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Abstract

The paper discusses the role of stochastic trends in DSGE models and effects of stochastic

detrending. We argue that explicit structural assumptions on trend behavior is convenient,

namely for emerging countries. In emerging countries permanent shocks are an impor-

tant part of business cycle dynamics. The reason is that permanent shocks spill over

the whole frequency range, potentially, including business cycle frequencies. Applying

high- or band-pass filter to obtain business cycle dynamics, however, does not eliminate

the influence of permanent shocks on comovements of time series. The contribution of

the paper is to provide a way how to calculate the role of permanent shocks on the de-

trended/filtered business cycle population dynamics in a DSGE model laboratory using

the frequency domain methods. Since the effects of permanent shocks pervade the cycli-

cal part of a time series, a stationary ‘gap’ versions of DSGE model must have hard times

to explain the comovement of the data. For a special case of Hodrick-Prescott and band-

pass filter we provide analytical results, reinterpreting some of their features. We also

give a guidance for model-builders why detrending may complicate the policy analysis

with DSGE models and how to avoid the need for detrending.
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Introduction

The main idea of the paper is simple, indeed. It is based on the fact that trend-cycle interactions

are important part of economic dynamics. Specifically, there are potentially large differences

between effects of a temporary and permanent shock in the economy. Permanent shocks create

not only “trending” behavior, but also business cycle dynamics. Thus, permanent shocks affect

the whole frequency range, including business cycle frequencies and affect detrended series.

Obviously then, there is no trend-cycle dichotomy, but there are important trend-cycle inter-

actions. Eliminating or amplifying dynamics over certain frequency range, i.e. filtering, thus

leaves potentially non-negligible influence of permanent shocks in the stationary detrended data.

The problem is that that the notion of “detrending” in the econometric practice is different than

the mechanisms of trending behavior in many DSGE economic models. Importantly, DSGE

structure suggests that the “trend” and “cyclical” parts are nontrivially correlated.

The point is that the stationary DSGE model then may be unable to explain comovements of

filtered time series since it cannot explain the dynamics induced by permanent schocks in the

detrended variables. To make our point we provide a method that assess how general linear

time invariant filters (LTI) used for detrending affect the dynamics of the laboratory DSGE

economy. This allows us to specify a DSGE model with stochastic trends and judge to what

extent the stochastic trends affect the population moments of detrended series, used potentially

to build a stationary ‘gap’ version of a DSGE model.

Using frequency domain approach, we are able to quantify for any particular linearized model

and for any particular filtering procedure what part of the population covariance structure of

filtered stationary variables is due to permanent shocks. Analytic results for univariate Hodrick-

Prescott and band-pass filters are provided. We demonstrate that the factorisation of HP filter’s

transfer function by Cogley and Nason (1995), criticised by Pedersen (2001) or Valle e Azavedo

(2007), is the transfer function of the filter that takes us from first-differenced time series to

cyclical HP filter part of the level of the series.

We do not analyze that different filtering methods have different impact on the covariance struc-

ture of the actual data as in Canova (1998) or Cogley and Nason (1995), inter alia. It is clear,

that different filtering affects the covariance structure in different ways. Instead, we focus on the

interaction of a particular filtering method with a “true” economic structure of the model econ-

omy. The question is not whether a particular filter sharply dissects certain frequency ranges,

but what portion of a spectral density of a series due to permanent shocks is left in the cycli-

cal component of the series. In principle, we could use our results for optimal filter design.

We condition on an economic structure of any chosen model and assume out trend-stationary

processes for simplicity.

We argue that when one is building a structural economic model (DSGE model, for instance)

she should take a stand on the way how trending behavior of certain macroeconomic variables

is modelled. Our view is that it is more convenient to make explicit assumptions on trending

behaviour rather than less obvious or implicit assumptions in case of ad-hoc filtering.

Some may argue whether the issue is relevant for them in case they are interested in the business

cycle dynamics only and thus have no intentions to use the model for forecasting or filtering with

the actual data. Is the ad-hoc detrending suitable then?

We argue that even in case one is interested in the business cycle dynamics only, understand-

ing of the trending behavior is important, especially when stochastic trends are implicitly (or

explicitly) assumed in the model. First, a careful inspection of original data is crucial in order

to discover important trend-cycle stylised facts that need to be captured by the model. Second,
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the notion of the trend usually understood by the detrending procedure is not necessarily com-

patible with the notion of the trend in your structural model. Third, not respecting common

trend restrictions in the filtering problem complicates real-world forecasting with the model.

The problem is that each series, given an economic structure of the model economy, is affected

by permanent shocks differently along its frequency range.

The importance of explicit assumptions about trending mechanisms of the model are then quite

clear. Moreover, the role of trend-cycle interactions is expected to be larger in emerging market

economies, that are buffeted by many permanently-viewed structural or institutional shocks.

The first part of the paper discusses the intuition behind trend-cycle interactions. The second

part illustrates the effects of filtering on trend-cycle dynamics and its consequences for fore-

casting and policy analysis.

1. Where Do Trend-Cycle Interactions Come from?

The question of whether one should detrend or not is important mainly when the focus is on

the business cycle dynamics. We argue that one should not detrend and rather make explicit

assumptions about the trending behavior in the business cycle model. The reason is that the

long-run behavior interacts with cyclical dynamics, i.e. there are trend-cycle interactions.

The definition of trends and a cycles in economics is rather vague and unclear. Usually, cycle

is understood as the dynamics of the series around its trend, often adjusted for noise. The most

common approach to define business cycle dynamics today is a frequency-domain definition,

where movements in a certain frequency range, e.g. from 8 to 32 quarters, are declared as the

business cycle dynamics.

Once researchers employ detrending methods other than deterministic detrending by time poly-

nomials, trends are assumed to be stochastic. In economics the trending behavior in structural

and/or econometric models is usually understood as either deterministic or stochastic, or a mix-

ture of these. We shall mainly focus on stochastic trends, since these are based on integrated

processes and imply permanent effects.

In structural (DSGE) models the presence of stochastic trends implies a non-trivial dynamics

for the (model) economy. Due to both real and nominal rigidities of any kind a reaction to

economic shocks is not a one-shot adjustment, but often a gradual reaction. More importantly,

as it is notoriously known, reactions to transitory and permanent shocks may be strikingly dif-

ferent. For instance, permanently-viewed changes to income streams, either due to a policy or a

technology innovation, induce much stronger wealth effects than transitory yet persistent shocks

do.

As an interesting and imporant example of wealth effects linked to permanent shocks, one can

take the consumption and current account comovement in small open economies, see e.g. Ob-

stfeld and Rogoff (1996). In a simple model with forward-looking households and firms, an

unexpected transitory innovation to income leads to current account surplus, since people in-

tertemporally smooth their consumption path. Now assume that the the economy enjoys an

innovation to the growth rate of output, hence the expected future level of output is viewed as

gradually reaching permanently higher levels. Then, the permanent output is higher than the

current output and associated wealth effects lead to a higher increase in consumption resulting

in a current account deficit.

What are then the consequences of the different reaction to transient innovation to level or to

growth rates for the business cycle dynamics? Again, it depends what is meant by the business

cycle dynamics. For some, it might be any deviation from a balanced growth path (BGP) of
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the model. But then all dynamics, including dynamics due to permanent shocks is a business

cycle dynamics. But let us adhere to the frequency notion of the business cycle and explore the

dynamics at business cycle frequencies only. This amounts to the investigation of filtered series

dynamics, after applying e.g. the Hodrick-Prescott, band-pass or some other filter to the levels

or logarithm of levels of economic variables in the model economy.

Not surprisingly, we find that in case of the frequency notion of the business cycle, permanent

shocks may form an important part of the business cycle dynamics and correlation structure

among filtered variables. We label the result as trend-cycle interactions. We thus see that

often assumed orthogonality between trend and cyclical component of time series may lead

researchers to investigate flawed dynamics.

What is needed is the way how to asses what portion of permanent shocks induced dynamics

spills-over into filtered cyclical dynamics. A simple experiment with a model featuring per-

manent shock is to simulate the model conditional on a group of permanent shocks and apply

detrending filter (e.g. HP filter) to (log) levels of relevant variables. However, a more illuminat-

ing and intuition enhancing way of the analysis is to rely on the population dynamics and the

use of frequency-domain methods we discuss more deeply bellow.

1.1 Emerging Countries’ View

We conjecture that for emerging countries trend-cycle interactions are even more important

than for developed countries. That is not to say that for developed ones trend-cycle interac-

tions are unimportant. But most emerging countries’ economies are buffeted by pronounced

permanently-viewed structural shocks to productivity and technology, not mentioning the

changes in business environment.

Our own results with the model introduced in Andrle et al. (2007) in case of the Czech Republic

strongly support the view that permanent shocks are an important driving force of the economic

dynamics. This finding squares also with our intuition about the economy during the catch-up

process within the European Union.

Our view seems to be supported also by a splendid paper by Aguiar and Gopinath (2004). They

argue that “cycle is the trend” for small open emerging economies, when analyzing empirical

regularities of a group of countries and applying a simple open economy real business cycle

model with shocks to growth rates of technology. They also stress the importance of higher

GDP components volatility, strong pro-cyclicality of current accounts or decompositions of

time series using the method of King et al. (1991).

The model in Andrle et al. (2007) is much larger and complex than the one in Aguiar and

Gopinath (2004), but the results point in the same direction. Trend-cyclical interactions seem

to be a very important part of the dynamics in emerging economies and ad-hoc detrending is

potentially a very harmful practice.

Yet, there are some caveats. Arguments we make in favor of our view on detrending are con-

ditioned on theoretical economic models of general equilibrium. In these models permanent

shocks are needed in order to generate certain kind of dynamics and cross-correlations. How-

ever, we do not exclude the possibility that the reality may be different and simply condition the

analysis on structural DGE theory.

2. What Are the Effects of Detrending?

We believe that structural economic models (DSGE models) a are very convenient tool to ad-

dress the issues of business cycle dynamics without previous ad-hoc detrending or pre-filtering.

We build these structural models to mimic the working of our economies to explore various
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hypotheses. As it turns out, deep principles of DSGE models do not need a definition of trend

and cycle dynamics.

Our suggestion is that one should not haste to pre-filter the data unless there are compelling rea-

sons to do so. Various notions of trend and cycle definitions preceded the recent developments

in DSGE modelling and are useful for many purposes. However these trend/cycle notions are

not always useful in the area of validating DSGE models and in forecasting and policy analysis

with these models. Structural model without permanent shocks is a perfectly plausible tool, yet

its use with ad-hoc detrended data is potentially very misleading due to dynamics caused by

permanent shocks that is left in the filtered data.

We provided the intuition why trend-cycle interactions in structural economic models are im-

portant.1 We continue to explore how the effects of filtering methods affects the analysis using

DSGE models. First, we show how to measure the role of permanent shocks on filtered gap vari-

ables. Then, we explore consequences of family of linear time-invariant filters on the economic

analysis with DSGE models.

2.1 Measuring How Permanent Shocks Influence Filtered Data

A natural question is to what extent the trend-cycle interactions are important in the reality

and whether one should care about them. Economists attempt to bring DSGE models closer to

data. We should then pay attention to a specification of structural shocks, both transient and

permanent. Fully specified DSGE model may serve as a laboratory for exploration to which

extent the detrending corrupts information in the data.

We demonstrate how it is possible to quantify effects of stochastic detrending within a frame-

work of a linear(ized) DSGE model. In addition, the frequency-domain chosen approach en-

hances intuition and allows us to work with population moments of the data.

We assume a linear(ized) version of a DSGE model featuring both permanent and transitory

shocks. We assume out trend stationary growth and specify permanent shocks as innovations to

growth rates, i.e. in logs

gi,t = Ai,t − Ai,t−1 (2.1)

gi,t = ρi ḡi,SS + (1 − ρi )gi,t−1 + εi,t , (2.2)

where Ai,t is the level of i-th permanent shock, gi,t denotes its growth rate. Transitory persistent

structural shocks are defined analogously via AR(p) processes in levels. The specification above

is quite standard and we used it also in Andrle et al. (2007) for labor-augmenting and sector-

specific productivities.

The model is assumed to be in a stationary form, hence there are not levels of non-stationary

variables.2 Stationary variables appear untransformed, stationarised counterparts to non-

stationary variables are linked to growth rates of these variables, consumption growth being

an example. We could use ratios as well, the adaptation of our calculations is straightforwad

then. This link will be exploited later to quantify influence of permanent shocks on covariance

structure of filtered variables.

1 Note, however, that in our analysis the economic growth is exogenous by definition. This may be useful simplify-
ing assumption, but in reality or other in models there may be link also from cycle to growth, not just from growth
to cycle. We investigate only the later, but the core of our discussion would remain.
2 Although we can proceed without stationarisation of the model and solve it, as we sometimes do, it is convenient
as a check for properly defined dynamics and to guarantee well-defined moments of all variables in the model.
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To show how permanent shocks influence the model we make use of the population spectrum

of the model, defined as

fy(ω) =
1

2π

∞
∑

k=−∞
Ŵke−iωk, (2.3)

where Ŵk is the k-th order population covariance matrix of the model, while ω denotes a fre-

quency ω ∈ [−π, π]. As is well known, there is an equivalence in the time- and frequency-

domain analysis of time series. There is also an inverse transformation to (2.3) which allows to

retrieve covariance matrices from the spectral density, i.e.

Ŵk =
∫ π

−π

fy(ω)eiωkdω. (2.4)

For k = 0 we can see that the area under the population spectrum represents the population

unconditional variance of the model.

Plotting the spectrum of a variable can yield uncovers information on the distribution of variance

among the individual frequencies. This is very intuitive and useful. We can inspect distribution

of variance for all variables in the model, e.g. interest rates, consumption growth, etc.3

How can we asses the importance of permanent shocks? Let us divide all shocks in the model

into non-overlapping groups – say, stationary and permanent ones. Due to linearity of the model

and orthogonality of structural shocks we can easily calculate the portion of variance due to each

group of shocks and plot the portion of spectral density due to each groups. Thus we have

fy(ω) = f S
y (ω) + f P

y (ω), (2.5)

where the superscripts S, P denote stationary and permanent shocks’ group, respectively.

We can then inspect in a very simple and intuitive way the contribution of permanent shocks to

dynamics of individual variables and at what frequencies.

Still, we are interested in filtered variables, not just in variables present in the model – these

are stationary due to stationarity-inducing transformations used. We need to obtain the levels

of the series of interest and apply a filter desired, multivariate or univariate. It can be done by

simulation, but our point is that we can calculate population characteristics using filters, with

no need to simulate.

In order to asses how the filtering affects the dynamics, we it may be useful to remind how

filters operate.

Detrending via linear filters To enhance the intuition we first focus on an ideal band-pass

filters and postpone discussion of other filters to next section. As it turns out majority of de-

trending methods that assume stochastic trends can be rewritten as linear filters, either univariate

or multivariate, in the form

H(L) =
∞
∑

j=−∞
H j L j , h(L) =

∞
∑

j=−∞
h j L j (2.6)

where H j is the matrix of weights and L is the standard lag operator. We can rewrite band- and

high-pass filters, multivariate state-space fileters solved by Kalman filtering and/or smoothing,

etc.

3 See appendix for more details on spectral analysis, linear filters and references.
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It is easy to show that in the univariate case applying the linear filter to a series {y} changes the

spectral density of the new variable (filtered variable) x . The spectrum of {xt} is then

fx(ω) = |h(e−iω)|2 fy(ω), (2.7)

where |h(e−iω)| is called power transfer function of the filter. Note that since the unconditional

variance of the variable is the area under spectrum, the variance is obviously affected by the

filtering procedure.

To obtain the business cycle component of time series the band-pass filter CB P(L) is often used.

We use it because of a very intuitive form of its transfer function CB P(e−iω). Its power transfer

function |CB P(e−iω)|2 = 1 for business cycle frequencies ω ∈ [ωL , ωU ] and |CB P(e−iω)|2 = 0

otherwise.4

The transfer function of an ideal band-pass filter transfers fully part of the spectrum at selected

frequency range and completely eliminates all other parts. Clearly, only part of the uncondi-

tional variance is left, the rest is cut off, which can be illustrated using plotting the spectrum of

a variable and cut-off frequencies ωL and ωU .

Other filters, approximate BP or Hodrick-Prescott5 filters for instance, operate in a similar way,

but they do not only cut-off completely some frequencies but re-weight other, since they are not

able achieve the zero-one precision cut-off of an ideal band-pass filter.

A lot of literature discusses properties of linear filters and filter design as to obtain “sharp” filters

as close as possible to ideal band-pass filters, limiting the leakage from other than selected

frequencies. What we discuss in the paper is, however, completely different issue, since we

argue that the cut-off leaves the effects of permanent shocks in the filtered data.

Spectrum and Covariance Structure of Filtered Data Yet, up to now the results above do

not show the part of the covariance of filtered data due to permanent shocks. The problem is

that for the series of interest the model features only growth rates of these variables, or some

other stationarity-inducing transformation. What is needed is to apply detrending filter to levels

of selected series.

What we do is that we apply the integration filter to growth rates of selected variables with

a power transfer function q(ω) = 1/(2 − 2 cos ω). The integration filter is the inverse of the

simple first-difference filter. By applying the integration filter we obtain pseudo-spectra for the

variables; these are well-defined for all frequencies but ω = 0. For the notion of pseudo-spectra

see Bujosa et al. (2002), inter alia.6

In the sequel we need to apply selected detrending univariate of multivariate filter to levels of

variables of interest, which amounts to applying the filter to pseudo-spectra of the series. Since

all detrending linear filters attribute zero weight to frequency ω = 0 the pseudo-spectrum poses

no obstacles in the filtering problem.

The only issue left now is to calculate the covariance of the filtered variables and to report

what part of covariance is due to permanent shocks in the model. Since we kept the track of

the part of spectrum due to stationary and permanent shocks, f S
y (ω), f P

y (ω) in (2.5), after all

filters are applied, the calculation of the two part of covariance matrices is a trivial application

of the formula (2.4). Again, the partition of shocks into groups is arbitrary as far as they do not

overlap.

4 We use only ω ∈ [0, π] due to symmetry of the analysis.
5 See appendix for more details on Hodrick-Prescott filter. Note that it is linear filter.
6 Note that the definition of pseudo-spectra is need always in case of analysis of linear filters to non-stationary
series, e.g. it concerns HP filters or band-pass filters always.



8 Michal Andrle

2.1.1 Illustration and Special Cases

To illustrate our arguments, we provide some examples bellow and focus on Hodrick-Prescott

and ideal-band pass filters. The appendix discusses some additional details and analytical

expressions of power transfer functions of the integration-detrending filter for the Hodrick-

Prescott and Band-pass filter.

Fig. 1: Power Transfer Functions
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The power transfer function of the filter filter that transforms spectral density of growth of a

variable in to a filtered gap variable is displayed in the panel C of the Fig. 1 (i.e. FH P(ω))

in case H-P detrending is used, the panel D depicts the power transfer function of the same

problem in case of using band-pass filter, FB P(ω). In the panel A of the figure we illustrate the

power transfer function of HP(λ = 1600) and band-pass filter, panel B depicts log of integration

filter’ power transfer function.

The interpretation of panels C and D is straightforward using the relation in (2.7). Given a

spectral density of a growth-rate of a variable, say real exports, multiplying its value by associ-

ated value of the power transfer function in the panel C or D we obtain spectral density of (real

exports) gap as if we HP or band-pass filtered the log level of the variable.

The variability at frequencies with non-zero weights will spill-over into filtered variables.

Clearly, if the variance of variable’s growth is affected by permanent shocks at business cycle
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frequencies, the variance of associated gap variable will also be affected by these permanent

shocks.

Using the model small open economy model in Andrle et al. (2007) we provide a decomposition

of exports as an illustration. We decompose the growth rate of exports into effect of permanent

shocks and all others, we do the same for exports gap. Then we decompose the autocovariance

of cyclical exports and imports into effect of permanent and other shocks. The illustration is

based on HP filtering.

Fig. 2: Decomposition of Exports Spectra
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Fig. 2 decomposes spectral density of quarter-on-quarter export growth and corresponding

cyclical component of HP filtered log of level of exports due to stationary (S) and permanent

(P) groups of shocks. In the sequel, using the relationship between spectral density and co-

variance information of the process Fig. 3 illustrates the decomposition of covariance due to

stationary and permanent shocks of the DSGE model.
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Fig. 3: Exports and Imports HP Gaps Cross-Cov. Decomposition
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One could easily check for many other relationships to judge the extent to what permanent

shocks affect the covariance of the filtered variables, given a particular model and filtering

framework. The only thing that seems quite general is that permanent shocks matter for the

business cycle dynamics and the method introduced above is a convenient way how to analyse

the issue.

2.1.2 Hodrick-Prescott Factorisation

More detailed analysis of Hodrick-Prescott filter is particularly appealing due to its simplicity

and widespread use. Combining the integration filter with the H-P filter we get in our simple

univariate example a transfer function FH P(ω) that takes us from the stationary DSGE model

spectral function fx(ω) to spectral density of the HP filtered levels of desired variables fy(ω)

fy(ω) = |FH P(ω)|2 fx(ω), (2.8)

where the power transfer and transfer functions of the filer F are

|FH P(ω)|2 =
8λ2 [1 − cos(ω)]3

[

4λ [1 − cos(ω)]2 + 1
]2

FH P(ω) =
λe2iω(1 − e−iω)3

λe2iω(1 − e−iω)4 + 1
. (2.9)

for ω 6= 0.

As an interesting side comment we may note that the filter FH P(ω) was already discussed in

the literature, albeit in a different context from ours.

Cogley and Nason (1995) criticise the Hodrick-Prescott filter of creating spurious peaks at busi-

ness cycle frequencies. Their conclusions are based on the argument that applying the H-P filter
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to non-stationary I(1) series amounts to differencing of the series first and then applying the as-

symmetric filter C1(ω) such that C(ω) = (1 − e−iω)C1(ω), where C(ω) is the HP filter transfer

function.

Pedersen (2001) argues that the critique of Cogley and Nason (1995) is inadequate since their

results are on “inadequate definition of the Slutzky-effect – a definition which has the unfortu-

nate consequence that even an ideal high-pass filter induces a Slutzky effect”. The correct way

to analyse effect of Hodrick-Prescott filter on I(1) processes is to make use of pseudo-spectrum

definition. Not surprisingly then, the ideal high-pass or band-pass filter does not produce any

peaks or Yule-Slutzky effects, but only eliminates a portion of frequencies, see Valle e Azavedo

(2007) for an interesting discussion.

We give thus a new interpretation to the filter C1(ω), since it turns out that FH P(ω) = C1(ω).

It is simply because the integration and difference filter cancel out and C1(ω) remains. We

can interpret the power transfer function as a link between a growth rate of a variable and the

cyclical component of the level of this particular variable.

Further analysis of HP filter and band-pass filter is given in the appendix.

3. Consequences of Filtering for Forecasting and Policy Analysis

At this state we already have some idea to what extent the filtered dynamics is important for

our structural model at hand. In general, our argument is that ad-hoc filtering corrupts the data

dynamics and leaves effects of permanent shocks in business cycles. But there are other related

issues.

First, we should inspect whether all filters are all alike, or whether there are important differ-

ences for instance between univariate and multivariate filters. Second, a related issue is whether

the common trends restrictions implied by the data and/or the your structural model matter for

detrending and how. That is, what happens when we detrend series-by-series and what are the

consequences for policy analysis and forecasting.

We argue that series-by-series univariate detrending seems to be a very problematic procedure,

since it may never respect individual properties of the series and leads to important end-point-

bias problems in policy analysis and forecasting. Multivariate filters thus theoretically may be

superior to univariate, when they respect the model structure to some extent.

What is on the list? Are all filters alike? No, they are not. Detrending filters differ in many

aspects. For a broad and recent review of filters for business cycle analysis, see Proietti (2008),

inter alia. In the paper we label as ad-hoc filtering every detrending filter, since it does not fit

into a structural world of DSGE models.

What detrending methods can be encompassed into our analysis? The list includes all lin-

ear band-pass and high-pass filters both univariate and multivarite. Hence, we treat Hodrick-

Prescott filter (high-pass), band-pass filters, exponential smoothing, constant-parameters struc-

tural time series (unobserved components) models (e.g. random-walk plus noise, local linear

trend, structural Phillips-curves based models, etc.) or Beveridge-Nelson decomposition.7 Sim-

ply put, any filter with well-defined transfer function is amenable for the analysis we carried

out above.

In the filtering literature ad-hoc filters are understood those filters that are invariant to properties

of individual time series. Economists worry about inducing spurious cycles, or better, Slutsky-

Yule effects. Yet, we agree with Proietti (2008) that “the issue of spuriousness is problematic, at

7 See for instance Morley et al. (2002) for a discussion of state-space representation of Beveridge-Nelson decom-
position.
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least, if not tautological”. The problem is again with the fundamental question what is the cycle

in economies time series. The convenience of our departure from structural DSGE paradigm is

that we do not need to answer this question.

The more important issue for us is under what circumstances detrending filters may come close

to identify as “trends” the evolution of permanent shocks as defined in the model. Note, that this

is implicit in analysis using detrended data and models linearized around a steady-state instead

around a balanced growth path.

Different Trends In general, univariate filters that do not respect the nature of time series at

hand are used most often (HP, band-pass). The problem is that even in case of infinite amount

of observations series-by-series filters identify different trends for all variables even in case

that from a structural model point of view there is just one driving force of trending behavior.

Common trends restrictions so important in the model analysis are then corrupted.

How come one can extract different trends then, even if it is known that there are common

trends restriction in the data? The answer is very simple. It is because the filter eliminates and

modifies the same set of frequencies of spectral density. Intuitively, it eliminates or attenuates

the same region of variance in all series. Since different series have possibly different distribu-

tion of variance into frequencies, the extracted trends may be different. The reason is again that

permanent shocks pervade across the whole frequency range.

The shorter is the length of a series, the more acute is the problem of different trends. Due

to internal propagation mechanisms in the (model) economy economic aggregates react differ-

ently to the same sequence of permanent and transitory shocks. For instance the consumption

smoothing may create moderate dynamics as opposed to trade variables. In case of short time

series the underlying common trend restriction may not be correctly identified in terms of the

“slope” of the trend. The problem is general, but dependent on the trajectory of all structural

shocks.

End-Point Problems of Univariate Filtering Majority of detrending filters are of two-sided

nature, often symmetric (band-pass, Hodrick-Prescott). In case we apply univariate filters, we

obtain potentially different trends, but also end-point problems that mutually are unrelated. The

end-point problem concerns all two-sided problems and results in estimates revisions after new

data are available.8

The problem is not at revision per se, but in the fact that there is no systematic link among

these estimates for individual series. Thus, the structure of deviations from the “trend” might

be completely wrong and not reflect the multivariate nature of the actual state of the economy.

Even in case that filtered “trends” drift in a more-or-less same way, the end-point problem poses

a problem for forecasting. Together with the problem that the deviations from trends (gaps) are

most probably mutually inconsistently estimated and have spurious dynamics, the end-point

complicates forecasting simulations.

The correct assessment of the actual state of the economy is crucial in the forecasting and policy

analysis process, due to significant role of initial conditions on the forecast. First, deviations

from ad-hoc trends may give wrong story about the economy, since these are not mutually

related (unrestricted) as opposed to reality and model structure. Second, if real variables are to

be forecast not just in gap-form, assumption on the “trends” development is needed. When these

are different and unrelated, projecting trends is again inconsistent and fraught with hazards.

Recalling the voluminous literature on output gap measurement, the latest estimates of the gap

are usually the most important. In case one would be tempted to forecast with a structural

8 To be precise, even in case of no detrending, end-point problems arise with DSGE models. But the nature of the
problem is somewhat different, see Andrle (2008), than what we want to convey in this paper.
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model with filtered gap variables, the problem is much more complex due to multivariate nature

of initial state of the economy, not just the output gap itself.

To sum up, there are three related problems with detrending univariate filtering for forecasting

and policy analysis: (i) deviations from trends are still influenced by permanent shocks and

the dynamics is inconsistent, (ii) end-point estimates of gaps are unrelated and inconsistent,

conveying hardly any useful information and (iii) projection of identified trends is fraught with

hazards and again inconsistent.

Are Multivariate Filters of any Help? Partially, they may be. To some extent they can

alleviate the problem of multiple trends, in case common trends (common features) restrictions

are imposed. Still, they are of no help with the spurious dynamics due to spill-over of permanent

shocks into filtered gap variables.

The structural specification of the filtering problem is crucial and there are many diverse setups.

In our view, an important issue is the correlation of trend-cycle innovations, see Proietti (2006)

or Morley et al. (2002), inter alia. This is because in a structural model innovations to per-

manent structural shocks feed both into “trend” and “cycle” in terms of the frequency-domain

notion. In this respect, trend-cycle decomposition delivering potentially more volatile trend

than the original series (e.g. Beveridge-Nelson decomposition) are more understandable in the

DSGE framework, if we would interpret the trend as the evolution of the permanent shocks (e.g.

technology).

3.1 Still, I Am Interested in Business Cycles, What Shoud I Do?

Having trends in a model does not mean you cannot inspect business cycle dynamics in terms

of the frequency-definition. The most simple thing to do is to simulate the model, apply your

preferred filters and calculate statistics of interest.

However, population statistics are easier often to obtain using frequency domain methods and

calculating frequency-specific moments directly either using ideal band-pass filters or any other

filter desired. Frequency-domain statistics also indicate the balance between the trend-cycle

dynamics of your model and are valuable guides in selecting parameters either via calibration

or more formal methods.

4. What If Great Ratios Seem Not That Great in My Country?

Although one might agree that stochastic detrending is a potentially harmful practice, still one

may try to eliminate trending behavior from hers DSGE model since the data regularities of the

country seem problematic. We know that many economist claim that in their countries great

ratios are not that great.

Indeed, for some countries the “standard” stylised facts often seem to be broken. Our experi-

ence, however, is that these seemingly aberrant features of the data convey important economic

information and should be closely inspected rather than mindlessly detrended. That was the

lesson learned when we working on the new structural model for the Czech National Bank and

the experience with the use of the model is described in Andrle et al. (2007). There we focused

on trend in relative prices, increase in trade openness, terms-of-trade shifts and other issues.

First, it is helpful to realize that the economy might be perhaps described with multisectoral

model, or a model with multiple permanent shocks. Second, one should pay close attention

to methodology of national accounts and data reporting to understand what might be possible

causes of aberrant stylised facts.
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4.1 Multisectoral Economy

Multisectoral (growth) model may be one of the solutions to consider when analysing the econ-

omy, moreover an emerging one. A well-known problem is the discussion of sector-specific,

namely investment-specific shocks, as analysed, see e.g. Greenwood et al. (1997) or Ireland

and Schuh (2006), for instance. Investment-specific technologies introduce a trend in a relative

price of consumption and investment goods.

Under a hypothesis of a multisectoral economy the effects of filtering are even more disputable,

moreover when the filtering is univariate. The information in the data is completely destroyed

then. In case of appropriate multivariate detrending obeying the long-run structure of the model,

at least some trend consistency is left, yet the dynamics remains spurious. Moreover, if one is

willing to impose DSGE models’ long-run structure on the filtering problem, then why to carry

out ad-hoc detrending at all?

Identification of all structural shocks and those permanent is more interesting solution both from

theory and policy perspective. The long-run behavior is then tailor-made to the economy under

investigation and the fully-fledged dynamics of the data can be analysed.

4.2 National Accounts and Trends

The often heard argument of aberrant great ratios may be also blurred by potentially inappro-

priate treatment of the data, per se. Whelan (2003) or Whelan (2005), inter alia, provides very

interesting arguments why multisectoral models may be feasible description of the economy.

Note that a “standard” single-good neoclassical growth model (or an RBC model) implies also

single price for all components of GDP spendings. But in real world there are important changes

in relative prices in many sectors. This is also one reason why many central statistical offices

adopted a methodology of chain-weighted GDP calculation. In principle this means that to

calculate the “real” GDP growth prices of previous period are always used, to alleviate the

problem of changes in sectoral relative prices.

In the older methodology the structure of relative prices was usually held fixed for five con-

secutive years and constant-prices GDP calculated. When relative prices undergo large changes

such calculations are problematic. Thus a recommendation of Eurostat to EU member countries

is to adopt some version of chain-weighted method to calculate GDP.

The consequence of working with chain-weigted aggregates is that calculations using “real

shares” are meaningless. In fact, real expenditure components of GDP are no more additive.

One should look then at nominal expenditure shares and check to what extent these are stable.

Hence, it is necessary to look for nominal stylised facts. This is maybe even more important in

countries when chained-linked national account methodology is not followed yet.

In emerging countries chances are that nominal stylised facts are much better behaved than the

“real ones”, which is the case for the Czech Republic as well. Using nominal expenditure share

to analyze resource allocation is also very intuitive. Recall that the concept of “real output” is an

abstraction, since in real world nothing like this exists. So is the case in a multisectoral model,

we can calculate only nominal GDP. This however poses no problems even in a forecasting and

policy analysis oriented models in Andrle et al. (2007) or Edge et al. (2005).

Of course there may be cases where using some sort of detrending is unavoidable at certain

state of analysis, yet our view is that if there is a chance to make structural assumptions about

trending behavior, one should take that opportunity.
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5. Conclusions

We argued that ad-hoc filtering of stochastic trends for use with structural economic (DSGE)

models is fraught with hazards. The main problem is that in reality the permanent shocks

resulting in trending behavior of economic time series affect also what one may view as business

cycle dynamics. There are significant trend-cycle interactions, mainly in emerging economies

but also in developed economies.

When structural DSGE models are used for hypothesis testing or policy analysis, structural

assumptions on the nature of trending behavior is feasible to make, even when one is interested

mainly in business cycle dynamics. Should we accept the definition of cycle in terms of a

dynamics in a limited frequency band, e.g. 8 to 32 quarters, then such business cycle dynamics

is non-trivially affected by permanent shocks, unless the framework of DSGE models is viewed

conceptually flawed.

We demonstrated how it is possible to analyse consequences of univariate and multivariate filters

on time series of a hypothetical (model) economy with trending behavior. The framework is

general enough, does not rely on simulations and its frequency-domain flavor enhances intuition

and understanding of the problem.

For many economies, especially those of emerging countries, the need for detrending might

be attenuated by close inspection of the data and nominal great ratios with consideration of

multisectoral model. If detrending is carried out eventually, at least caution about possible

consequences of the procedure are better understood. Multivariate filtering is preferable than to

univariate filtering, if plausible common features restrictions are imposed.

We hope to have provided enough arguments to discourage from ad-hoc hasty filtering of eco-

nomic data. Yet, in no way we argue to avoid detrending at any cost – clearly, that would not be

economical.
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6. Appendix

The first part of the appendix serves to give some more technical details of the issues discussed

and deepens understanding of the results. However, the economic intuition of the main text

should be self-contained. Principles of spectral analysis of time series can be found in Hamilton

(1994), Brockwell and Davis (1991) or Priestley (1981), inter alia.

The second part of the appendix contains some detailed results for a stylised small open econ-

omy RBC model with regard to role of permanent shocks on the dynamics of filtered gap vari-

ables.

6.1 Spectral Analysis & Linear Filters – A Reminder

Let gY denote the (pseudo)-autocovariance generating function of the multivariate ARIMA

stochastic process {Yt}∞t=−∞

GY (z) ≡
∞
∑

k=−∞
Ŵ j z

k, (6.10)

where z is a complex scalar. By normalisation and evaluating (6.10) at z = e−iω, we obtain

population (pseudo)-spectrum of the process

fY (ω) =
1

2π
GY (e−iω) =

1

2π

∞
∑

k=−∞
Ŵke−iωk (6.11)

where i =
√

−1 and ω is the angular frequency measured in radians.

There is also an inverse transform going from population spectra to covariance structure of the

process, thus we have

Ŵk =
∫ π

−π

fY (ω)eiωkdω. (6.12)

The particular case is for k = 0, implying that the area under the spectrum is the population

variance of the process.

In principle, these results are valid only for stationary stochastic processes. Following Bu-

josa et al. (2002) and Valle e Azavedo (2007) we work with the pseudo-spectrum of stochastic

processes, that is amenable to use with non-stationary variables. The pseudo-spectrum is well-

defined for all frequencies apart from ω = 0, where it is undefined.

Linear Filters Let the filter be defined as an absolutely summable sequence of matrices and

let the multivariate process Yt be a result of applying the filter to a multivariate process X t

H(z) =
∞
∑

k=∞
Hkzk Yt =

∞
∑

k=∞
Hk X t−k . (6.13)

If we know the population spectrum of the process X t it is easy to show that the population

spectrum of the Yt process is given by

fY (ω) = H(e−iω) fx(ω)H(eiω)T . (6.14)



Role of Trends and Detrending in DSGE Models 17

This is the basic result needed to analyse the effects of multi- or univariate linear time invariant

filters on stochastic processes. The transfer function of the filter is H(e−iω).

Note that any linear time-invariant filter that can be put into the form in (6.13) is covered by the

discussion in the main text and can be analysed in a very straightforward way. Possibilities are

numerous. In principle any filter with a linear time-invariant state-space representation is valid

for the analysis, since it can be put into the required form, see Whittle (1983) for instance.

Intuition for the Univariate Case Large part of our analysis can be cast into the univariate

framework, which is useful for the intuition.

First, due to symmetry of the autocovariance generating function, we can rewrite the univariate

spectral density as

fy(ω) =
1

2π

[

γ0 + 2

∞
∑

k=1

γk cos(ωk)

]

, (6.15)

which shows that the spectrum is a weighted combination of sinusoids. For k = 0 the area

under the spectrum is equal to variance of the process. Hence, we can view the spectrum as a

distribution of the variance among the particular frequencies that are behind the variance. We

can thus tell what part of variance is due to high-frequency movements in the data or cycles

with longer periods.

Applying the univariate filter h(z) =
∑∞

k=∞ hkzk to the univariate process xt results in a new

process yt and it is easy to see that

yt = h(L)xt fy(ω) = |h(e−iω)|2 fx(ω), (6.16)

where |h(e−iω)|2 denotes the power transfer function of the filter.

Thus, the power transfer function is the key category of our interest in the paper, since we

investigate the relation of the spectral density of one variable –in our case the growth rate of a

series, for instance– to the spectral density of another one, that is the result of applying linear

filters – in our case the HP filtered level of the log series, for instance.

6.2 More Detailed Results for H-P and BP Filter

In our view there are two filters most often used for stochastic detrending in applied economics

and DSGE models framework. These are the Hodrick-Prescott filter and a variant of a band-

pass filter. Due to their popularity and their intuitive formulation we investigate in detail the

effects of detrending with these two filters. In particular how the power transfer function looks

like.

6.2.1 Effects of Hodrick-Prescott Filter Detrending

The Hodrick-Prescott filter is popular and well-known. The frequency-domain analysis is car-

ried out e.g. in King and Rebelo (1993).

The Hodrick-Prescott filter is formulated as

min
{τt }

T
∑

t=1

(yt − τt) + λ

T −1
∑

t=2

[

(τt+1 − τt) − (τt − τt−1)
]2

, (6.17)

where τt is defined as the trend component of the yt series and ct = yt − τt is defined as the

cyclical component of the series. The parameter λ sets the trade-off between the goodness of fit

criterion and the smoothness criterion of the H-P filter.
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The first order conditions with respect to {τt}T
t=1 lead to system of linear equations that is easy

to solve. Note that λ and T fully determine the weights of the filter. Thus, the filter is linear, but

it is not time invariant, since its weights are dependent upon T .

Following King and Rebelo (1993) we can formulate the doubly-infinite time variant of

Hodrick-Prescott filter, which is the linear time invariant filter. For large amount of the data the

weights in the middle of the sample are identical or close to ideal doubly-infinite H-P filter.

The doubly-infinite time H-P filter can be represented as two-sided moving average filter of the

form (6.13), i.e. τt = CT (L)yt . Since we are interested in the cyclical component ct we are

interested in the filter ct = (1 − CT (L))yt = C(L)yt .

It can be shown that the power transfer function of the cyclical H-P filter is

|C(ω)|2 =

∣

∣

∣

∣

∣

4λ [1 − cos(ω)]2

4λ [1 − cos(ω)]2 + 1

∣

∣

∣

∣

∣

2

. (6.18)

Suppose we apply the doubly-infinite H-P filter to series xt with the pseudo-spectrum fx(ω). It

follows from (6.16) and (6.18) what the spectrum of the new process (series) yt is. In particular

(6.18) determines what portion of variance are to be eliminated or re-weighted.

Effects of Detrending Let us turn to the exercise behind arguments of the main text. Assume

that from a well-specified model we know the spectrum of the process xt = (1 − L)ut = 1ut ,

say ut being the logarithm of private consumption in real terms. We are interested in properties

of yt = C(L)ut , that is we are interested in cyclical component (gap) of the ut obtained by

applying the Hodrick-Prescott filter to ut and calculating cyclical component.

Combining integration filter with the H-P filter we get in our simple univariate example

fy(ω) = |FH P(ω)|2 fx(ω), (6.19)

where the power transfer and transfer functions of the filer F are

|FH P(ω)|2 =
8λ2 [1 − cos(ω)]3

[

4λ [1 − cos(ω)]2 + 1
]2

FH P(ω) =
λe2iω(1 − e−iω)3

λe2iω(1 − e−iω)4 + 1
. (6.20)

for ω 6= 0.

As an interesting side comment we may note that the filter FH P(ω) was already discussed in

the literature, albeit in a very different context from ours.

Cogley and Nason (1995) criticise the Hodrick-Prescott filter of creating spurious peaks at busi-

ness cycle frequencies. Their conclusions are based on the argument that applying the H-P filter

to non-stationary I(1) series amounts to differencing of the series first and then applying the

assymmetric filter C1(ω) such that C(ω) = (1 − e−iω)C1(ω).

Since it is obvious that FH P(ω) = C1(ω) the factorisation done by Cogley and Nason (1995)

receives a new interpretation in our framework. See Pedersen (2001) or Valle e Azavedo (2007),

inter alia, for criticism of the approach of Cogley and Nason (1995).

6.2.2 Effects of Band-Pass Filter Detrending

The discussion of the ideal band-pass filter detrending is similar to a previous discussion of the

H-P filter.
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The ideal band-pass filter is defined using the power transfer function |FB P(ω)| such that for

ω ∈ [0, π]

|FB P(ω)| =

{

1 ω ∈ [ωL , ωU ]

0 otherwise.
(6.21)

The ideal band-pass filter can also be represented in the form of (6.16). The ideal band-pass filter

requires a doubly-infinite amount of the data, hence in practice variations of the approximate

band-pass filters are used.

Effects of Detrending Having the same setup as above, i.e. xt = (1 − L)ut = 1ut , we

are interested in properties of yt = CB P(L)ut , where CB P(L) is time-domain representation of

ideal band-pass filter.

The calculations yield

fy(ω) = |FB P(ω)|2 fx(ω), (6.22)

with

|FB P(ω)| =

{

1/ [2(1 − cos(ω))] ω ∈ [πL , πU ]

0 otherwise.
(6.23)

6.2.3 How We Tested Our Calculations

To test the calculation of the contribution of a group of shocks to the spectral density and

covariance structure of the filtered cyclical variables we carried out simple simulation exercises.

For a particular model we simulated a path of N = 1000 observations using random draw of

structural innovations from their distributions. For variables of interest we constructed (log)

levels using the inverse of the stationarity-inducing transform (i.e. differences or ratios). In the

sequel we applied a detrending filter of interest (Hodrick-Prescott or truncated band-pass filter).

To alleviate the end-point bias of approximate filters we cut-off 50 periods from each side of

the sample to yield results comparable with the population counterparts of the filters. Then we

used parametric methods to calculate moments and spectral properties of the data. In particular,

we fitted AR(p) or VAR(p) models for several values of p

The resulting moments and spectral densities were then compared to population results. This

simple simulation exercise suggest that direct use of frequency-domain approach is more pre-

cise and less sensitive to the method of moments and spectral densities calculations. In the

parametric case it is the choice of lag length p, in case of non-parametric calculation it is the

choice of the type of smoothing kernel. The simulation approach thus does not reject the direct

calculations of the paper.
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