Mota, Rui Pedro and Domingos, Tiago (2004): Optimal ecosystem management with structural dynamics.

PDF
MPRA_paper_13344.pdf Download (442Kb)  Preview 
Abstract
We address the problem of optimal management of a self organizing ecosystem along ecological succession. A dynamic carrying capacity is interpreted as depicting the dynamics of habitat creation and occupation along ecological succession. The ecosystem may have three growth modes: pure compensation (concave ecosystem regeneration function), depensation (convexconcave regeneration function) and critical depensation (additionally having negative growth rates for low biomass). We analyse the optimal policies for the management of the ecosystem for the three growth modes. Accordingly, we prove the existence of a Skiba points for certain types of ecosystems. Further, we compare usual golden rule paths with the derived optimal policies near the Skiba points.
Item Type:  MPRA Paper 

Original Title:  Optimal ecosystem management with structural dynamics 
English Title:  Optimal ecosystem management with structural dynamics 
Language:  English 
Keywords:  Ecosystem management; habitat creation; optimal policies; Skiba point 
Subjects:  C  Mathematical and Quantitative Methods > C6  Mathematical Methods; Programming Models; Mathematical and Simulation Modeling > C61  Optimization Techniques; Programming Models; Dynamic Analysis Q  Agricultural and Natural Resource Economics; Environmental and Ecological Economics > Q2  Renewable Resources and Conservation > Q20  General C  Mathematical and Quantitative Methods > C6  Mathematical Methods; Programming Models; Mathematical and Simulation Modeling > C62  Existence and Stability Conditions of Equilibrium 
Item ID:  13344 
Depositing User:  Rui Pedro Mota 
Date Deposited:  12. Feb 2009 05:02 
Last Modified:  13. Feb 2013 17:39 
References:  Brock W., A., Starrett D., 2003 Managing systems with nonconvex positive feedback. Environmental and Resource Economics 26:575602. Clark, C., W., 1976. Mathematical bioeconomics: The optimal management of renewable resources. John Wiley and Sons, New York Cohen, J. E., 1995. Population Growth and Earth’s Human Carrying Capacity. Science 269: 341348. Crépin, A. S., 2003. Multiple species boreal forests – What Faustmann missed. Environmental and Resource Economics 26:625646. Dasgupta, P., Mäller, K. G., 2003. The economics of nonconvex ecosystems: Introduction. Environmental and Resource Economics 26:499525. Jones, C. G., Lawton, J. H., 1995. Linking Species & Ecosystems. Chapman & Hall, NewYork. Jorgensen, S. E., 1992. Integration of Ecosystem Theories: A Pattern. Kluwer Academic Publishers, Copenhagen. Jorgensen, S., E., Patten, B:, C., Straskrba, M., 1999. Ecosystems emerging: 3. Openness. Ecological Modelling 117:4164. Kay, J. J., Schneider, E., 1994. Embracing Complexity: The Challenge of the Ecosystem Approach. Alternatives 20(3): 3238 Mäler, K. G., Xepapadeas, A., Zeeuw, A., 2003 The economics of shallow lakes. Environmental and Resource Economics 26:603624. OdlingSmee, F. J., Laland, K. N., Feldman, M. W., 2003. Niche Construction. The neglected process in evolution. Monographs in population biology: 34. Princeton University Press, New Jersey. Odum, E. P., 1969. The Strategy of Ecosystem Development. Science, 164: 262270. Pontryagin, L., S., Boltyanskii, V., G., Gamkrelidze, R., V., Mishchenko, E., F., 1962. The mathematical theory of optimal processes. John Wiley and Sons, New York. Roughgarden, J., 1997. Production Functions from Ecological Populations: A Survey with Emphasis on Spatially Implicit Models. In Tilman and Kareiva (eds.), 1997 Princeton University Press, New Jersey. Scholes, R. J., 2003. Convex relationships in ecosystems containing mixtures of trees and grass. Environmental and Resource Economics 26:559574. Skiba, A., K., 1978. Optimal growth with a convexconcave production function. Econometrica, 46 Nº3 527539. Tu, P., N., V., 1994. Dynamical Systems: An Introduction with Applications in Economics and Biology. SpringerVerlag, New York. Wagener, F., O., O., 2003. Skiba points and heteroclinic bifurcations, with applications to the shallow lake system. Journal of economic dynamics and control, 27(9): 15331561. Walker, L. R., 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/13344 