK TEST AND CHARACTERISTIC ROOTS 

H0: rank≤   λi λtrace   prob r = 1 r = 2 r = 3 

0 0.372 172.5** 0.000 1.000 1.000 1.000

1 0.196 101.0* 0.019 1.000 1.000 1.000

2 0.177 67.47 0.074 1.000 1.000 1.000

3 0.114 37.55 0.326 1.000 1.000 1.000

4 0.074 18.92 0.509 1.000 1.000 0.910

5 0.027 7.11 0.572 1.000 0.871 0.910

6 0.018 2.85 0.091 0.405 0.431 0.458

* rejects the null hypothesis at 5% significance level 

** rejects the null hypothesis at 1% significance level 
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cointegrating vectors are highly significantly, confirming that 

the choice of cointegration rank is correct. ΔTm is significant 

only in Δeua and Δeex equation indicating that the system 

show some influence of the risk premium, however the 

significance is strongly rejected in Δnp (p=0.70), which is in 

our interest. 

 

V. CONCLUSION 

We have analyzed the long-term electricity forward prices 

using a vector autoregressive model. The model is specified 

based on variables that influence the expected long-term 

electricity supply, demand and risk premium. We use the 

long-term forward prices of oil, coal, natural gas, emission 

allowances, imported electricity and aluminum prices to 

model the dynamic properties of long-term electricity forward 

prices. The risk premium is modeled as a function of time to 

maturity.  

The model is estimated on weekly data from 2005 to 2007 

using variables relevant for Nordic electricity market. We 

specify a 7 dimensional VAR with two lags and few 

intervention dummies to render the residuals well behaved. 

The influence of emission allowance price shock in April 

2006 is analyzed with Chow breakpoint test. The test show no 

breaks in constant or trend. The variables in the model are all 

integrated of order I(1), except oil and emission allowance 

price, which are close to I(0). The system is tested for 

cointegration using Johansen cointegration test. The test, 

together with other indicators, indicate two stationary 

cointegrating relationships, the first being a linear 

combination of non-stationary variables and the second being 

exactly the oil price. Gas price is found insignificant in both 

the short-and the long-run model. The model show some 

influence of risk premium, however its influence on electricity 

forward prices from Nord Pool is not confirmed. This 

indicates that the risk premium dynamics in the long-term 

electricity forwards from Nord Pool is rather low and that the 

risk premium could be considered as constant. While these 

results hold for the Nordic electricity market, other markets 

may have a different maturity level and their price dynamics 

may respond to other variables. Nevertheless, the general 

approach could be used for analyzing other electricity 

markets. 

ACKNOWLEDGMENT 

The authors wish to thank Nord Pool ASA for the access to 

their FTP database and Sjur Westgaard, Jens Wimschulte, 

Stein Frydenberg and Nico van der Wijst for helpful 

comments. Fleten acknowledges support from the Research 

Council of Norway through project 178374/S30. 

REFERENCES 

[1] S. Koekebakker and F. Ollmar, “Forward curve dynamics in the Nordic 

electricity market,” Managerial Finance, vol. 31, no. 6, pp. 74-95, 2005. 

[2] A. K. Dixit and R. S. Pindyck, Investment under uncertainty, New 

Jersey, Princeton: Princeton University Press, 1994. 

[3] J. A. Bloom and L. Charney, “Long range generation planning with 

limited energy and storage plants, part I: production costing,” IEEE 

Trans. on Pow. App. And Sys., vol. PAS-102, no. 9, pp. 2861-2870, 

1983. 

[4] S. A. McCusker, B. F. Hobbs and Y. Ji, “Distributed utility planning 

using probabilistic production costing and generalized benders 

decomposition,” IEEE Trans. on Power Systems, vol. 17. no. 2, pp. 497-

505, 2002. 

[5] A. Eydeland and K. Wolyniec, Energy and power risk management, 

Chichester: John Wiley & Sons, 2003, ch. 7.  

[6] P. L. Skantze, M. Ilic, A. Gubina, “Modeling locational price spreads in 

competitive electricity markets: applications for transmission rights 

valuation and replication,” IMA J. of Management Mathematics, vol. 15, 

pp. 291-319, 2004. 

[7] E. S. Schwartz, “The Stochastic Behavior of Commodity Prices: 

Implications for Valuation and Hedging,” J. of Finance, vol. 52, pp. 

923-973, 1997. 

[8] V. Niemeyer, “Forecasting long-term electric price volatility for 

valuation of real power options,” in Proc. of the 33rd Annual Hawaii 

International Conference on System Sciences, Hawaii, 2000. 

[9] R. L. McDonald, Derivatives Markets (Second Edition), Boston, MA, 

Addison-Wesley Series in Finance, 2006, pp. 72. 

[10] S. Wilkens and  J. Wimschulte, “The pricing of electricity futures: 

Evidence from the European energy exchange. Journal of Futures 

Markets, vol. 27, no. 4, pp. 387-410, 2007. 

[11] H. Bessembinder and M. L. Lemmon, “Equilibrium pricing and optimal 

hedging in electricity forward markets,” J. of Finance, vol. 57, no. 3, pp. 

1347–1382, 2002. 

[12] F. Longstaff and A. Wang, “Electricity forward prices: A high-frequency 

empirical analysis,” J of Finance, vol. 59, no. 4, pp. 1877-1900, 2004. 

[13] F. Ollmar, “Empirical study of the risk premium in an electricity 

market,” Norwegian School of Economics and Business Administration 

Working Paper. 2003. 

[14] P. Diko, S. Lawford and V. Limpens, "Risk Premia in Electricity 

Forward Prices," Studies in Nonlinear Dynamics & Econometrics, Vol. 

10, no. 3, pp. 1358-1358, 2006. 

[15] G. Chow, “Tests on Equality between sets of coefficients in two linear 

regressions”, Econometrica, vol. 28, no. 3, pp. 591-605,1960. 

[16] S. Johansen, “Statistical Analysis of Cointegrating Vectors,” Journal of 

Economic Dynamics and Control, vol.12, no. 2/3, pp-231-254, 1988.  

[17] K. Juselius, The Cointegrated VAR model: Methodology and 

Aplications, Oxford, Oxford University Press, 2006. 

  

 

TABLE V 

DIAGNOSTICS TEST OF VECM 

TEST Far(4,140) χ2
nd(2) SKEW. Fhet(14,129) Farch(4,136)    SE 

Δnp 1.02 22.3**   0.13       0.87     0.93   0.0198

Δoil 0.45 5.97 -0.11       0.86     0.79   0.0258

Δeua 0.85 1.02   0.21       0.82     2.42   0.0527

Δeex 1.56 9.46**   0.13       1.37     0.95   0.0134

Δnp -1:    Fsig(4,141) = 3.15*           ΔTm:     Fsig(4,141) = 4.26**,  

1 1
ˆ

t −′β Y :    Fsig(4,141) = 13.7**        
2 1

ˆ
t −′β Y :  Fsig(4,141) =13.6** 

CONST.:  Fsig(4,141) = 13.7**         LLF= 1496.5 

VECTOR: Far(64,491)=1.09;  χ2
nd(8)=36.3;  Fhet(140,1001)=1.08 

* rejects the null hypothesis at 5% significance level 

** rejects the null hypothesis at 1% significance level 


