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Abstract

This paper investigates the determinants of credit spread changes in Euro-
denominated bonds. Because credit spread changes can be easily viewed as an
excess return on corporate bonds over treasury bonds, we adopt a factor model
framework, inspired by the credit risk structural approach. We try to assess the rel-
ative importance of market and idiosyncratic factors in explaining the movements
in credit spreads. We adopt a heterogeneous panel with a multifactor error model
and propose a two-step estimation procedure which yields consistent estimates of
unobserved factors. The analysis is carried out with a panel of monthly redemption
yields on a set of corporate bonds for a time span of three years. Our results suggest
that the Euro corporate market is driven by observable and unobservable factors.
Where the latter are identified through a consistent estimation of individual and
common observable effects. We observe that the factors predicted by the structural
model are not as relevant as in the case of the US market. The empirical results also
suggest that an unobserved common factor has a significant role in explaining the
systematic changes in credit spreads. However, contrary to the American evidence,
it cannot be identified as a market factor.
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1 Introduction

The credit risk, or risk of default, of a bond arises for two reasons: both the magnitude
and the timing of payoffs to investors may be uncertain. In other words, the risk of default
of the issuer is accompanied by the recovery rate uncertainty. The effects of default risks
on prices depend on how the default event is defined and the specification of the recovery
in the event of a default.

Because of this uncertainty, corporate bonds should offer higher yields than comparable
default-free bonds, i.e. government bonds. Consequently, a corporate bond trades at a
lower price than a corresponding (in terms of maturity and coupon) government bond.
The difference between the yield on the risky bond and the yield on the corresponding
default-free bond is called the credit spread.

Theoretical credit risk models tackle the default risk in different ways. Structural
models, in their most basic form, assume default the first time that some credit indicator
falls below a specified threshold value. In Merton’s model (Merton (1974)) default occurs
at the maturity date of debt provided the issuer’s assets are less than the face value of
maturing debt at that time.

Reduced-form models treat default as governed by a counting (jump) process coupled
with an associated (possibly state-dependent) intensity process and, thus, whether or not
an issuer actually defaults is an unpredictable event.

Several works deal with the empirical estimation of the structural models. Among
others, Eom, Helwege, and Huang (2003) empirically test five structural models (Merton
(1974), Geske (1977), Leland and Toft (1996), Longstaff and Schwartz (1995) and Collin-
Dufresne, Goldstein, and Martin (2001)) of corporate bond pricing using data on the
US market. They clearly show that all the five models considered have relevant spread
prediction errors. In particular all the models tend to underestimate the spread of higher
rated corporate bonds while they overestimate the spread of bonds which are considered
riskier. A less structural approach has addressed the question of which variables are most
correlated with the credit spread movements following a data-driven approach. In this
framework Duffee (1999) investigates the effect of the term structure on callable and non
callable credit spread.

This paper studies the determinants of credit spread changes in the Euro Corporate
Bond Market. In particular, we are interested in understanding to what extent the im-
plications for credit spread changes of structural credit risk models are verified in the
context of the Euro corporate bond market.

Collin-Dufresne, Goldstein, and Martin (2001) show that variables postulated in the
structural approach have a rather limited explanatory power. They consider other vari-
ables than those prescribed by the structural models in order to capture other effects
such as the liquidity premium and the dynamic of interest rates. To this end they adopt
a heterogenous parameter model for each issue and find out that the residuals from these
regressions are highly cross correlated. A principal component analysis of the residuals
shows that the first component is able to explain over 75 percent of the total variation
of credit spreads. They also find that this large systematic component is not explained
by several financial as well as macroeconomic variables. The authors conclude that the
common systematic factor that drives the credit spread changes is a local domand/supply
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factor shock that is independent of traditional credit risk factors.
Elton, Gruber, Agrawal, and Mann (2001) move in a different direction. They point

out that credit spread changes are determined not only by credit risk but also by risk
premium. Credit spread changes can be easily viewed as an excess return of corporate
bonds over treasury, i.e. risk free bond proxy. Therefore, they approach the problem in
the framework of a traditional equity factor model to assess the influences of stock return
common factors on credit spread.
So far, most of the empirical works on credit spreads deal with US data and relatively
little is known about to the extent to which these results apply to the Euro market. Even
though the empirical analysis of the US corporate bond market is an obvious reference,
the European market is characterized by marked differences.
While in Europe the bond market is dominated by government bonds and bonds issued
by the financial intermediaries, the bond market in the United States is dominated by
the non financial corporate sector. In addition, municipal and agency bonds are major
components of this market. Moreover, at least in Europe, it is difficult and costly to
short sell corporate bonds (see Biais, Declerck, Dow, Portes, and von Thadden (2006)).
This further reduces the liquidity of the corporate bond market. Annaert and Ceuster
(2000), using data on aggregate index by rating categories and maturity buckets, stress
that the European bond market shows broad similarities with the US market. In par-
ticular, the average spreads increase both by credit risk and by maturity and there is
evidence of a strong correlation between credit spread and the determinants of interest
rate term structure. However, their results are based on a rather limited time period
when the Euro corporate bond market was not yet well developed.1 Houweling, Mentink,
and Vorst (2005) analyze the excess yield on corporate bonds. They use several proxies to
test whether liquidity is priced in the euro-denominated corporate bond market. Under
both the assumptions on constant and time-varying liquidity premium, they find strong
evidence of priced liquidity. de Jong and Driessen (2005) consider liquidity proxies of
equity markets and show that returns on corporate bonds are correlated with market-
wide fluctuations in the liquidity of the equity market. They provide evidence that the
European corporate bond excess holding returns have a significant exposure to liquidity
risk and that a liquidity premium helps to explain part of the ”credit spread puzzle”, i.e.
corporate bond yield spreads wider than what predicted by historical default losses.

We first analyze to what extent the European delta credit spreads are influenced by
an underlying unobserved common factor which can be identified as a ”market factor”,
as shown by Collin-Dufresne, Goldstein, and Martin (2001) for the American corporate
bond market .

Adopting their specification we find that when we control also for the ”market”, the
fitted residuals from the regressions of the delta credit spreads on the observed individual
and common factors are still highly cross correlated. Thus suggesting the presence of a
common systematic factor, which, obviously, cannot be identified with the market.
Moreover, the individual regressions show a substantial parameter heterogeneity across
bonds. In general, the presence of unobserved factors, evident from the analysis of fitted
residuals of both univariate regressions and the fixed effects panel data model, suggests

1They consider daily data ranging from March 1998 to May 1999.
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the adoption of a consistent econometric estimation procedure. In fact, whenever an un-
observed common factor structure exists the estimates of individual slope coefficients are
inconsistent (see Bai (2006), Coakley, Fuertes, and Smith (2002), Coakley, Fuertes, and
Smith (2006), Pesaran (2006)).
To this end the delta credit spreads are expressed as a function of both individual com-
ponents and observed and unobserved common factors, where the former are linearly
dependent on the latter. This amounts to have a heterogeneous model, i.e. varying slope
coefficients, with a multifactor error structure. In this framework, studied in different
papers (for instance Bai (2006), Coakley, Fuertes, and Smith (2002), Coakley, Fuertes,
and Smith (2006), Pesaran (2006)), we can consistently estimate the effects of observed
common and individual factors only if we take into account the relations between observed
and unobserved factors, as shown in Pesaran (2006).
The estimation is based on a two-step procedure. First, the effects of observed factors
are estimated using the Common Correlated Estimator, put forward by Pesaran (2006),
providing a consistent estimate of the errors, which are supposed to be linearly dependent
on a set of unobserved common factors, then the factors are estimated using a principal
components analysis (see Bai (2003)), and eventually the model is reestimated under the
assumption that the coefficients are random (Swamy (1970)). We show that this pro-
cedure yields consistent estimates, in average norm, of the unobserved factors. We also
provide a Monte Carlo evidence.
We find that in general the variables suggested by the theory are both economically and
statistically significant in explaining variations in individual issues’ credit spreads. How-
ever, the factors predicted by the structural model are not as relevant as in the case of
the US market.

There is strong evidence that one unobserved common factor has a relevant influ-
ence on the delta credit spreads. Even though the estimated factor is not identified we
suspect that this is related to the market liquidity conditions. In fact, the European
bonds seem to be mispriced as we show by comparing the actual to the fitted prices,
using a smoothed cubic spline. Moreover the existing literature presents strong empirical
evidence of a liquidity premium on the European market similar to what found for the US.

Finally, the paper is organized as follows. In section 2 we discuss the meaning of the
credit spread changes. Section 3 introduces the structural credit risk models. In section 4
we present the individual and common factors used in the analysis. Preliminary empirical
evidence is presented in section 5. The econometric model is introduced in section 6.
Section 7 describes the data. Results are discussed in section 8. Section 9 concludes our
findings.

2 Delta Credit Spread and Excess Returns

We define credit spread as the difference between the yield to maturity on a corporate
bond and the yield to maturity on a government bond of the same maturity:

cst = ct − gt (1)



5

where ct is the redemption yield of a corporate bond at time t and gt is the corresponding
(i.e. with the same maturity) redemption yield on a government bond.2

The return on a coupon bond j for an holding period equal to one is given by

rj,t =
(Pj,t + Cj,t) − Pj,t−1

Pj,t−1

where Pj,t is the gross price at time t for bond j and (Cj,t) is the interest or coupon pay-
ments of bond j at time t. We employ the approximation developed by Shiller (1979) from
the first-order Taylor’s approximation of the asset price as function of the corresponding
yield:

rj,t
∼= −dj,t(yj,t − yj,t−1) (2)

where yj,t is the redemption yield3 of bond j at time t and dj,t is the modified duration of
bond j at time t.4 Hence, the modified duration indicates the percentage change in the
price of a bond for a given change in yield. Using expression (2), the difference between
the return on the corporate bond and the government position can be written as

rc,t − rg,t
∼= −dc,t(ct − ct−1) + dg,t(gt − gt−1) (3)

where rg,t and rc,t are the return on the government and corporate bond, respectively.
We know that holding other factors constant, the lower the yield to maturity and

the coupon rate the higher the duration. In general, the corporate bonds have a higher
coupon rate and a higher yield than a government bond with the same maturity. Hence,
the duration of government bonds can be thought of as the duration of corporate bonds
plus, in general, a positive spread, γ(t):

dg,t = dc,t + γ(t)

Then, expression (3) becomes:

rc,t − rg,t
∼= −dc,tδt + γ(t)(gt − gt−1) (4)

where δt, i.e. the delta credit spread is defined as:

δt = cst − cst−1 (5)

2In particular, gt is given by the redemption yield on the estimated euro government curve. See section
3.

3The redemption yield of bond j at time t, yj,t, equals the internal rate of return that discounts its
cash flows, including the interest or coupon payments (Cj,t) and the repayment of principal (PCj), back

to the bond’s current price, i.e. Pj,t =
∑T−1

τ=t Cj,τ (1 + yj,t)
−τ + (Cj,T + PCj)(1 + yj,t)

T .
4There are two measures of duration. Macauley duration (md) and modified duration (d). Macauley

duration is the weighted average time to maturity of a bond, where the weights are given by the present
values of the cash flows:

mdj,t =

T∑

τ=t

τ × wτ =

T∑

τ=t

τ ×
Cj,τ

(1+yj,t)τ

∑T

τ=t

Cj,τ

(1+yj,t)τ

The modified duration is simply the Macauley duration as defined above divided by (1 + yj,t).
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the second term on the RHS of (4) is negligible with respect to the excess return. Hence,
the excess return of corporate bonds over government bonds is proportional to the change
in credit spread:

rc,t − rg,t
∼= −dc,tδt (6)

The delta credit spread represents a proxy for corporate bond excess loss, that is, the
return on a government bond minus the return on a corporate bond with the same ma-
turity. Recently, large part of empirical analysis (in particular the practitioners) have
changed their focus from bond yields to delta credit spreads. One example, as stressed by
Collin-Dufresne, Goldstein, and Martin (2001), is represented by European mutual funds
which invest both in corporate and government bonds. As a consequence, their portfolios
are extremely sensitive to changes in credit spreads rather than changes in bond yields.
Another example is represented by hedge funds trading strategy of taking highly leverage
positions in corporate bonds while hedging away interest rate risk by shorting government
bonds.

3 Structural models of credit risk

The issuer of a fixed-income security might default prior to the maturity date. This
means that both the magnitude and the timing of payoffs to investors may be uncertain.
How these default risks affect corporate bond pricing depends on how the default event
is defined and how recovery in the event of a default is specified. The pricing models
can be classified into reduced form models, those that are based on an assumed default
intensity, and structural models, where there is an explicit characterization of the default
event, like the first time that a firm’s assets fall below the value of its liabilities (Duffie
and Singleton, 2003).

In this paper we refer to the structural-model approach and to risk premia theory
in order to identify the main factors (individual and common) that drive credit spread
changes. The seminal papers of Black and Scholes (1973) and Merton (1974) introduced
the first model of the structural-form approach. In the Black-Scholes-Merton model we
may think of equity and debt as derivatives with respect to the total market value of
the firm, and priced accordingly. We are in the setting of standard Black-Scholes model,
i.e. a market with continuous trading which is frictionless and competitive.5 The original
owners of the firm choose a capital structure consisting of pure equity and of debt in the
form of a single zero-coupon bond maturing at time T , of face value D. In the event that
the total value VT of the firm at maturity is less than the contractual payment D due on
the debt, the firm defaults, giving its future cash flows, worth VT , to debt holders. The
debt can then be viewed as a difference between a riskless bond and a Black-Scholes price
of a European put option on the firm’s asset. The option representation of the bond price
implies that:

• it is increasing in V .

• it is increasing in D.

5In detail, the agents are price-takers, there are no transactions costs, there is unlimited access to
short selling and no indivisibilities of assets, and borrowing and lending through a money-market account
can be done at the same riskless, compounded rate r.
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• it is decreasing in the riskless interest rate.

• it is decreasing in time-to-maturity

• it is decreasing in the firm’s value volatility.

The Black-Scholes-Merton model shows important drawbacks.6 In particular, it mainly
focuses on the value and the capital structure of the firm, which is a difficult process
to represent. Besides that, the structural approach provides an intuitive framework to
determine the main factors that drive credit spread changes. In the next section, we
present the set of variables used in the analysis of the Euro corporate bond market,
which are inspired by the structural-model approach (see Avramov, Jostova, and Philipov,
2007).

4 Individual and common factors

Our determinants of credit spread changes are inspired by structural default risk models.
The contingent-claim approach views debt as a combination of a risk-free loan and a
short put option on the firm. Variables governing the firm-value process affect default
probabilities and recovery rates and ultimately drive credit spreads. Structural model
variables typically include interest rates, term-structure slope, market return, market
volatility, as well as firm leverage and volatility. In the following we present the variables
we use in the empirical analysis that are supposed to affect credit spread changes. We
distinguish between common and specific factors.

4.1 Common factors

1. Changes in the government bond rate level. This variable represents both a proxy
for, the so called, flight to quality flows and a proxy for business cycle. From one
side, a lower level of government rates implies a market preference for less risky
asset, i.e. wider credit spreads. From the other side, lower rates also imply a
higher loan demand which widens the credit spreads. Empirical evidence that a
negative relationship exists between changes in credit spreads and interest rates has
been shown by Longstaff and Schwartz (1995), Duffee (1998) and Collin-Dufresne,
Goldstein, and Martin (2001). We use the DataStream’s monthly series of the 10-
year Benchmark German Treasury rates (denoted as Gov) to compute the monthly
changes (denoted as 10Gov), and the monthly variation of the squared 10-year
Benchmark German Treasury rates (10Gov 2).

2. Changes in the slope of the government yield curve. This is a proxy of the movement
in the supply and demand of government bonds. Hence a flat term structure of

6First, it requires inputs related to the value of firms that are often unavailable. Second, it allows
default only at the maturity date of the bond. Third, it assumes independence between interest rates
and credit risk. Last but not least, because it assumes that the value of the asset follows a geometric
Brownian motion, the model implies that the default is predictable shortly before default. The first
structural model has been widely improved by relaxing some of its restrictive assumptions, see, among
others, Black and Cox (1976), Turnbull (1979), Leland (1994), Longstaff and Schwartz (1995), Briys and
De-Varenne (1997) Collin-Dufresne and Goldstein (2001).
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interest rates curve reduces the incentives to invest in the government sector and
therefore causes a corporate spread widening. Duffee (1998) tests this relation for
the US corporate bond market. Moreover, a steepening of the term-structure slope
implies an increase in expected future spot rates, thereby reducing credit spreads.

The changes in the slope of the yield curve is given by the monthly changes in the
difference between DataStream’s 10-year and 2-year Benchmark German Treasury
rates (denoted as Slope).

3. Changes in the convexity of the government yield curve. We also include the con-
vexity of the government yield curve to capture potential non linear effects. This
is calculated as the monthly changes in the difference between the 5-year German
Treasury rate and the average of the 10-year and the 2-year Benchmark German
Treasury rates (denoted as Conv).7

4. Changes in liquidity. Collin-Dufresne, Goldstein, and Martin (2001) stressed the
fact that the corporate bond market tends to have relatively high transaction costs
and low volume. These findings suggest checking for the existence of a liquidity
premium. Given the fact that the corporate bond market it is an over-the-counter
market is difficult to assess its liquidity unless we observe bid-ask spreads and/or vol-
umes, which is not the case here. The standard measures of liquidity are unavailable
in this case. Following Houweling, Mentink, and Vorst (2005), that scrutiny differ-
ent liquidity proxies for the European corporate bond market, we consider several
proxies to measure variations in liquidity: the monthly change in the five year Euro
swap spread (denoted as 5dss), the monthly variation in the number of issues of the
corporate bonds included in the IBOXX Euro Bond Index, (nofissue). Furthermore,
considering that the liquidity can be correlated with the return volatility we include
the squared index monthly return (ret2 ) as suggested by Hong and Warga (2000).8

Because of the strong link between swap and corporate market,9 we expect that a
change in the swap market liquidity would reflect a change in the same direction
in the corporate market liquidity.10 A decrease in the swap market liquidity (i.e.
in the corporate market) implies a market preference for less risky assets. Hence
we expect the factor loading of this liquidity proxy to be positive. Second, the
issued amount of a bond is often assumed to give an indication of its liquidity. The
higher the issued amount, the higher the liquidity of a bond. When the liquidity
of the corporate bond market increases, corporate bond prices increase and credit
spreads decrease. Hence, we expect a negative effect of this liquidity proxy on the
delta credit spreads.11 Since we do not observe the issued amount for each bond,

7The data source is DataStream.
8Though ARCH modeling can be adopted here to estimate the conditional variance as a measure of

volatility there is no evidence of ARCH effects in the monthly index return.
9The issuers of corporate bonds typically fund on the swap market. Thus, if swap spreads widen, the

long-term funding costs of corporate bonds issuers should increase, and investor demand for credit bonds
should decrease. Assuming a constant supply of bonds, the decline in demand for credit products will
cause prices to decline and the spread to Treasury to widen

10See Collin-Dufresne, Goldstein, and Martin (2001).
11Houweling, Mentink, and Vorst (2005) provide an extensive survey on both the theoretical structure

and the empirical applications which consider the issued amount as liquidity proxy.
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we consider a market liquidity measure such as the the monthly variation in the
number of issues of the corporate bonds included in the IBOXX Euro Bond Index.

5. Changes in the Business Climate. Even if the probability of default remains constant
for a firm, changes in credit spreads can occur due to changes in the expected
recovery rate. The expected recovery rate in turn should be a function of the overall
state business climate. We use stock indices return as proxies for the overall state of
the economy and we expect that an increase in the index return reduces the credit
spreads. We use the monthly Morgan Stanley Euro Index price return (denoted as
MSeuro) as a proxy of the overall state of the economy.

6. Credit Spread. To investigate the presence of a mean-reverting behavior in credit
spreads, we include the beginning-of-month level of credit spread (denoted as Spread).
In case of a mean-reverting behavior this variable should contain information about
the current month’s change in credit spread.

7. Changes in Credit Quality. Changes in credit quality which also includes downgrad-
ing or upgrading in rating is part of credit risk. A general process of improvement
or worsening in the credit quality should inversely move the credit spreads: a bet-
ter credit quality reduces credit spread. We proxy the change in credit quality by
monthly changes in rating downgrading (denoted as Downg) and upgrading (de-
noted as Upg) of the Merrill Lynch Global High Grade Corporate Index.12

4.2 Firm-specific factors

The firm-specific factors considered are:

1. Mean and Standard Deviation of daily excess return of firm’s equity. These variables
summarize the firm-level risk and return. Equity data reflect up-to-date information
on firm value and should anticipate bond prices13. An increase in the equity daily
excess return means a higher firm profitability. In line with the analysis of Kwan
(1996) and Campbell and Taksler (2003) we expect stock returns to have a nega-
tive effects on credit spreads. We note also that previous studies of yield changes
have often used the firm’s equity return instead of changes in leverage as proxy for
changes in the firm’s health. On the other hand it is well known that the equity
volatility of a firm increases its probability of default. Hence, a firm’s volatility
should drive up the yields on corporate bonds and widen the credit spreads. More-
over, Houweling, Mentink, and Vorst (2005) assume that bonds issued by companies
whose equities are listed on a stock market are more liquid. Therefore, our sample
should contain corporate bonds with higher liquidity and lower yields with respect
to the full sample. Following Campbell and Taksler (2003) we match bond data with

12We take into account only Euro denominated bonds and the monthly changes are computed with
respect to the index par amount. The data come from the Merrill Lynch Index Rating Migration Data-
book. This databook summarises relevant information on the composition of the main Merrill Lynch
Corporate Bond Indices.

13Ederington, Yawitz, and Roberts (1987) claim that all data going into ratings prices should be
anticipated by equity prices. Moreover they argue that investors fully anticipate rating changes which
almost never affect bond returns.
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equity data to explicitly evaluate the effects of equity volatility on corporate bond
yield spreads. We consider only the corporate bonds issued by firms included in the
Morgan Stanley World All Country Index14. To compute the daily excess return
of each firm’s equity we consider the Morgan Stanley Indices of the country where
the stock is exchanged15. For each firm’s equity we compute the mean (denoted as
Avgret) and standard deviation (Stdret) of daily excess returns over the 180 days
prior to (not including) the bond trade.

2. Changes in Credit Market Factors. We test whether credit spread changes depend
on bond characteristics such as rating and the industrial sector. We also consider
market factors for rating categories and industrial sectors. Each bond is assigned
to one of the IBOXX sub-indices based on the bond’s beginning of month rating or
sector. We consider four rating categories, (AAA, AA, A, BBB) (denoted as Dcsrat)
and three industrial sectors, (Industrial, Financial, Utility) and for each sub-index
we consider the index monthly delta spread (Dcsect).

We do not use accounting variables to explain the credit spread changes. This choice
is driven by two considerations. First, accounting data have in general either quarterly
or yearly frequency. We think that interpolating the data does not provide so much
information on credit spread changes. Second, most of the works which use accounting
variables do not find any statistical evidence of their explanatory power and conclude that
they can hardly explain the observed movements in credit spreads.
A detailed description of the data set is postponed until section 7.

5 Preliminary empirical evidence for the European

corporate bond market

The important conclusions of Collin-Dufresne, Goldstein, and Martin (2001) for the US
corporate bond market seem to be a logical starting point for any empirical study of the
European corporate bond market. In this section, we try to replicate their analysis using
data on Euro denominated corporate bonds. The goal is to understand to what extent the
European market resembles the American market at least for what concerns the factors
that affect the delta credit spreads.
They start from a simple model where the delta credit spread of each bond i at time t,
yit, depends on common observed factors, dt, and individual specific components, xit:

yit = αi
′dt + β′

i
xit + eit t = 1, . . . , T i = 1, . . . , T

In line with their analysis, we consider three different specifications. Nevertheless, we
have to mention that for the European market we lack some of the data corresponding to
the US market. However, we attempt to follow, as closely as possible, their specification

14The data source is DataStream.
15We end up considering the following Morgan Stanley Indices: Msci Emu, Msci Denmark, Msci

Finland, Msci Norway, Msci Sweden, Msci Switzerland, Msci Uk, Msci Usa, Msci Canada, Msci Japan
And Msci Hong Kong.
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approach. They found that nearly half of the variation in spreads was unaccounted for
by their regressors.

The first specification includes the following common factors (dt):

• the monthly change in the German government slope (Slope)

• the monthly change in the ten year German government bond yield-to-maturity
(10Gov)

• the monthly change in the German convexity (Conv)

• the monthly return on Morgan Stanley Euro markets index (MSeuro)

and the individual factors (xit):

• the average of daily excess equity returns over the preceding 180 days (Avgret).

• the standard deviation of daily excess equity return over the preceding 180 days
(Stdret).

The first model specification is:

yit =α1i + α2iSlopet + α3i10Govt + α4iConvt + α4iMSeurot (7)

+ β1iAvgretit + β2iStdretit + eit t = 1, . . . , T

The second specification includes additional explanatory variables to control for possibly
omitted systematic common factors:

• the spread of the IBOXX euro corporate bond index at time t − 1 (Spread)

• the five year delta swap spread (5dss)

• the monthly variation in the total issued amount of the IBOXX index (Totaos)

• the monthly variation in the square level of the ten year German government bench-
mark yield-to-maturity. (10Gov2)

• the level of the ten year German government benchmark yield-to-maturity at time
t − 1 (Gov)

• monthly variation in upgraded Euro corporate bonds (Upg)

• monthly variation in downgraded Euro corporate bonds (Downg)

• the level of VDAX index at time t − 1 (Vdax )

• monthly variation in the VDAX index (Dvdax )
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the VDAX index is a volatility index of the DAX options traded at the Eurex. The five
year delta swap spread (5dsst) and the monthly variation in the total issued amount of
the IBOXX index (Totaost) are two liquidity proxies. The second model specification is:

yit =α1i + α2iSlopet + α3i10Govt + α4iConvt + α4iMSeurot (8)

+ α5iSpreadt−1
+ α6i5dsst + α5iTotaost + α6i10Gov2

t + α6iGovt−1

+ α7iUpgt + α8iDowngt + α9iVDAXt−1 + α10iDVDAXt

+ β1iAvgretit + β2iStdretit + eit t = 1, . . . , T i = 1, . . . , I

Finally, the third specification adds to the observed common factors what Collin-Dufresne,
Goldstein, and Martin (2001) call a ”market factor” for the corporate bond market, that
is the monthly change in the IBOXX BBB Index credit spread, Iboxxbbbt.

Each specification includes the intercept and is estimated by OLS. We aggregate the
bonds by maturity buckets, rating categories and industrial sectors. The individual re-
gressions show a considerable parameter heterogeneity. 16

Table 1 reports the average adjusted R2 of the specifications above. We observe
that there are some differences with the results obtained by Collin-Dufresne, Goldstein,
and Martin (2001) for the US market. Most of the explanatory variables have some
ability to explain the delta credit spreads and most of the estimated parameters are in
line with the predictions of economic theory, however the explanatory power of all the
specifications put together is slightly lower than that found for the US market. Collin-
Dufresne, Goldstein, and Martin (2001) find an average adjusted R2 of 21, 35 and 55
percent for their specifications while we find overall an adjusted R2 of 18, 35and 45
percent, respectively (Table 1).

Collin-Dufresne, Goldstein, and Martin (2001) found that the unexplained component
of the movement in credit spread changes can be ascribed to the presence of a single
common factor. In fact, looking at the cross-section correlation in the residuals of the
three specifications, they showed that controlling for the influence of a market factor
dramatically reduces the correlation among the fitted residuals. In particular, the per-
centage of the total residual variance explained by the first principal component drops
from about 76% to about 40%. They conclude that the ”market factor” can be identified
as a supply/demand shock.

We replicate their analysis in the case of the European market. We divide the residuals
into nine bins, determined by three maturity groups ( Short term: < 4 years, Medium
term: ≥ 4 years and < 10 years, Long term: ≥ 10 years) and three industrial sectors
(Financial, Industrial and Utility).17 The estimates of individual bond regressions suggest
that the estimated parameters are characterized by a heterogeneity, both at the individual
bond level and at bin level. 18

Table 2 shows that the first component explains a relevant part of the variability
in the residuals (64.9%, 56.4%, and 53.8%, for the first, second and third specification
respectively) for all the specifications considered while the analysis of the US market

16For ease of exposition we do not report the individual regressions results, but they are available upon
request from the authors.

17The results are very similar when we divide the residuals into bins based on maturity and rating.
18On the contrary for the US market, Elton, Gruber, Agrawal, and Mann (2001) show that there is a

substantial homogeneity in the estimated parameters.
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shows that when a ”market factor” is added the first component accounts for a small
fraction of the remaining variation. In our case, the residuals’ variability is still high
(53.8%) even when we introduce a proxy for the market into the regression (specification
three). Moreover Collin-Dufresne, Goldstein, and Martin (2001) show that in the first two
specifications the first principal component can be seen as an equally weighted portfolio
across the categories used to build the bins. On the contrary, the empirical evidence
for the European market does not allow for the same conclusions. In the European case,
there can be potentially more than one unobserved factor which influences the variation in
credit spreads. Moreover, this analysis does not provide any clear clue to the identification
of the unobserved factors.
While Collin-Dufresne, Goldstein, and Martin (2001) use the evidence on the effects of
the inclusion of the ”market factor” to support the presence of an unobserved common
factor, we cope with this problem in a different way.

From the average correlation of the corporate bond delta spread, shown in Panel B
of Table 3, it is evident that the delta credit spreads are cross correlated. The first two
principal components of delta credit spreads account for 62% of the total variance and
the correlation of the residuals of the second specification (8) is quite high. This seems
to confirm the presence of a relevant cross-section dependence.

Table 3 also reports the test statistic for cross dependence by Pesaran (2004).19 The
hypothesis that the residual credit spread changes are cross sectionally independent is
strongly rejected. All this suggests the adoption of a panel-data approach to the analysis
of delta-credit spread cross-section dependence that evolves over time. Table 3 reports
the average correlations of fitted residuals from a fixed effect model of third specification
(equation (8) augmented with the Iboxx index).

Again, the average cross-section correlation of fixed effects fitted residuals of the third
specification is far from negligible. This suggests that there could be some omitted ex-
planatory variables. This is also the conclusion of Collin-Dufresne, Goldstein, and Martin
(2001) for the American market. They remark that in this case these must be found
among non-firm-specific factors.

6 Econometric Model

The results in the previous section suggest that a suitable setup for modeling the changes
in delta credit spreads is a panel data model with an unobserved common factor structure.

19Pesaran (2004) proposes a test for cross-section dependence based on a simple average of the all pair-
wise correlation coefficients of the Ordinary Least Square (OLS) residuals from the individual regressions
in the panel. This test is applicable to a variety of panel data models and despite of the Breusch and
Pagan Lagrange Multiplier test, it can be used when the cross section dimension is large relatively to the
time series dimension. The Cross Section Dependence statistic (CD stat) is computed as:

CD =

√
2T

I(I − 1)




I−1∑

i=1

I∑

j=i+1

ρ̂ij





where ρ̂ij is the sample estimate of the pair-wise correlation of the residuals (êi and êj). Under the
null hypothesis of no cross section dependence the CD statistic is distributed (as I and T → ∞ with no
particular order) as a standard normal distribution.
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Kapetanios and Pesaran (2007) extend the standard asset return equations, routinely
estimated in the finance literature, allowing for unobserved and observed factors. We
adopt the same approach. In particular, following Pesaran (2006), we consider a linear
heterogeneous panel data model where yit is the observation on the delta credit spread at
time t for the ith issue for i = 1, 2, . . . , I and t = 1, 2, . . . , T :

yit = αi
′dt + βi

′xit + eit (9)

eit = γi
′ft + ǫit

where dt is a n × 1 vector of observed common effects, xit is a k × 1 vector of observed
individual specific regressors, ft is the m × 1 vector of unobserved common factors and
ǫit are the idiosyncratic errors assumed to be independently distributed of (dt, xit).

To allow for correlation between ft and xit we suppose that the individual specific
factors are correlated with common (observed and unobserved) factors through:

xit = Ai
′dt + Λi

′ft + vit (10)

where vit are the specific components of xit distributed independently of the common
effects and across i. Following Pesaran (2006) we can combine the expressions (9) and
(10) in a system

zit =

[
yit

xit

]
= B′

idt + C ′
if t + uit

where

uit =

[
ǫit + β′

ivit

xit

]

Bi =
[

αi Ai

] [
1 0
βi Ik

]
Ci =

[
γi Λi

] [
1 0
βi Ik

]

We can rewrite (9) as a T -dimension system:

yi = Dαi + X iβi + ei

= Dαi + X iβi + Fγi + ǫi

where D is a (T × n) matrix, X is (T × k), F is (T × m), i.e. F = (f
1
, . . . , fT )′, and

ǫi = (ǫi1, ǫi2, . . . , ǫiT )
′

is (T × 1).

Assumption 1 The idiosyncratic errors ǫt are supposed to follow a zero-mean process:

1. E(ǫit) = 0, E(ǫ2

it) = σ2

i .

2. E(ǫitǫjt) = σij with
∑I

i=1
|σij| ≤ M for all (i, j), where M is a positive constant.

3. p limI→∞
1

I

∑I
i=1

ǫiǫ
′
i = Ω (T × T ) with the largest eigenvalue bounded uniformly in

i and T .

Moreover the idiosyncratic errors ǫit are assumed to be independently distributed of (dt,xit).

Assumption 2 The rank of (γi Λi) is m.
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Assumption 3 The observed and unobserved common factors are assumed to be orthog-
onal, E(f td

′
t) = 0, ∀t, They are covariance-stationary with absolute summable autoco-

variances, and distributed independently of the individual error ǫis and vis, for all i, t and
s.

Assumption 4 p lim 1

T

∑
t ftft

′ = ΣF , where ΣF is a (m × m) positive definite matrix.

Assumption 5 p lim 1

T

∑
t dtdt

′

= ΣD, where ΣD is a (n × n) positive definite matrix.

Assumption 6 p lim p lim 1

T

∑
t dtxit

′

= ΣDXi
where ΣDXi

is a finite matrix.

Assumption 7 Factor loadings: ‖γi‖ ≤ γ < ∞ and ‖Γ′Γ/I − ΣΓ‖ → 0 where ΣΓ is a
(m×m) positive definite matrix (Bai (2003) and Bai and Ng (2002)). The factor loadings
are treated as parameters.

Assumption 1 concerns the idiosyncratic errors. We assume that the errors are cross-
sectionally correlated but constant in time, i.e. stationary. In Assumption 2 and 7, like
in Bai (2003) and Bai and Ng (2002), the factors loadings are considered non random
but as shown in Bai (2006) we can extend our analysis to include random factor loadings,
provided they are independent of the factors and idiosyncratic errors. Thus the factors
are treated as parameters.
Pesaran (2006) put forward, using cross section averages of yit and xit as proxies for
the latent factors, ft, a consistent estimator for βi. The basic idea behind the proposed
estimation procedure, the Common Correlated Effects (CCE) estimator, is to filter the
individual specific regressors by means of cross section aggregates in such a way that (as
I → ∞) the differential effects of unobserved common factors are eliminated asymptoti-
cally.

6.1 Estimation

We are interested in understanding the impact of unobserved factors on the observed
changes in credit spreads. To this end we propose an estimation procedure which is
articulated in two steps. First, the individual slope coefficients are estimated by CCE
estimator of Pesaran (2006), then a consistent (in average norm) principal components
estimation of the unobserved factors is obtained. The number of factors is assumed to be
unknown but fixed. Second, we estimate (αi, βi, γi) in a random coefficient model.
The CCE estimator is given by augmenting the OLS regression of yit on xit and dt with
the cross-section averages zt = 1

I
ΣI

i=1
zit:

β̂i = (X ′
iMX i)

−1X ′
iMyi (11)

with
M = IT − H(H

′
H)−1H

′

H = (D,Z), D and Z being, respectively, the T × n and T × (k + 1) matrices of
observations on dt and zt. Although yt and ǫit are not independent (i.e. endogeneity
bias), their correlation goes to zero as I → ∞.
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We estimate the model (9)-(10) with the hypothesis that the observed common factors
are uncorrelated with unobserved ones, i.e. E(ftdt

′) = 0, ∀t. In order to deal with
error cross-section dependence due to unobserved common factors we adopt the following
procedure:

1. we consistently estimate the slope parameter β̂i by means of the CCE estimator of
equation (11), based on an estimate of ft by means of cross-section averages, zt,
and dt.

2. for i = 1, . . . , I we estimate the residuals as:

êi = M d(yi − Xiβ̂i) (12)

where M d is given by
M d = IT − D(D

′

D)−1D
′

the presence of unobserved common factors correlated with the individual specific
regressors do not cause the inconsistency of the parameter estimates of the observed
common effects part (αi)

Proposition 6.1 Under Assumptions 1,3,4,5,6 αi is consistently estimated by

α̂i = (D′D)−1D′(yi − Xiβ̂i).

Proof. See Appendix B.
Proposition 6.1 implies that the fitted residuals êi are consistent for ei.

3. The unobserved common factors are estimated, up to a non-singular transformation
(i.e. rotation indeterminacy), by the method of least squares. This corresponds to
minimize the following objective function

tr[(Ê − FΓ′)(Ê − FΓ′)′]

where Ê is the (T × I) matrix: Ê = (ê1, ê2, . . . , êI) and Γ′ = (γ
1
, . . . , γI) is

(m×I). Concentrating out Γ = Ê
′
F (F ′F )−1 = Ê

′
F /T and using the normalization

F ′F /T = Im the objective function becomes

tr(Ê
′
MF Ê) = tr(Ê

′
Ê) − tr(F ′ÊÊ

′
F )/T

Therefore minimizing with respect to F is equivalent to maximize tr[F ′(ÊÊ
′
)F ].

The estimator of F is equal to the first J eigenvectors associated with the first J

largest eigenvalues of the matrix ÊÊ
′
. In order to consistently estimate the number

of factors we make use of the information criteria proposed by Bai and Ng (2002).

Thus by the definition of eigenvalues and eigenvectors F̂ satisfies

[
1

IT
ÊÊ

′
]

F̂ = F̂ V IT
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where V IT is a diagonal matrix which consists of the J largest eigenvalues of ÊÊ
′

arranged in decreasing order.20 When we look at the asymptotic characteristics
of the estimated factors we assume that m is known.21 The following proposition
shows the average norm consistency of F̂ for F .

Proposition 6.2 Suppose assumptions 1-7 hold. Let G = (Γ′Γ/I)(F ′F̂ /T )V −1

IT .
Then G is an (m × m) invertible matrix, and

1

T
‖F̂ − FG‖2 =

1

T

T∑

t=1

‖f̂ t − G′f t‖2 = Op(1/ min(I, T ))

Proof. See Appendix B.

In Appendix C we show, by means of a Monte Carlo simulation, the small sample
properties of the estimated factors, using the least squares principal components
estimator.

4. Finally, f̂t are used as regressors in the model, Bai (2003) shows that as long as√
T/I → 0 the error in the estimated factor is negligible, and for large I, ft can be

treated as known. The model becomes:

yit = αi
′dt + βi

′xit + γi
′f̂t + ςit (13)

where ςit is the idiosyncratic error and f̂t
22 is the (J × 1) vector of the first J

principal components of Σ̂. We augment the model by the estimated factors since
we are interested in evaluating their impact. We assume a Swamy random coefficient
model, that is:

βi = β + ηi ηi ∼ i.i.d.(0,Ωη)

αi = α + ξi ξi ∼ i.i.d.(0,Ωξ)

γi = γ + νi νi ∼ i.i.d.(0,Ων)

where ηi, ξi, and νi are independent for all i. The parameters can be estimated
either by feasible GLS or by Mean Group estimator (Pesaran and Smith, 1995);
for T sufficiently large the two estimators are algebraically equivalent (Hsiao and
Pesaran, 2008). Due to the lack of space we only report the estimates obtained with
Feasible GLS estimator. As expected, the estimates based on the Mean Group are
very close to GLS estimates.23

20The scaling by IT does not affect F̂ .
21Their asymptotic distributions are not affected when the number of factors is unknown and is esti-

mated (see Bai (2003)).
22Or any linear combination of them, i.e. Hf̂t, where H is an invertible matrix such that f̂t is an

estimator of Hft and H−1γ̂i is an estimator of γi.
23They are available upon request from the authors.
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7 Data Description

7.1 Data

Our corporate bond data are extracted from the IBOXX Euro Bond Index. This index is
issued by seven major investment banks24. Each bank is due to buy and sell every single
asset belonging to the index. The index bond prices are determined by the following
criteria. First, the highest and the lowest prices are excluded and then the price is given
by the average of the other five prices. Moreover each asset included should have at least
500 million Euros of amount outstanding and its time to maturity should be greater than
one year. Such criteria should be guaranteed to deal with tradable and liquid assets. In
this way we try to reduce the liquidity premium of the Euro corporate market.

The IBOXX database25 contains issue- and issuer-specific variables such as callability,
maturity, coupon, industrial sector, rating, subordination level, issuer country, duration
and several measures of credit spread. The IBOXX Euro Index is composed both of Euro
government bond and investment grade Euro corporate bonds. We consider only the Euro
corporate bonds. We start considering monthly observations for the period from January
2000 to November 2004.

Because our goal is to explain the behavior of investment grade Euro corporate bonds
we eliminate all the bonds downgraded to high yield debt.26 The bonds under consider-
ation have standard cashflows - fixed rate coupon and principal at maturity. We exclude
all bonds not rated, step-up notes, floating rate debt and convertible bonds. We also
exclude bonds with call options, put options or sinking fund provisions. Moreover, we
require issuer with publicly traded stock in order to estimate equity volatility and equity
excess return.

To match corporate bonds by corresponding stock we first match corporate ISIN by
Bloomberg ISIN of the underline stock and we use the latter to extract equity data from
DataStream. We also require that an issue have six months of stock price data prior to
the bond trade.

Last, in order to undertake principal component analysis of the residuals we restricted
our sample to a balanced panel. We only take into account only issues which have belonged
uninterruptedly to the index from the last observation backward. We ended up with 207
bonds for 33 monthly observations.

We use the fitted government curve spread provided by the IBOXX database. This
spread is equal to the difference between the yield to maturity of the corporate bond and
the corresponding (i.e. with the same maturity) yield to maturity on the estimated Euro
government curve27.

Elton, Gruber, Agrawal, and Mann (2001) suggest the use of spot rates rather than
yield to maturity because arbitrage arguments hold with spot rates. The procedure of
Elton, Gruber, Agrawal, and Mann (2001) consists of computing the corporate spread

24ABN AMRO, Barclays Capital, BNP Paribas, Deutsche Bank, Dresdner Kleinwort Wasserstein,
Morgan Stanley and UBS Investment Bank.

25The database has been built by the optimization group at Fideuram Investimenti SGR, Milan.
26During the sample period considered, 12 issuers and 24 issues downgraded to high yield bonds. 2

issuers and 4 issues defaulted.
27The Euro government curve is estimated by a cubic spline. Moreover, only German and French

government bonds enter the term structure estimation process.
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as the difference between the spot rate on corporate bonds in a particular rating class
and the spot rate for Treasury bonds of the same maturity. Both zero curves are usually
estimated by standard methods such as the Nelson-Siegel procedure or Spline functions.

Campbell and Taksler (2003) follow the procedure of Elton, Gruber, Agrawal, and
Mann (2001) to eliminate coupon effects from corporate bond yields. First, they estimate
the corporate bond spot curves for sector and credit rating. Then they use the zero-
coupon curve to estimate the corporate bond prices. Last, for each bond, they obtain the
redemption yield from the estimated prices. As a consequence of their analysis, Campbell
and Taksler (2003) raise some doubts over the need to measure corporate bond yield
spreads in relation to a zero-coupon curve. In fact even though their analysis make use
of both ”redemption yield spread” and ”estimated redemption yield spread” they obtain
very similar results.

The use of ”estimated redemption yield spread” makes sense only if the approximated
corporate bond prices are truly closed to the observed one. In general in the Euro bond
market this is not the case. In fact whatever the interpolated technique used (Nelson-
Siegel, Cubic Spline with 5 knots) the results are quite poor. In Appendix A, we present
some evidence concerning the magnitude of the estimation errors of redemption yield
spread based on estimated corporate spot rates.

Table 6 presents summary statistics on the bonds and issuers in the sample. Because
of the reduction of the sample to match the equity data and to deal with a balanced panel
data set one may wonder if these bonds are representative of the overall Euro corporate
market. A comparison of our sample to all the noncallable and nonputable bonds included
in the IBOXX index for the period considered (on average about 374 issues) suggests that
they are very close. In Table 7 bonds in the sample and bonds included in the IBOXX
index are compared. The two samples have very similar distribution across credit ratings
(panel A) and industrial sectors (panel B). In Table 8 the distribution across the industries
stresses the fact that the banks make up almost 28% of the entire sample (panel A). The
distribution across maturity bucket of our sample has a slight tendency toward medium
and short term bonds (panel B). Though the average bond maturity in our sample is very
close to the average bond maturity of the full sample (5.66 in Table 6).

Although the criteria of the IBOXX index should guarantee the liquidity of their
components, Table 6 shows that the full sample contains outliers. The standard deviation
of the full sample is twice our sample standard deviation. The maximum monthly credit
spread change is about 466 basis points for our sample and 2530 basis points for the full
sample. Therefore the extra return of a corporate bond with respect to a government
bond can be 25 % in a month if we consider the full sample.

8 Results

Following the estimation procedure outlined in section 6, first, we consistently estimate
the slope parameters βi in the model (9)-(10) by means of the CCE estimator. Second,
from the variance-covariance matrix of the consistently estimated residuals of equation
(12), we obtain the principal components. Third, we select the common factors according
to the information criteria ICp of Bai and Ng (2002). The results (see Table 9) suggest
the inclusion of just one factor in our model. Hence we augment our regressions with
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the first principal component. Finally the model is reestimated using the Swamy random
coefficient estimator.

We estimate four different specifications, denoted in table 10 with A,B,C, and D.
For each specification the unobserved factors are estimated from the residuals variance-
covariance matrix. The variables and the predicted effects are presented in table (4).
Specification A includes all the regressors (individual and observed common factors), B
adds the estimated common factor. The specification C excludes the non significant
all the liquidity proxies (the 5-year delta credit spread (5dss), the monthly variation in
the number of issues of the corporate bonds included in the IBOXX Euro Bond Index
(nofissue), and the squared index monthly return (ret2 )); while D includes the estimated
factor. Both Swamy’s test of slope homogeneity as well as the version proposed by Pesaran
and Yamagata (2007) where the cross section dimension could be large relative to the
time series dimension, show that the null hypothesis of parameter constancy is strongly
rejected.

In general, the variables suggested by the theory are both economically and statistically
significant in explaining variations in individual issues’ credit spreads.

1. Changes in the government bond rate level. The monthly variation of 10 year Ger-
man government benchmark yield-to-maturity (10gov) is significant at the 5% sig-
nificance level only when the estimated factor is included like in specification B.

2. Changes in the slope of the government yield curve. The slope in the German
government yield curve is significant (10% significance level) and has a negative
impact on the delta credit spread. That is when the curve is flattening this increases
the credit spreads. This is in accordance with the findings of Duffee (1998) and
Collin-Dufresne, Goldstein, and Martin (2001).

3. Changes in the convexity of the government yield curve. When liquidity proxies
are included the convexity of the government yield curve has a negative and sta-
tistically significant effect on the change of delta credit spreads. Similarly, when
we exclude the liquidity proxies but we include the estimated factor, which we in-
terpret as liquidity factor, the convexity turns out to be significant. This captures
possible nonlinearities in the relation between delta credit spreads and yield curve
movements.

4. Changes in liquidity. The liquidity proxies included in specifications A and B are
not significant at the 5% significance level. This suggests that these proxies are
inadequate to catch the influence of liquidity conditions on the movements of delta
credit spreads. However this does not exclude that liquidity is a relevant factor in
explaining the movements in the excess returns over corporate bonds.

5. Mean and Standard Deviation of daily excess return on equity. The standard devia-
tion of daily excess return (stdret) over the preceding 180 days28, a volatility proxy,
is not significant except for specification A, that is when the estimated common

28We also run the procedure to compute the standard deviation of equity daily excess return by using
the preceding 90, 270 and 360 days prior the bond trade.
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factor is not included in the regression. While the parameter of the variable average
of daily stock excess return (avgret) is significantly negative in all but specification
B.

6. Changes in Credit Quality. It is particularly interesting is that while the change
in rating downgrade is always strongly significant the change in rating upgrade
is not. However, when the estimated factor is present among the regressor, both
are significant. It should be noticed that the effect of the monthly variation in
the total amount outstanding of the upgraded bonds is smaller than the variation
in the downgraded ones. This suggests that shocks in the credit market have an
asymmetric effect on delta credit spreads.

7. Changes in the Business Climate. The Morgan Stanley Euro Index price return is
significant in all the cases considered. The sign of the estimated coefficient is in
accordance with the theory, which says that the market sentiment has a positive
impact on the excess returns of corporate bonds. s

8. Changes in Credit Market Factors. The monthly delta spread of the IBOXX sub-
indices, based on the bond’s beginning of month rating classification, to which
each bond issue in the sample is assigned, is strongly significant.29 This could be
interpreted as a market factor which explains a large part of the variation of the
delta credit spreads. An increase of 100 basis points in this credit market factor
augments the delta credit spreads by about 70 basis points.

9. Credit Spread. The initial credit spread level is negative and strongly significant
in all the regressions, this is in accordance with a mean-reverting behavior of the
delta credit spreads (the same is found by Collin-Dufresne, Goldstein, and Martin
(2001)).

The regression results indicate that the inclusion of one estimated factor has an impact
on the coefficient estimates, larger still for the common observed effects. This is probably
related to the high correlation between the individual regressors and the common observed
effects in our equations.

So far our analysis shows that in the Euro corporate bond market exists a systematic
unobserved risk factor, unaccounted by the main common factors suggested by the theory.

The average correlation coefficient between actual and fitted values, computed for each
bond, is about 0.53. From the empirical distribution 55% of estimated correlations are
larger than 0.5.
Repeating the analysis carried out in section 5, we obtain that the first principal compo-
nent of the residuals of model (B) explain only the 45.6% of the total variation (see Panel
B in table 2). Thus suggesting that the inclusion of the estimated factor accounts for the
common systematic unexplained component.

Our guess is that the estimated factor accounts for latent liquidity effects. This is
reinforced by the observation that the liquidity proxies are unable to control for liquidity

29The results obtained with the IBOXX sub-indices for industrial sectors are less significant, so we
choose to retain only the indexes for rating categories.
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distortions. We consider different liquidity proxies and observe that no one has a signifi-
cant effect. Moreover we argue that the liquidity distortions are possibly induced by the
presence of imperfections in the Euro corporate bond market. This idea comes mainly
from the evidence, stressed in section 7, that corporate bonds in the Euro market could
be mispriced.30

In order to understand to what extent the factor is correlated with credit quality, we
calculate the average partial correlation between the delta credit spreads and the esti-
mated factor, after having controlled for all the explanatory variables contained in Table
10, specification A. Table 11 reports, as expected, that the average partial correlation
increases as the credit rating decreases, i.e. as the liquidity conditions worsen. This is
close to what has been found by de Jong and Driessen (2005). They show that both US
and European corporate bonds are exposed to systematic liquidity shocks and that a liq-
uidity risk premium helps to explain part of the credit spread. Importantly, the liquidity
exposure is larger for lower-rated bonds.

Hence, we think that potentially an aggregate factor driving liquidity in the bond
market could be correlated with the estimated common factor, in line with the findings
of Collin-Dufresne, Goldstein, and Martin (2001).

9 Conclusion

In this paper we investigate the determinants of credit spread changes denominated in
Euros. We point out that the change in credit spreads can be viewed as a proxy of the
excess return of the corporate bonds over government bonds. For this reason we conduct
our empirical analysis in a factor model framework. We also follow a data-driven approach
recently developed for the US market which addresses the question of which variables are
mostly correlated with the credit spread movements. Notable differences to the American
market arise. First, the estimated parameters seem to be quite heterogeneous across
bonds and bins used in the analysis. Second, the unexplained part of the movements in
the delta credit spreads, which is due to unobserved common factors, is not correlated
with the market. Nonetheless, we find highly cross-correlated residuals from the single-
bond regressions. This suggests a heterogeneous panel data model with a multifactor
error structure. In this setup we distinguish observed and unobserved common factors,
and in order to consistently estimate the influences of individual factors influences we
adopt a recently developed estimator (Pesaran (2006)). Starting from these estimates we
show that the unobserved factors can be consistently (in average norm) estimated. Finally
the effects of individual components and common observed and unobserved factors are
reestimated assuming a random coefficient model. Overall our analysis shows that a
systematic risk factor exists in the Euro corporate bond market that is independent of
the main common factors predicted by the theory. The estimated factor can be thought of
as capturing the liquidity bias, which in turn can be caused by the lack of a fully developed
market. This interpretation also seems to be supported by the price misalignments found
in the Euro corporate bond market.

30See Table 5.
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A Appendix

For each month, we estimate the zero coupon yield curves for each rating category31 by
a smoothed cubic spline. We then use these spot rates to discount the coupon corporate
bonds cash flows and obtain the fitted price for each bond. We observe that the difference
between actual prices and estimated prices are fairly consistent32. While for the govern-
ment bonds the absolute average error is about 1 cent, for the corporate bonds it is about
20 cents for all rating categories.

Figure 1 and 2 show respectively the difference between the market prices and the
fitted prices for the German government bonds and for the A rated euro corporate bonds
at the same date. The average error over all the months considered is much greater than
the average error found in other studies (see among others Elton, Gruber, Agrawal, and
Mann (2001) and Campbell and Taksler (2003)) on the US corporate bond market but
is comparable to the average error found for the Euro market according to the analysis
conducted by Van-Landschoot (2003).

Van-Landschoot (2003) extend the Nelson-Siegel method to estimate the European
term structure of credit spreads for different sub-rating categories. The analysis shows that
the Nelson-Siegel method results in systematic errors that depend on liquidity, coupon
and subcategories within the rating category (plus, flat, minus rating). Therefore Van-
Landschoot (2003) extends the model with four additional factors in order to take into
account the underline effects. The average yield error of the extended Nelson-Siegel model
is fairly consistent. For example, the yield error for an A rated bond is close to 16 basis
points for a two year maturity bond and 15 basis points for a five year maturity bond.
Such yield errors cause the price errors to be fairly consistent. Table II illustrates this
point. Table II shows the error between the observed market price and the estimated price
for any two corporate bonds included in the IBOXX index on August 25th, 2005. The
first one is a two year maturity bond issued by Lehman Brothers while the second one is
a five year maturity bond issued by France Telecom. Both bonds have an A rating. First,
we compute the ”estimated redemption yield” by adding the yield error to the observed
redemption yield. Then we obtain the ”estimated price” from the ”estimated redemption
yield”. Table II shows that for the two bonds the error between the actual price and the
estimated price is about 30 cents and 75 cents for 100 euros, respectively. The result does
not significantly change for different redemption yields and coupon rates.

Actual and estimated prices can mainly differ because bonds within the same rating
category are not homogeneous. Moreover, there are other possible reasons. First, credit
ratings are revised infrequently and often with one lag. Second, corporate bonds could
be mispriced. Finally the magnitude of fitted errors strongly suggests the use of the
”observed redemption yield spread”.

31We consider the following rating categories: AA, A and BBB.
32The euro government bonds considered here are those belong to the IBOXX Euro government bond

Index.
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B Appendix

Stacking the time series observations for i in (9):

yi = Dαi + X iβi + Fγi + ǫi i = 1 . . . , I (14)

where

yi = (yi1, yi2, . . . , yiT )
′

(T × 1)

Xi = (xi1,xi2, . . . , xiT )
′

(T × K)

D = (d1, d2, . . . , dT )
′

(T × N)

F = (f1, f2, . . . , fT )
′

(T × M)

ǫi = (ǫi1, ǫi2, . . . , ǫiT )
′

(T × 1)

We first obtain the consistent CCE estimator of equation (11) and then we estimate αi

in the following OLS regression:

yi − X iβ̂i = Dαi + νi (15)

where νit are idiosyncratic errors.

α̂i = (D
′

D)−1D
′

(yi − X iβ̂i) (16)

α̂i = αi + (D
′

D)−1(D
′

X iβi + D
′

Fγi + D
′

ǫi − D
′

X iβ̂i) (17)

Under assumptions 1,3,4,5,6 and given that β̂i is a consistent estimator of βi, then α̂i

p→
αi as T → ∞ for i = 1, . . . , I.

Proof of Proposition 6.2. We use the following results throughout:

T−1‖X i‖2 = Op(1)

or
T−1/2‖X i‖ = Op(1)

and, averaging over i

1

I

I∑

i=1

‖X i‖2

T
= Op(1).

Furthermore, from assumptions 4 and 5

T−1/2‖F ‖ = Op(1)

T−1/2‖D‖ = Op(1)

and given the assumed normalization F ′F /T = Im

T−1‖F̂ ‖2 = m
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T−1/2‖F̂ ‖ =
√

m.

From [
1

IT
ÊÊ

′
]

F̂ = F̂ V IT

with
êi = M d(Xi(βi − β̂i) + Fγi + ǫi)

1

IT
ÊÊ

′
=

1

IT

I∑

i=1

(M d(Xi(βi − β̂i) + Fγi + ǫi))(M d(Xi(βi − β̂i) + Fγi + ǫi))
′

we obtain

F̂ V IT =
1

IT

I∑

i=1

[
M dXi(βi − β̂i)(βi − β̂i)

′Xi
′M d + M dFγi(βi − β̂i)

′Xi
′M d

+M dǫi(βi − β̂i)
′Xi

′M d + M dXi(βi − β̂i)γ
′
iF

′M d

+M dFγiγ
′
iF

′M d + M dǫiγ
′
iF

′M d + M dXi(βi − β̂i)ǫ
′
iM d

+M dFγiǫ
′
iM d + M dǫiǫ

′
iM d

]
F̂ (18)

where

1

IT

I∑

i=1

M dFγiγ
′
iF

′M dF̂ =
1

IT
M dF (Γ′Γ) F ′M dF̂

= F

(
Γ′Γ

I

) (
F ′F̂

T

)
− P dF

(
Γ′Γ

I

) (
F ′F̂

T

)

− F

(
Γ′Γ

I

)(
F ′P d

T

)
F̂ + P dF

(
Γ′Γ

I

)(
F ′P d

T

)
F̂ .

Then the expression (18) can be rewritten as

F̂ V IT − F

(
Γ′Γ

I

) (
F ′F̂

T

)
=

1

IT

I∑

i=1

M dXi(βi − β̂i)(βi − β̂i)
′Xi

′M dF̂

+
1

IT

I∑

i=1

M dFγi(βi − β̂i)
′Xi

′M dF̂ +
1

IT

I∑

i=1

M dǫi(βi − β̂i)
′Xi

′M dF̂

+
1

IT

I∑

i=1

M dXi(βi − β̂i)γ
′
iF

′M dF̂ − 1

IT

I∑

i=1

P dFγiγ
′
iF

′F̂

− 1

IT

I∑

i=1

Fγiγ
′
iF

′P dF̂ +
1

IT

I∑

i=1

P dFγiγ
′
iF

′P dF̂

+
1

IT

I∑

i=1

M dǫiγ
′
iF

′M dF̂ +
1

IT

I∑

i=1

M dXi(βi − β̂i)ǫ
′
iM dF̂

+
1

IT

I∑

i=1

M dFγiǫ
′
iM dF̂ +

1

IT

I∑

i=1

M dǫiǫ
′
iM dF̂ (19)
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From Proposition 1 in Bai (2003) the matrix
(

F
′
F̂

T

)
is invertible. Then multiplying each

side of (19) by
(

F
′
F̂

T

)−1 (
Γ
′
Γ

I

)−1

F̂ V IT

(
F ′F̂

T

)−1 (
Γ′Γ

I

)−1

− F = [T1 + T2 + . . . + T11]

(
F ′F̂

T

)−1 (
Γ′Γ

I

)−1

We have

T−1/2

∥∥∥∥∥∥
F̂ V IT

(
F ′F̂

T

)−1 (
Γ′Γ

I

)−1

− F

∥∥∥∥∥∥
≤ T−1/2 (‖T1‖ + . . . + ‖T11‖)

·

∥∥∥∥∥∥

(
F ′F̂

T

)−1 (
Γ′Γ

I

)−1

∥∥∥∥∥∥
(20)

Now we consider each term on the right. For the first term, given M d = I − P d

T−1/2

∥∥∥∥∥
1

IT

I∑

i=1

M dXi(βi − β̂i)(βi − β̂i)
′Xi

′M dF̂

∥∥∥∥∥ ≤

1

I

I∑

i=1

‖X i‖2

T
‖βi − β̂i‖2

‖F̂ ‖√
T

+
1

I

I∑

i=1

‖X i‖2

T
‖P d‖2‖βi − β̂i‖2

‖F̂ ‖√
T

− 1

I

I∑

i=1

‖X i‖2

T
‖P d‖‖βi − β̂i‖2

‖F̂ ‖√
T

− 1

I

I∑

i=1

‖X i‖2

T
‖P d‖‖βi − β̂i‖2

From the rank assumption (Assumption 2) and Theorem 1 in Pesaran (2006) it follows

that ‖β̂i − βi‖ = Op

(
1√
T

)
. Moreover given that ‖P d‖ =

√
n and T−1/2‖F̂ ‖2 =

√
m, we

obtain

T−1/2

∥∥∥∥∥
1

IT

I∑

i=1

M dXi(βi − β̂i)(βi − β̂i)
′Xi

′M dF̂

∥∥∥∥∥ ≤ Op(‖β̂i − βi‖2) = Op

(
1

T

)
.

Applying the same argument we can prove that the terms that depend on βi − β̂i are

each Op

(
‖β̂i − βi‖

)
= Op

(
1√
T

)
. Given Assumption 3 the terms T5, T6, T7 are op(1).

Let consider the following terms:

T−1/2

(
1

IT

I∑

i=1

M dǫiγ
′
iF

′F̂

)

T−1/2

(
1

IT

I∑

i=1

Fγiǫ
′
iM dF̂

)

T−1/2

(
1

IT

I∑

i=1

M dǫiǫ
′
iM dF̂

)



30

The first is

T−1/2

(
1

IT

I∑

i=1

M dǫiγ
′
iF

′F̂

)
= T−1/2

1

TI

∑

i

(
ǫiγ

′
iF

′F̂ − P dǫiγ
′
iF

′F̂
)

+ op(1)

T−1/2
1

TI

∥∥∥∥∥
∑

i

ǫiγ
′
iF

′F̂

∥∥∥∥∥ ≤ 1√
I



 1

T

∑

t

∥∥∥∥∥
1√
I

∑

i

ǫitγ
′
i

∥∥∥∥∥

2



1/2 ∥∥∥∥

1√
T

F

∥∥∥∥

∥∥∥∥
1√
T

F̂

∥∥∥∥

from Lemma 1.(ii) in Bai and Ng (2002)



 1

T

∑

t

∥∥∥∥∥
1√
I

∑

i

ǫitγ
′
i

∥∥∥∥∥

2



1/2

= Op(1)

T−1/2
1

TI

∥∥∥∥∥
∑

i

ǫiγ
′
iF

′F̂

∥∥∥∥∥ ≤ 1√
I
Op (1) Op(1)

√
m = Op

(
1√
I

)
.

Analogously for T−1/2 1

TI

∑
i

(
P dǫiγ

′
iF

′F̂
)

and T−1/2

(
1

IT

∑I
i=1

Fγiǫ
′
iM dF̂

)
. The last

term

T−1/2

(
1

IT

I∑

i=1

M dǫiǫ
′
iM dF̂

)
= T−1/2

1

IT

I∑

i=1

(
ǫiǫ

′
iF̂ + P dǫiǫ

′
iP dF̂ − P dǫiǫ

′
iF̂ − ǫiǫ

′
iP dF̂

)

now the first term

T−1/2
1

IT

∥∥∥∥∥

I∑

i=1

ǫiǫ
′
iF̂

∥∥∥∥∥ ≤ 1

T

∥∥∥∥∥
1

I

I∑

i=1

ǫiǫ
′
i

∥∥∥∥∥

∥∥∥∥
1√
T

F̂

∥∥∥∥ ≤ 1

IT

I∑

i=1

‖ǫiǫ
′
i‖ ·

∥∥∥∥
1√
T

F̂

∥∥∥∥

but from Assumption 1.3

p lim
I→∞

∥∥∥∥∥
1

I

I∑

i=1

ǫiǫ
′
i

∥∥∥∥∥ =

∥∥∥∥∥p lim
I→∞

1

I

I∑

i=1

ǫiǫ
′
i

∥∥∥∥∥ = ‖Ω‖ = λmax(Ω) = Op(1)

then
1

T

∥∥∥∥∥
1

I

I∑

i=1

ǫiǫ
′
i

∥∥∥∥∥ = Op

(
1

T

)

analogously for the remaining terms. Thus we obtain that,

T−1/2

∥∥∥∥∥∥
F̂ V IT

(
F ′F̂

T

)−1 (
Γ′Γ

I

)−1

− F

∥∥∥∥∥∥
= Op

(
1/ min

(√
T ,

√
I
))

.

Assuming that V IT is invertible the left side of 20 can be written as

T−1/2‖F̂ − FG‖ = Op(1/ min(
√

I,
√

T ))

where G = (Γ′Γ/I)(F ′F̂ /T )V −1

IT , taking the squares on each side gives the result.
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C Appendix

In section 6 the estimation procedure of individual and observed and unobserved common
factors effects is based on the estimate of the latter by principal components. We use
simulations to assess the adequacy of the asymptotic result of proposition 6.2 in approx-
imating the finite sample properties of the unobserved factors. We assume the following
data generating process (DGP):

yit = αi1 + αi2d2t + βi1x1it + βi2x2it + γift + ǫit (21)

x1it = a11 + a21d2t + γ1ft + v1it (22)

x2it = a12 + a22d2t + γ2ft + v2it (23)

for i = 1, . . . , I, and t = 1, . . . , T . This DGP considers only two individual specific
components, x1it and x2it, two observed common factors, d1t and d2t, and one unobserved
common factor ft, with E(ftd2t) = 0, ∀t. βi1 and βi2 are generated by

βij = 1 + ηij for j = 1, 2 and ηij ∼ IIDN(0, 0.04)

and fixed across replications. (αi1, αi2)
′ ∼ IIDN(0, 0.04 × I2). The parameters

A =

[
a11 a21

a12 a22

]

and

Γ =

[
γ1

γ2

]

are generated as vec(A) ∼ IIDN(0, 0.5 × I4), and IIDN(0, 0.5 × I2) respectively, and
are not changed across replications.
The common factors and the individual specific errors are generated as independent sta-
tionary AR(1) processes with zero means and unit variances:

d1t = 1

d2t = ρdd2,t−1 + ηdt, t = −49, . . . 1, . . . , T.

d2,−50 = 0

ft = ρfft−1 + ηft, t = −49, . . . 1, . . . , T.

f−50 = 0

for orthogonality between dt and ft, i.e. E[ftd2t] = 0, ∀t, we generate

[
ηdt

ηft

]
∼ IIDN

([
0
0

]
,

[
1 − ρ2

d 0
0 1 − ρ2

f

])
, ρd = 0.5, ρf = 0.5

vjit = ρvij
vji,t−1 + νijt, t = −49, . . . 1, . . . , T.

νijt ∼ IIDN(0, 1 − ρ2

vij
), vji,−50 = 0 j = 1, 2
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and
ρvij

∼ IIDU (0.05, 0.95) , j = 1, 2.

The errors of yit are generated as:

ǫit = σiζit for i = 1, . . . , I

σ2

i ∼ IIDU (0.5, 1)

ζit ∼ IIDN (0, 1)

After having generated the data according to the DGP described above, first, we compute
the CCE estimators of βi in (21) and the resulting residuals, as computed in (12). Second,
we estimate the factor as the first principal component of the estimated covariance matrix
of residuals. Like in Bai (2003) to evaluate the estimate of a transformation of ft, f̂t,

we compute the correlation coefficient between {ft}T
t=1

and {f̂t}T
t=1

for different cross-
sectional and times series dimensions, for each Monte Carlo simulation. The table below
reports the average correlation coefficient over 2000 repetitions for combinations of T =
20, 30, 50, 100, 200, and I = 30, 100, 200. The results suggest that the factor estimates are
highly correlated with the unobserved factor. This seems to confirm the results in Bai
(2003), obtained in a different context, that is as

√
T/I → 0 the estimation error in the

factor estimates is negligible.

Average correlation coefficients between ft and f̂t

I,T 20 30 50 100 200
30 0.9442 0.9608 0.9722 0.9806 0.9850

100 0.9565 0.9688 0.9797 0.9884 0.9925
200 0.9578 0.9716 0.9827 0.9901 0.9943
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Small Sample Properties of Swamy estimator

Bias Rmse
I T α1 α2 β1 β2 α1 α2 β1 β2

30 20 -0.007 0.004 0.001 0.000 0.402 0.310 0.059 0.059
100 20 0.009 -0.012 -0.001 -0.001 0.384 0.305 0.035 0.035
200 20 -0.008 0.007 0.000 0.000 0.386 0.301 0.023 0.023
30 30 -0.002 -0.007 0.000 -0.001 0.329 0.253 0.041 0.039
100 30 0.002 0.000 0.001 0.000 0.322 0.246 0.022 0.023
200 30 -0.005 -0.005 -0.001 0.001 0.315 0.241 0.016 0.016
30 50 -0.001 -0.003 0.001 -0.001 0.244 0.187 0.028 0.028
100 50 0.007 -0.001 0.000 0.000 0.241 0.189 0.015 0.015
200 50 -0.002 0.004 -0.001 0.000 0.248 0.182 0.010 0.011
30 100 0.004 -0.003 0.000 0.000 0.177 0.137 0.018 0.018
100 100 0.007 -0.001 0.000 0.000 0.175 0.130 0.010 0.010
200 100 0.004 0.000 0.000 0.000 0.171 0.129 0.007 0.007
30 200 0.004 -0.002 0.000 0.000 0.121 0.097 0.012 0.012
100 200 0.001 -0.002 0.000 0.000 0.122 0.094 0.007 0.007
200 200 0.004 0.002 0.000 0.000 0.118 0.092 0.005 0.005

We next compute the bias and the Root mean square error (Rmse) from Monte Carlo
repetitions of the Swamy estimates of αij, i = 1, . . . , I, j = 1, 2 and βij, i = 1, . . . , I, j =
1, 2. The results reported in the table below show that the bias and Rmse of the βij are
fairly small, while the Rmse of the αij estimates are larger.
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Table 1: Average Adjusted R2 by rating, sector and maturity bucket

Specification
1st 2nd 3rd

Rating
AAA 0.242 0.190 0.266
AA 0.209 0.366 0.478
A 0.161 0.378 0.463
BBB 0.171 0.307 0.414

Industrial Sector
Financials 0.172 0.394 0.505
Industrials 0.177 0.338 0.435
Utilities 0.182 0.295 0.35

Maturity Bucket
Short (1-4 years) 0.193 0.402 0.487
Medium (4-10 years) 0.183 0.323 0.438
Long (+10 years) 0.142 0.352 0.44

Overall 0.176 0.354 0.451

Table 1 reports the average adjusted R2 by rating, sector and maturity bucket for the three
specifications and overall.

Table 2: Principal Components Analysis

Panel A
Cumulative % explained by PC

1st Component 1st and 2nd Component
First Specification (eq. 7) 64.9 83.2
Second Specification (eq. 8) 56.4 82.0
Third Specification 53.8 73.7

Panel B
Specification A 63.8 79.1
Specification B 45.6 73.0

Panel A reports the cumulative percentage of the total variation of the residuals, grouped
for maturity buckets and industrial sectors, explained by the first two Principal Com-
ponents (see section 5). By the third specification we mean the specification in eq.(8)
augmented by the inclusion of IBOXX triple B index.
.
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Table 3: Cross-section dependence

Panel A

% PC1 for y 44.53%
% PC2 for y 17.92%

Panel B

average correlation
Delta credit spread 0.40
OLS residuals 0.36
Fixed Effects residuals 0.12
CD stat 55.40 (0.00)
Random Coefficient model (specification B in table 10) 0.07

Table 3 reports the proportion of delta credit spread variability explained by the j-th prin-
cipal component, PCj, the average cross-section correlation for delta credit spread and
fitted residuals. The statistics in Panel B refers to the residuals of the third specification
(eq.(8) plus IBOXX index). CD Stat is the Pesaran (2004) Cross-Section Dependence
Statistic. P-value appears in parenthesis.
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Table 4: Description and Predicted effects of the explanatory variables

Variable Description Predicted sign Remarks

Individual specific regressors

cs Beginning of month credit spread -

Avgret Average of daily excess return over preceding 180 days -

Stdret Standard Deviation of daily excess return over preceding 180 days +

rat Rating + We assign a value to each rating.
From 10 (AAA) to 1 (BBB-)

Dcsrat Delta credit spread for rating +

Dcsect Delta credit spread for sector +

Common factors

5dss 5-year delta swap spread +

Nofissue monthly variation in number of issues included in the IBOXX index -

10Gov 10 year German government benchmark monthly variation (mv) -

Slope German government curve slope mv -

Conv German government curve convexity mv

Upg monthly variation in upgraded Euro corporate bonds -

Downg monthly variation in downgraded Euro corporate bonds +

Mseuro Morgan Stanley EURO monthly return -
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Table 5: Price Estimation Error based on Extended Nelson-Siegel method

LEHMAN BROTHERS SOCIETE TEL FRANCAIS
Coupon 5.47 4.375
Settlement date 31-Aug-05 31-Aug-05
Redemption date 31-Jul-07 12-Nov-10
Redemption value 100 100
Rating A A
Observed redemption yield 3.11% 2.99%
Observed price 104.506 106.322
Estimated price 104.190 105.565
Price error 32 76

We estimate the price error for two corporate bonds included in the IBOXX index. The
price error is expressed in cents for 100 euros.

Table 6: Summary Statistics

Mean Std Dev Min Max
our sample -1.58 22.61 -492.20 465.70

Credit spread change
full sample 0.26 44.02 -740.20 2529.80
our sample 5.55 0.74 3.50 7.25

Coupon (%)
full sample 5.37 0.92 2.13 9.75
our sample 5.21 2.28 0.94 14.07

Years to maturity
full sample 5.66 3.45 0.92 29.94

Equity Volatility 1.98% 0.62% 0.00% 6.59%
Equity Excess Return -0.10% 0.36% -1.95% 1.27%

Table 6 reports summary statistics on the corporate bonds both in our sample and for all
the nonputable and noncallable corporate bonds included in the IBOXX index. The credit
spread changes are measured in basis points.
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Table 7: Sample composition for rating and sector

Panel A

Rating % of our sample % of full sample
AAA 1.80% 5.42%
AA+ 0.37% 1.39%
AA 3.35% 5.29%
AA- 13.37% 12.46%
A+ 16.35% 15.25%
A 12.88% 14.99%
A- 19.81% 15.00%
BBB+ 14.58% 12.67%
BBB 12.87% 12.02%
BBB- 4.63% 5.50%

Panel B

Industrial Sector % of sample % of full sample
Financials 38.16% 37.92%
Industrials 49.76% 50.80%
Utilities 12.08% 11.28%

Table 7 reports summary statistics on the corporate bonds both in our sample and for all
the nonputable and noncallable corporate bonds included in the IBOXX index.
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Table 8: Summary Statistics

Panel A

Industry % of sample % of full sample
Automobiles 9.18% 10.60%
Banks 27.29% 23.66%
Basic-Resources 0.97% 1.31%
Chemicals 1.73% 2.15%
Construction 1.45% 2.38%
Cyclical-Goods & Services 0.97% 1.18%
Energy 2.42% 2.84%
Financial-Services 7.98% 11.45%
Food & Beverage 1.93% 2.19%
Health-Care 1.45% 0.89%
Industrial-Goods & Services 6.73% 6.95%
Insurance 2.90% 2.81%
Media 2.42% 2.10%
Retail 6.84% 6.77%
Telecommunications 13.53% 11.19%
Travel & Leisure 0.16% 0.25%
Utilities 12.08% 11.28%

Panel B

Maturity Bucket % of sample % of full sample
Short (1-4 years) 35.53% 34.84%
Medium (4-10 years) 62.08% 60.06%
Long (+10 years) 2.39% 5.10%

Table 8 reports summary statistics on the corporate bonds both in our sample and for all
the nonputable and the noncallable corporate bonds included in the IBOXX index.



40

Table 9: Information criteria for common factors

# of factors ICp1 ICp2 ICp3

1 8.06 8.06 8.04
2 8.12 8.13 8.10
3 8.23 8.24 8.19
4 8.40 8.42 8.35
5 8.27 8.30 8.21
6 8.34 8.37 8.27
7 8.51 8.54 8.42
8 8.59 8.63 8.50

Table 9 reports the information criteria of Bai and Ng (2002) for detecting the number of
common factors in a factor model.
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Table 10: Regression Results

A B C D

Means of estimated coefficients

cons -16.381 40.899 -9.757 20.122
(-1.355) (1.424) (-0.880) (1.030)

cs -0.185 -0.407 -0.155 -0.256
(-12.382) (-20.327) (-12.090) (-17.650)

avgret -925.144 863.641 -968.940 -895.084
(-1.837) (0.838) (-2.130) (-1.920)

stdret 1228.086 -3285.071 819.269 -1049.308
(2.035) (-1.217) (1.580) (-0.700)

dcsrat 0.742 0.641 0.708 0.700
(7.151) (9.144) (8.120) (8.500)

5dss -3.522 1.171
(-0.833) (0.246)

nofissue -46.669 -11.627
(-1.842) (-0.354)

iret2 11.982 57.065
(0.326) (1.541)

10gov 4.347 15.696 2.442 2.441
(1.685) (4.412) (1.090) (1.260)

slope -6.389 -6.793 -5.000 -8.419
(-1.762) (-1.712) (-1.590) (-2.630)

conv -18.061 -21.375 -14.758 -20.829
(-2.094) (-2.379) (-1.370) (-2.150)

upg 0.226 -2.069 0.127 -1.898
(0.775) (-3.607) (0.460) (-3.390)

downg 0.438 3.781 0.737 2.694
(2.400) (4.695) (2.590) (4.090)

mseuro -15.746 -38.183 -18.993 -30.321
(-1.678) (-4.484) (-2.060) (-3.670)

factor -6.927 -4.794
(-5.204) (-4.340)

Wald test 417.32 718.86 400.26 691.98
(0) (0) (0) (0)

Test parameter constancy 5858.91 6084.01 5694.35 7368.95
(0) (0) (0) (0)

Pesaran-Yamagata Test 8.47 10.30 9.82 11.48
(0) (0) (0) (0)

Observations 6831 6831 6831 6831

Table 10 reports the estimation results for four specifications with random coefficients. The sec-

ond column of each specification includes the estimated common factor. t statistics for parameter

estimates and p-value for tests appear in parentheses.
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Table 11: Average Partial Correlation of delta credit spreads with the estimated
factor

Rating average partial correlation
AAA 0.30
AA 0.36
A 0.40
BBB 0.49

Table 11 reports the average correlation of delta credit spreads with the estimated factor,
controlling for the explanatory variables contained in Table 10 specification A.

Figure 1: Euro Government Bonds. Market prices and estimated prices
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Figure 2: Euro Corporate Bonds. Market prices and estimated prices for A rated bonds
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