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Abstract

Casual empiricism suggests higher quality is associated with greater variety.

However, recent theoretical and empirical research has either not considered

this link, or has been unable to establish unambiguous predictions about the

relationship between quality and variety. In this paper we develop a sim-

ple model, which predicts that for low qualities variety should be positively

correlated with quality and we establish conditions under which variety will

either increase or decrease with quality at higher quality levels. The monop-

olist uses variety to increase the profitability of price discrimination across

product lines of different qualities, by increasing the likelihood consumers

choose high price products among products yielding the same utility. We

show that the number of varieties offered by the monopolist is greater than

the social optimum. The predictions of the model are supported by an anal-

ysis of the market for cars. A wide range of car manufacturers are found to

offer a hump-shaped distribution of varieties.

Keywords and Phrases: Price discrimination, product variety, bounded

rationality, cars.
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1 Introduction

A casual look at the shelves of a supermarket or at producer web sites

reveals that many goods come in multiple “flavors” as part of a product line.

Moreover, higher quality products often have a larger number of flavors.

Branded products almost always have more varieties than generics. Further

up the quality ladder, there are many more varieties of the premium Pickwick

tea than of a basic Lipton brand. We demonstrate in this paper that this also

holds for most of the product lines offered by car manufacturers. There is

an extensive theoretical literature examining the interaction between quality

and variety in imperfectly competitive markets where consumers’ tastes are

differentiated along one vertical dimension, quality, and one horizontal di-

mension, flavor.1 In such models the correlation between quality and variety

depends on the way they enter the consumer’s utility function, their joint dis-

tribution, and the market structure. Therefore, it is impossible to come up

with unambiguous predictions suitable for estimation or testing. Lancaster

(1990) provides a review of such literature. One important conclusion that

he draws from his analysis is the number of varieties produced by a monop-

olist is less than optimal.2 We show that this conclusion can be overridden

if there is vertical heterogeneity and consumers are, to a very small degree,

boundedly rational, i.e. consumers are nearly rational.

1See, for example, Ansari, Economides, and Steckel (1998), Neven and Thisse (1990),
and Shugan (1989).

2For reasons similar to those of a monopolist producing a lower than optimal quantity.
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Recent more empirically oriented work by Draganska and Jain (2005)

models varieties, as part of product-lines, as horizontal differentiation but

does not explicitly consider vertical differentiation highlighted in models of

price discrimination. As a consequence, this work does not analyse any link

between quality and variety.

In this paper we develop a probabilistic choice model that predicts, first,

that for low qualities variety should be positively correlated with quality, and,

second, that for the higher quality levels the number of varieties should either

increase more than exponentially with quality or increase and then decrease

with quality. In the model, a second degree price-discriminating monopolist

offers a menu of products of increasing quality. Consumers, modelled as car-

ing about quality, but indifferent between flavors of the same quality, respond

by randomizing across products that offer the same utility. The monopolist

increases the profitability of price discrimination by offering a greater number

of flavors at higher qualities. This increases both the likelihood consumers

choose high-price products when randomizing and the expected profits. How-

ever, if at high quality levels the markets become sufficiently thin, the profit

maximizing number of varieties will fall again. In this case, the distribution

of varieties follows a hump shape.

These predictions are tested using unusually detailed data from the Aus-

tralian car market. We find that the number of varieties increases over a

substantial range of prices at the market level and at the make level. How-

ever, we do not find that the rate of increase is greater than exponential.
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Instead we uncover a previously unidentified empirical regularity that the

distribution of varieties offered by firms is hump-shaped. This is the case

across a wide range of car makers.

One might object that most consumer product markets, including cars,

are oligopolistic rather than monopolistic. However, the model can be gen-

eralized to this case along the lines of Champsaur and Rochet (1989). It

can be shown that under some reasonable conditions there exists an equi-

librium, where each producer specializes on a particular range of qualities.

Qualitatively, the outcome is similar to the monopoly outcome. Proliferation

of varieties in the oligopolistic case will be due to two effects: competition

between the producers and price discrimination between consumers of dif-

ferent types who buy from the same producer. We find it interesting from

the theoretical perspective that the second effect alone can lead to strong

excessive flavor proliferation even if there is no preference for flavor and the

degree of irrationality is small.

This paper makes several contributions to the literature. First, the model

provides a new justification for observing different types of correlations be-

tween quality and variety. These correlations result from firms attempting

to price discriminate rather than, as assumed earlier, solely from the distri-

bution of preferences or costs — hypotheses that are notoriously difficult to

test. Second, this paper also contributes to the literature on the modelling

of new goods. Recent work, such as Berry and Pakes (2007), has pointed

out the limitations of the standard random-utility model in handling new
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products. The model presented in this paper provides a very simple frame-

work within which new products can be introduced. Third, the generality of

the hump-shaped distribution of varieties offered within the car market sug-

gests similar distributions of product varieties may occur in other markets.

It also might help to distinguish between different sources of probabilistic

choice (e.g. unobserved heterogeneity, bounded rationality) but more work

is needed before attempting such differentiation in data.

The paper is organized in the following way. In Section 2 we provide some

preliminary evidence to demonstrate a link between quality and variety for

the car market. In Section 3 we introduce the simplest possible probabilis-

tic choice model of consumer behavior with which to analyze the effect of

increasing product variety on the profitability of price discrimination – the

Luce model (Luce, 1959) of bounded rationality. The section closes with in-

troducing the concept of a nearly rational consumer. In addition, we include

Appendix 2 that reviews the similarities between this model, and other mod-

els of probabilistic choice, such as the random-utility model, and explains

how a bounded rationality model provides a simpler framework to analyze

the effects of introducing new varieties. In Section 4 we demonstrate that

in a world populated by nearly rational consumers, the profitability of price

discrimination will be lower compared with that predicted by the standard

two-type screening model with fully rational consumers. In Section 5 we

propose a way to overcome this problem by introducing multiple flavors for

each quality level. In Section 6 we extend the model of Section 5 to multiple
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types and generate predictions about the relationship between quality and

variety. Section 7 empirically analyzes these predictions using data from the

Australian car market. Section 8 concludes.

2 Model proliferation in the car market

In this section, we provide some preliminary evidence on flavor prolifera-

tion from the car market. A comparison of automobiles classified into three

groups, Small, Medium and Luxury, ascending in quality, demonstrates there

are relatively more types of Luxury cars on offer, compared with Medium

cars, despite sales of luxury cars being just one fifth those of medium and

small cars. We then argue that this pattern is not obviously explained by

differences in profitability in the different segments of the market.

Our data is composed of the price and characteristics for all cars sold

as new in Australia in 1998, and registrations (sales) for cars, aggregated

by model or make, for Australia in 1998.3 Both datasets are compiled by a

private data-collection firm, Glass’s Guide.

Cars in the Glass’s data set are first classified by make e.g. Ford or

Toyota. Within each make there are models, e.g. (Ford) Falcon or (Toyota)

Camry. Within each model there are variants. For the Ford Falcon the

variant may have a name or just an initial, e.g. Futura, GL, Gli. The

finest model classification code classifies some cars by series. Finally, within

each of these groups, there may be multiple cars - each car with slightly

3Further details on the data are provided in Section 7.
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different characteristics. Our dataset of prices and characteristics contains

one observation for each distinct car offered for sale.

Though we will do a more refined analysis of this dataset in Section 7,

for now we consider, in Table 1, averages for three groups of models of cars,

as classified by Glass’s Guide, representing three different levels of quality:

Small, Medium and Luxury.

The first three columns of Table 1 summarize, for each group, the average

number of features included with the car, average price, and total registra-

tions (or sales). The first two columns suggest the ordering is consistent with

ranking by quality. The third column demonstrates that the registrations for

Luxury cars are just one fifth of those for Small and Medium cars.

The last four columns report the number of makes, models, variants and

observations for each class. Note that the Luxury class features the largest

number of makes, models, and variants. It also makes up 40% of the obser-

vations for new cars, despite making up less than 10% of registrations. The

Small class also has the next largest number of makes, models and variants,

but over five times the number of registrations for Luxury cars.

The second panel of Table 1 confirms what is suggested in the first panel.

The first four columns report the number of registrations per Make, Model,

Variant and Observation. This number is consistently lowest for the Luxury

class. The last three columns report the number of Models, Variants and

Observations per Make. The number of Models and Variants per Make is

highest for Luxury cars, again consistent with our focus on a positive rela-
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tionship between quality and variety.

A simple model of product variety is that multiple varieties are offered

if it is profitable to do so. A simple way to think about profitability is

that it is determined by the markup chargeable, the size of the market and

the development costs. Hence, one reason we observe more Luxury cars than

Medium cars is that it is more profitable to offer more types of cars. The sort

of argument sometimes presented to us to justify this is that purchasers of

Luxury cars have more distinctive preferences and can support more varieties.

However, it seems unlikely, given the number of medium cars sold, that

this explains why there are so many varieties of luxury cars compared with

medium cars. With a market five times the size of that for luxury cars, there

would seem to be scope for consumers in this market to also have distinct

preferences and more than sufficient demand to support at least as many

varieties rather than half as many.

The limited estimates of markups on cars, from Berry et al. (1995), are

also not consistent with the simple profitability story. Although the markup

on the most expensive model they report, the BMW 735i, is much greater

than the markups on other cars, the BMW 735i also has lower estimated

variable profits than most of the Medium and Small cars. However, neither

the profitability story, based on the results of Berry et al. (1995) or our

proposed model explains the proliferation of models for small cars. We will

see in the empirical analysis in Section 7 that this is a product of aggregation.
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3 Consumer Behavior

In this section we develop a probabilistic choice model of consumer behav-

ior to analyze the implications of introducing new varieties of a differentiated

product. The seminal book of Anderson, de Palma and Thisse (1992) sum-

marizes four types of models that lead to probabilistic choice. Drawing on

their work, we argue that under reasonable conditions, one can move freely

between these different interpretations of probabilistic choice models for a

fixed set of alternatives (see Appendix 2). However, these models do differ in

the simplicity of modelling the change in probabilities if new alternatives are

introduced. The main property that drives our results is that adding new

varieties leads to a strict decrease in the probabilities of choosing all previ-

ously available varieties. As we are agnostic about the source of probabilistic

choice, for expositional simplicity we use the probabilistic choice model that

provides the simplest framework which incorporates this feature. Note that

this property is only a little stronger than the one that necessarily arises in

random-utility models which require that the probabilities of existing vari-

eties are non-increasing if new varieties are added.

The modelling is considerably simplified if choices between varieties de-

pend solely on the utilities associated with each variety. As we argue in

Appendix 2, while the random-utility and address models of product differ-

entiation (with suitable restrictions) could be used to analyse our problem,

this would significantly complicate the analysis as the choice probabilities in
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these models depend on the distribution of random shocks as well as util-

ity. Instead, we work with the Luce model of bounded rationality which

has the property we require and is particularly simple to work with. In

the Luce model adding new varieties reduces probabilities of choosing ex-

isting varieties, and the probabilities depend solely on the utilities from the

different alternatives. In the second subsection we introduce a concept of

near-rationality that specifies the very small degree of bounded rationality

required to generate our results.

3.1 The Luce model

In this subsection we present a simple probabilistic choice model, Luce’s

(1959) logit model, that incorporates the main property required for our

results. As we argue in Appendix 2, this model can be derived from a ran-

dom utility model, or a corresponding Markovian learning model, or using

Machina’s approach (see, Rockafellar (1970), Anderson, de Palma, and Thisse

(1992), Fudenberg and Levine (1998)). We stress that the details of the prob-

abilistic choice model used are not important for our results. The property

required for our main theoretical results is that adding a new alternative

strictly decreases the choice probabilities of all previously accessible alter-

natives. The Luce model incorporates this feature in a particularly clear

way. Furthermore, it has the simplifying feature that the choice probabili-

ties depend solely on the utilities of the different alternatives. The choice
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probabilities have the following form:

pi =
exp(ui/λ)

n
∑

j=1

exp(uj/λ)

. (1)

Note that according to the Luce model any two alternatives that have the

same utility are selected with the same probability. Assuming identical prob-

abilities makes the subsequent analysis relatively simple. Relaxing this as-

sumption only changes the results quantitatively, not qualitatively. In this

model parameter λ, which can take values from zero to infinity, can be

thought of as representing the degree of irrationality of the economic agent.

If λ = 0 then

pi =

{

1/k, if ui = max{u1, ....un}
0, otherwise

, (2)

where integer k is the cardinality of the set of the utility maximizers. Note

that this is the first sense in which consumers randomize, even if fully rational,

and that the probability of each choice falls as the number of optimal varieties

increases. It is also important to note that this is the main feature of the

Luce model that we use for our results. Other features of the model, which

have been recently criticised, are not essential for our results.

If λ is greater than zero, then the probability of the consumer choosing

a product other than their optimal product is positive. This is the second

sense in which the consumers randomize across products. For λ < ∞ the

probability of choosing a product increases with the utility provided. At the

extreme case where λ → ∞ the choice probabilities converge to 1/n, i.e. the
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choice becomes totally random and independent of the utility level. Again,

the probability of choosing each product falls as the number of varieties

increases. Note that the logit formulation is not required for λ to play this

role; for example, a probit formulation is also feasible.

3.2 A concept of a nearly rational consumer

In this subsection we introduce the concept of a nearly rational consumer

— which summarizes the relatively minor degree of irrationality (or small

value of λ) required to yield our results. Assume that the probability of

different choices by the consumer is given by a continuously differentiable

function:

p(·) : Rn × R+ → ∆n, (3)

such that ui = uj implies pi(u, λ) = pj(u, λ) and p(u, 0) is given by (2). Luce

probabilities (1) satisfy these properties though the exact form of function

p(·, λ) is not important for our purposes.

Let M be the set of the utility maximizers, i.e.

M = {ui : ui = max{u1, ....un}}. (4)

Take any uj ∈ M and define

∆ = min
uk/∈M

(uj − uk). (5)

Definition 1 An economic agent whose choice probabilities are given by (3)

is called nearly rational if λ << ∆.
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In words, the definition says that an economic agent is nearly rational

if her irrationality parameter λ is much smaller (sign << reads “much

smaller”) than the difference in utility between the optimal and the next

to the optimal choice. The exact meaning of “much smaller” depends on the

precision with which an econometrician wants to measure relative frequencies

of different choices.

In the standard model of price discrimination with full rationality in-

finitely small price changes can be used to get each type of consumer to

purchase the product designed for them. Introducing λ > 0 mutes the effect

of price changes on the probability of choice, but we require only a small

degree of bounded rationality to obtain our results.

4 The monopolistic screening model

Let us briefly review the basic screening model under full rationality4 and

discuss the consequences of offering the second best contract to the nearly

rational consumers. Assume a risk neutral monopolist produces a unit of

good with quality x at a cost C(x), where C(·) is a strictly convex, twice

differentiable function. Preferences of a consumer, of type θ, over a unit of

good with quality x are given by a twice continuously differentiable utility

function u(θ, x). Preferences of the consumer are quasilinear in money:

v(θ, x, m) = u(θ, x) + m.

4See Mas-Colell, Whinston and Green (1995), Section 13D, for details.

13



Each consumer wants to buy at most one unit of the monopolist’s goods.

Type θ is private information of the consumer. If the consumer does not

purchase a good from the monopolist, she receives utility u0(θ). For simplicity

assume it does not depend on type and normalize it to be zero. Finally,

assume

u1 > 0, u2 > 0, u12 > 0.

(Here ui is the derivative of u w. r. t. the ith argument, u12 is the cross

partial derivative with respect to θ and x). The last of these conditions is

known as the Spence-Mirrlees condition or the single-crossing property.

Let us assume that θ ∈ {θL, θH}. Then the monopolist solves:

max pH(tH −C(xH)) + (1 − pH)(tL − C(xL)),

where pH = Pr(θ = θH), subject to the following constraints:

u(xL, θL) − tL ≥ 0 (6)

u(xL, θL) − tL ≥ u(xH, θL) − tH (7)

u(xH, θH) − tH ≥ 0 (8)

u(xH, θH) − tH ≥ u(xL, θH) − tL. (9)

Constraints (6) and (8) state that both types would like to participate in

the contract and are known as the individual rationality constraints, and

the constraints (7) and (9), known as the incentive compatibility constraints,

ensure that no one would like to choose the contract meant for the other

type. The basic result is Stole’s constraint reduction theorem (Stole, 2000)

14



that states that at the optimal allocation only two of these constraints bind:

(6) and (9): that is the lowest type gets her reservation utility (in this case,

zero) and the high type gets the information rent, that is just enough to

prevent her from pretending to be the low type. This implies that

tL = u(xL, θL) (10)

tH = u(xH, θH) − u(xL, θH) + u(xL, θL). (11)

Therefore, the monopolist’s solves

max pH(u(xH, θH)−u(xL, θH)+u(xL, θL)−C(xH))+(1−pH)(u(xL, θL)−C(xL)).

The first order conditions are

u1(xH, θH) = C ′(xH) (12)

u1(xL, θL) − C ′(xL) =
pH

1 − pH
(u1(xL, θH) − u1(xL, θL)) > 0. (13)

Note that xH is at the efficient level (no distortions at the top) and xL is

below the efficient level. At these prices the high value consumers are indif-

ferent between the two products, and the low value consumers are indifferent

between purchasing the low quality product and not purchasing at all.

To place a bound on the degree of irrationality required, according to

equation (5), we consider the gaps in utility between the most preferred

and next preferred products for each type of consumer. For type θH, the

gap in utility between its preferred and next preferred option, equal to their

information rent, is:

I21 = u(xH, θH) − tH = u(xL, θH) − tL = u(xL, θH) − u(xL, θL).
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For type L, who is indifferent between purchasing xL and not purchasing,

the gap in utility to its next preferred option is:

∆IC = tH − u(xH, θL), (14)

which also measures the slack in the incentive compatibility condition for the

low type. Hence we can determine

∆ = min(I21, ∆IC). (15)

Let us call the contract (10)-(13) the second best contract. Assume that

the monopolist offers the second best contract to the nearly rational con-

sumers. By the definition of near rationality, the irrationality parameter λ

is much less than both the high type information rent and the slack in the

low type incentive compatibility constraint. Therefore, the fraction of high

type consumers who decide not to participate or the fraction of the low type

consumers who decide to choose the high quality product is negligibly small.

On the other hand, as a result of randomizing between equally preferred

alternatives, similar to that described in equation (2), approximately half of

the low type consumers decide to stay out of the market and approximately

half of the high type consumers purchase the low quality product. This leads

to a drop in the monopolist’s profits which is higher order of magnitude than

λ. If consumers were fully rational, then infinitely small price changes deal

with this problem but, as we have argued, infinitely small price changes will

not be sufficient if consumers are near-rational. Instead the monopolist must
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alter prices to violate the binding constraints by some finite amount.5 This

reduces the profits earned from both high and low types.

The alternative to a significant price cut is for the monopolist to create

multiple flavors for each quality level. At each quality level, flavors differ

only in ways that do not affect the utility from consuming the product. In

other words, although flavors are products that are horizontally differenti-

ated, consumers are indifferent between differentiated products of the same

quality. Only vertical differences matter.6 To see how the flavors are going to

help, assume the monopolist sells m flavors of the high quality product and

one flavor of the low quality product. Now high type consumers are faced

with (m+1) choices, each of which provides them with the same utility. The

probability that the high type consumer purchases the high quality product

is m/(m+1). If the marginal cost of providing a new flavor is sufficiently low

this way of ensuring participation may be preferable to leaving extra rents

to the consumers. From the social point of view this is, however, a complete

waste since consumers do not have preferences for flavor. In the next section

we are going to investigate the idea of flavor proliferation in more detail.

5Basov(2008) shows that the required change in tariffs in an optimal contract is of the
order of λ/lnλ, which corresponds to the probability of making a mistake, λ.

6This assumption has some empirical support. Indeed, Draganska and Jain (2005a)
report that preferences for quality are much stronger than those for flavor.
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5 The flavor proliferation model

In this section we analyze how flavor proliferation increases the profitabil-

ity of price discrimination by overcoming the problem of consumers random-

izing away from the most profitable product for their type. We demonstrate,

for the two type case, that the number of flavors increases with the quality

of the product.7 Indeed, the effect is rather strong. If the cost of adding

a new flavor converges to zero the ratio of the numbers of flavors for adja-

cent quality levels converges to infinity. Therefore, it is likely that this effect

will override any supplementary pattern, which may emerge from the direct

preferences for flavor.

If the monopolist offers n flavors of low quality and m flavors of high qual-

ity, the low quality good will be purchased by a fraction qL of the consumers,

where

qL = (1 − pH)
n

n + 1
+ pH

n

n + m
, (16)

while the high quality good will be purchased by a fraction qH of the con-

sumers, where

qH = pH
m

n + m
. (17)

Before proceeding we note three assumptions. First, we assume that the

marginal cost of adding a new flavor is c > 0 and does not depend on the

quality. Second, we assume the utility function for each type is the prod-

7In principle, the monopolist can alter qualities, prices, and the number of flavors.
However, under our parametric restrictions (to be specified below), the optimal prices and
qualities are close enough to those optimal for rational consumers to neglect the differences.
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uct of the quality of the good consumed and the type, θ. Finally, under

conditions specified at equation (30), we can use the optimal qualities for

rational consumers as an approximation for those optimal for nearly rational

consumers.8 Therefore, the monopolist solves:

max
m,n

((tH −C(xH))qH + (tL − C(xL))qL − c(n + m)). (18)

Let us introduce the following notation:

πL = tL − C(xL), πH = tH − C(xH), pL = 1 − pH (19)

i.e. πi are the profits per consumer the monopolist can potentially earn on

type i if all consumers of this type select the contract designed for them.

Note that πH − πL > 0. Indeed,

πH − πL = tH − tL −C(xH) + C(xL). (20)

Using expressions for the tariffs, based on our assumed utility function:

πH − πL = θH(xH − xL) −C(xH) + C(xL) + θLxL. (21)

Finally, since the optimal quality is efficient for the top type, C ′(xH) = θH

and strict convexity of the cost implies:

πH − πL = C ′(xH)(xH − xL) − C(xH) + C(xL) + θLxL > 0. (22)

8Basov (2008) demonstrates the difference in the optimal qualities for the two cases is
at most of order ( λ

lnλ
)2 which, under these conditions, is very small. The differences in

optimal tariffs in the two cases is O( λ

lnλ
).
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The monopolist’s problem can be rewritten as:

max
m,n

(pLπL
n

n + 1
+ pHπH

m

n + m
+ pHπL

n

n + m
− c(n + m)). (23)

Ignoring the constraint that m and n should be integers, one can write the

first order conditions:

{

pLπL

(n+1)2
− pH(πH−πL)m

(n+m)2
= c

pH(πH−πL)n
(n+m)2

= c
. (24)

It is easy to observe that for small values of c

n =
p

2/3
L π

2/3
L

p
1/3
H (πH − πL)1/3c1/3

+ O(c1/3) (25)

m =
p

1/3
L p

1/3
H π

1/3
L (πH − πL)1/3

c2/3
+ O(c1/3). (26)

As c → 0 both n and m go to infinity, but in a such way that

m

n2
→

pH(πH − πL)

pLπL
. (27)

As long as the profits from the high quality product are high enough, and

the probability of the consumer being a high type is not too low, m
n

increases

proportionally with n. Finally, flavor proliferation costs the monopolist:

F = c1/3(πH − πL)1/3π
1/3
L p

1/3
H p

1/3
L . (28)

Basov (2008) demonstrates that a monopolist who faces nearly rational con-

sumers, as defined in Definition 1, and is restricted to offering a binary menu

(i.e. no flavor proliferation is possible) will find it approximately optimal to
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leave qualities at the same level as for the rational consumer and to alter

prices.9 However, if flavor proliferation is allowed and

F << λ (29)

holds, then it is even more profitable to proliferate flavors than to alter

prices. Hence, under the following conditions, flavor proliferation, at the

optimal qualities and prices derived earlier is approximately optimal:

F << λ << ∆, (30)

where ∆ is defined by (15).

Several observations are due concerning these results. First, if c is suffi-

ciently small both m and n are large, moreover, m/n is large. Therefore, the

consumers will choose the options designed to them with probabilities close

to one, as predicted by the screening model with fully rational consumers.

Second, as one can see from equation (27), the number of flavors increase

with quality at an increasing rate, i.e. the increase is faster than exponen-

tial. If one assumes that flavors are directly valued, this may offset some

of this effect, but the wasteful proliferation effect is likely to determine the

overall correlation as quality increases.

9Under the condition specified in equation (30), the difference between the optimal
solution if consumers are rational and the optimal solution if consumers are near-rational
is so small it can be ignored. Hence the optimal solution for rational consumers can be
used without materially altering the results.
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6 An extension of the model: multiple types.

In the previous two sections we discussed the monopolistic screening

model with two types of consumers. We argued that if the consumers are not

fully rational, it might be in the interest of the monopolist to introduce multi-

ple flavors of a good of a given quality, even if the consumers care only about

quality. In this section we extend the model to the case where there are more

than two types of consumers. In the first subsection we demonstrate that

the number of varieties increases faster than exponentially if per-consumer

profits increase sufficiently fast with the quality level and markets for high

quality varieties are sufficiently thick. In the second subsection, we allow

for thinner markets at higher prices, and demonstrate that the relationship

between quality and variety can take the form of a hump, with a maximum

reached at a certain number.

6.1 Variety Increasing with Quality

The assumptions on the fundamentals are the same as in Section 4, but

now the consumer’s type is given by θ ∈ {θ1, ..., θN}. Let pi = Pr(θ = θi).

Otherwise the analysis in this subsection proceeds in the same way as in

Section 5. We assume pi > 0 for all i and

n
∑

i=1

pi = 1. (31)
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Denote by (xi, ti) the quality and tariff the monopolist would offer to type

θi under the hypothesis of the full rationality. For i = 1, ..., N define πi by:

πi = ti − C(xi) (32)

and let π0 = 0 be the profit the monopolist earns from the consumers who

choose the outside option. Finally, define ∆πi = πi − πi−1. The first obser-

vation is that ∆πi > 0 for all i. Indeed,

∆πi = ti − ti−1 − C(xi) + C(xi−1). (33)

The constraint reduction theorem (Stole, 2000) implies that the only binding

constraints in the problem are the individual rationality for the lowest type

and the incentive compatibility between types θi and θi−1. Hence we can

exclude the tariffs to get:

∆πi = θi(xi − xi−1) − C(xi) + C(xi−1) + θi−1xi−1. (34)

Finally, since the optimal quality is efficient for the top type and biased

downward for the rest, C ′(xi) ≤ θi. Strict convexity of the cost implies:

∆πi = C ′(xi)(xi − xi−1) − C(xi) + C(xi−1) + θi−1xi−1 > 0. (35)

Using the same approximation as in the two types case, the monopolist’s

problem can be written as:

max
{ni}

N
i=1

(
N

∑

i=1

(piπi
ni

ni + ni−1
+ piπi−1

ni−1

ni + ni−1
− cni), (36)

23



where we defined n0 = 1. Ignoring the constraint that m and n should be

integers, one can write the first order conditions:

{

piπi

(ni+ni−1)2
− pi+1∆πini+1

(ni+ni+1)2
= c

pi∆πini

(ni+ni+1)2
= c

. (37)

As c → 0 all ni go to infinity, but in a such way that

ni+1

n2
i

=
pi+1∆πi+1

pi∆πi
. (38)

As ni+1/ni is proportional to ni it is clear that as long as pi+1∆πi+1/pi∆πi

is greater than one that the number of varieties increases faster than expo-

nentially. The value of n1 is given by:

n1 =
(p1π1)

2/(2N−1)

(p2∆π1c)1/(2N−1)
+ O(c1/(2N−1)) (39)

and ni for i > 1 can be calculated using (38). Finally, the flavor proliferation

costs of the monopolist are:

FN = c(N−1)/(2N−1)

N
∏

i−1

(∆πipi)
1/(2N−1) (40)

Once again, flavor proliferation is approximately optimal as long as:

FN << λ << ∆, (41)

where ∆ is defined by the maximal “slack” for the non-binding constraints

(in the case of two types given by equation (15)).
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6.2 Hump-shaped Relationship between Quality and

Variety

In the previous section, we assumed that the expected profitability from

each type increased with the type, i.e. pi+1∆πi+1/pi∆πi > 1. If we instead

assume that

pi+1∆πi+1

pi∆πi

< 1 (42)

we demonstrate the relationship between the number of varieties and quality

will follow a hump shape, increasing and then decreasing, rather than more

than exponentially increasing over the whole range.

There are several reasons why we might wish to make an assumption like

that for equation (42) which, for convenience, we will discuss in terms of our

empirical application, cars. The most obvious cause could be as the price

rises the number of consumers willing to pay this price falls sufficiently for

expected profit to fall or that consumers with strong preferences for quality

(or snobs) are sufficiently rare.

A possible reason for this may be concerns by consumers about quality.

A company that makes relatively low quality cars can attempt to produce

a high quality car, but consumers are unlikely to immediately accept the

claimed quality and require a lower price, compared with the cars sold by

established high-quality producers. This makes producing varieties outside

of the range of quality currently accepted by consumers less profitable. This

argument seems stronger, though, in explaining why higher than average

quality cars, for a given maker, are less profitable, than lower than average
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quality cars.

An alternative explanation on the cost side is that if the firm produces a

quality level less than or greater than the quality level at which the number

of brands is greatest, production costs may be higher. Assume each car-

maker can produce a particular quality of cars very cheaply but that there is

a U-shaped average cost curve (as a function of quality). Hence, if the firm

produces either higher or lower quality cars average costs are higher relative

to the price that can be obtained for the car and profits are relatively small

from producing them. Hence, the firm offers less brands at these quality

levels. This is difficult to test without considerable data. However, the

frequent rebadging of, particularly smaller, cars for sales in different markets

suggests that production costs are unlikely to be the whole story. It may be

too expensive for Mercedes to make a cheap small model in the same factories

that make Mercedes, but they could license Daewoo to do so at the Daewoo

factories.

To formally analyze the implications of equation (42) we introduce the

following notation:

ξi = lnni (43)

βi =
1

2
ln

pi∆πi

pi+1∆πi+1

> 0 (44)

β(x) = βi for x ∈ (i − 1, i]. (45)

Using this notation, equation (38) takes the form:

ξi+1 − 2ξi = βi (46)
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Then the solution to equation (38) can be written as:

ξ(x) = ξ02
x −

x
∫

0

β(y)2x−ydy. (47)

We also assume that ξ0 > β0 (this assumption means that the logarithm

of the flavors at the lowest quality level is sufficiently big, which is consis-

tent with our assumption of the small cost of flavor proliferation). To find

maximum of ξ(·) w.r.t. x, note that

ξ′(x) = 2x ln 2(ξ0 −
β(x)2−x

ln 2
−

y
∫

0

β(y)2−ydy). (48)

Therefore,

[ξ′(x) = 0] ⇔ [ξ0 =
β(n)2−n

ln 2
+

n
∑

i=0

2−iβi]. (49)

Since the right hand side of this expression increases in n there is at most

one n for which this condition is satisfied. Hence, the relationship between

quality and variety follows a hump shape rather than increasing over all

qualities.

7 An empirical analysis of car varieties

In this section we analyze the models offered in the Australian car market

to determine if there is support for the main prediction of the theoretical

section: that the number of flavors increases with the quality level, at least

for low qualities. We conclude that for a wide range of makes that the

common pattern of model offerings is a hump shape, with a rapid increase

in types followed by a similarly sharp decline past the mode.
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The data we use for this analysis is the same data set, originally collected

and compiled by the private data-collection firm Glass’s Guide, used in Pren-

tice and Yin (2005). The first component of the data set contains the prices

and characteristics for all cars sold as new in Australia in 1998. The second

component of the data set is registrations, usually by model or make, for

Australia in 1998. 10

For reporting purposes we divide all makes of cars into five groups, based

on their average price in the data. These groupings are reported in Ap-

pendix 1.11 The Low group includes makes such as Daewoo and Hyundai.

The Medium group includes makes such as Holden and Toyota. The Up-

perMedium group includes makes such as Honda and Audi. The Prestige

group includes makes such as BMW and Mercedes Benz and the High group

includes makes such as Jaguar and Lamborghini. Table 2 and Graph 1 pro-

vide summary information about each group. Table 2 reports the descriptive

statistics and Graph 1 includes two Box plots of prices by group.

All groups except, perhaps, Low, feature a positively skewed price distri-

bution. The high group has a particularly highly skewed distribution though,

as Table 2 demonstrates, this is over very few observations. Indeed the

10For higher priced cars, though, registrations may only be available for groups of mod-
els. For example, Mercedes Benz has six different models in the C-Class in 1998, whereas
the registrations data is available only for C-Class, hence aggregating over the six mod-
els. Similarly, the Glass price data distinguishes between the Commodore and two higher
quality versions of the Commodore, the Berlina and Calais, whereas in the registrations
data, the Commodore, Berlina and Calais are aggregated as Commodores.

11The classification of makes may be different in other countries nearly all models offered
in Australia are imports. Some firms, offering a complete range in their home market, may
only export premium or smaller cars to Australia.
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cheaper makes, Porsche and Jaguar, make up nearly half of the observations

and 93% of the registrations for this class.

We now analyse the patterns of cars offered more closely. Based on our

preliminary analysis in section 2 and following a large literature on hedonic

pricing, we assume that price is correlated with quality. We then estimate

kernel density functions of prices.

7.1 Market Level

In this section we compare the distribution of prices for all cars offered

for sale in the market with an estimate of the distribution of cars sold in the

market. The latter distribution is estimated by weighting each price by an

estimate of the number of registrations for that car. Both distributions are

estimated using a kernel density estimator. We compare the two distributions

in three steps. First, we check if, and at what prices, the number of cars

offered increases with price. Second, if the number of cars does increase with

price, we check if the increase in the number of cars is at a greater rate than

that of the weighted distribution. This would reject a simple model of there

being a constant cost to adding a model. Third, we check if, and at what

prices, there is greater weight in the distribution of cars compared with the

distribution of sales. Graphically, we check if the distribution of cars is to

the right of the distribution of sales.

Before discussing the results of this comparison, we first describe how

we construct the weights. As we do not have registrations data matching
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each price observation we construct weights as follows. First, we match all

price data to the model categories in the registration data. Then we divide

the registrations for the model by the number of observations. In effect, we

assume that each observation for a model sells an equal number. This likely

overstates the number of registrations for higher price variants within each

models.12 This will bias this examination against finding the differences in

the distributions suggested above. Finally, note that we estimate the kernel

density at 50 points for the distribution of prices, and then use the same fifty

points to estimate the distribution for sales.

Graph 2a confirms the positive skewness of the distribution of prices, and

demonstrates a similar skewness in the distribution of registrations. Because

this skewness may cause problems for the kernel density estimator, we re-

estimate using observations with prices below $200,000. First, at low prices,

both the distribution of prices and distribution of registrations increases as

price goes up. However, it is not obvious that the distribution of prices rises

at a faster rate than that for sales. Indeed, it is more likely the distribution

of sales rises at a faster rate. However, at prices above $50,000 it is clear

that there is more mass in the distribution of prices than the distribution of

12The extent of this is indicated by examining the ratio of the range between the maxi-
mum and minimum prices for each model. The median range is 6862 and the median range
relative to mean is 0.16 which do not seem large. However about twenty-five percent of
observations have a range over mean of 0.34 or greater. Looking at the top 10 percent of
observations, though they are drawn from various price levels, there are probably more
from the UpperMedium and Prestige cars. If we look at the range over mean for the obser-
vations with larger weights, most ranges are fairly small, though the Holden Commodore
has a substantial price range from 18 to 49 thousand dollars (and the registrations data
appears to include observations for the more pricey Berlina and Calais models).
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sales. This confirms the impressions suggested by our analysis of Table 1.

At prices above $50,000 there are more types sold relative to registrations.

While there is also greater mass in the distribution for the very cheapest cars,

it is relatively small and suggests some of the puzzling features of Table 1

resulted from aggregation. Hence, at the market level, there is some support

for our hypothesis, particularly among the more expensive cars.

7.2 Make Level

The next step is to examine if there is support for the hypotheses at the

Make level. We use the data on the price by observation for each make avail-

able in Australia. We then estimate a kernel density function for each make

and examine the distribution of prices. Note we do not use the registrations

data to weight these estimates. Because we need sufficient observations to

construct the density functions, we consider only makes that have more than

30 observations. In reference to the classes used to summarize the Makes in

Table 2 and Graph 1 the excluded makes (indicated with a * in Appendix 1)

tend to have much lower registrations in their class. This criterion leaves us

with 17 makes, with all Makes in the High Class being excluded.

Each kernel density function follows the same general pattern as for the

market as a whole. Nearly all distributions are positively skewed. The num-

ber of observations rises very rapidly from the lowest level followed by a

slower decline. Graphs 3A and 3B demonstrate this takes place for all makes

- from the relatively cheap Daewoo to the highest price Mercedes Benz. This
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suggests that the range of offerings is not solely a function of price, but a

common strategy across car-makers.

One aspect of the importance of this phenomenon is how many sales

this pattern applies to. So, using the weights described earlier we estimate

the number of registrations for cars to the left of the modal point of each

distribution. The results, by the class described earlier, are presented in Table

3. For just over 50% of the Makes the share covered is greater than 50%. For

the Makes in the Low group, the share of registrations covered is typically

quite high ranging from 0.59 to 0.63. The range is greater for Medium but

note the maximum and minimum cases are quite distinct from the mass of

observations which fall between 0.36 and 0.65. Similarly for UpperMedium,

the two middle observations, between the maximum and minimum, are 0.37

and 0.43. For Prestige there is a wide range between 0.28 and 0.56.

The last test we perform is to determine whether the second prediction

of the model holds i.e. that the number of cars will increase greater than

exponentially. To carry out this test we extract the densities at 50 points and

take the natural logarithm of them. Each point is assigned a rank. We then

estimate the derivatives of the log density with respect to rank. If the second

hypothesis holds, we should see these derivatives increasing. As it turns out

a formal hypothesis test is unnecessary. We report two representative graphs

(Graphs 4A and 4B) for Mercedes Benz and Daewoo. The derivatives fall

over almost the whole range.
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7.3 Robustness

In this subsection, we examine the sensitivity of our results to choice of the

bandwidth parameter in the kernel density estimation - as this is cited to be

the main concern for this type of estimation (Silverman, 1986). To examine

if the hump shape is consequence of over-smoothing, we approximately halve

the bandwidth used and perform the same steps for each of the makes.

When we examine the estimated kernel densities about half of them have

not changed very much. Of the remaining nine, the most common changes is

that additional peaks emerge to the right of the largest peak or small steps

emerge on either side. In general the modal price moves to the left. In only

two cases are there changes that run against the main conclusions we draw

from the standard analysis. The summary statistics are presented in Table

Four. While the mean and medians have not changed very much, the results

are probably a little more dispersed.

So, to summarize, the main results for the makes do not appear to change

substantially with the bandwidth.

8 Conclusions

In this paper we have analyzed theoretically and empirically the links

between quality and variety. The model has two components. First, con-

sumers are modelled as caring about quality but indifferent between vari-

eties of the same quality. We use a model of near-rational consumers which
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is required for flavor proliferation to be more profitable than price changes.

For expositional simplicity, we use the Luce model of bounded rationality

as this enables introducing new goods more easily than some other models,

e.g. random-utility models. Second, we assume a monopolist who engages

in second-degree price discrimination. When a price-discriminating monopo-

list offers products at prices that yield identical utility, consumers randomize

across the different products. The profitability of price discrimination is

increased by the monopolist offering more varieties at higher qualities as

the likelihood that consumers choose high price products increases. If, at

high quality levels, the markets become sufficiently thin, though, the profit

maximizing number of varieties will fall again, yielding a hump-shaped re-

lationship between variety and quality. We then examine these predictions

using data from the Australian car industry and find the number of varieties

does increase over substantial ranges of prices at both the market and make

level. However, the overall relationship, across a wide range of car makes, is

hump-shaped — a previously unidentified empirical regularity.

Another important contribution of the paper is that the number of va-

rieties offered by the market can be higher than the social optimum even

in the case of a single monopoly, which is opposite to the conclusions drawn

from the previous literature (see, Lancaster (1990)).
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Appendix 1

List of Makes included in each Group. Makes with an asterisk have less

than thirty observations and are not included in the analysis of models by

make. None of the High group have more than thirty observations.

Low Daewoo, Daihatsu, Hyundai, Kia*, Proton*, Seat*, Suzuki*.

Medium Chrysler*, Citroen*, Ford, Holden, Mazda, Mitsubishi, Nissan,

Peugeot*, Subaru, Toyota, Volkswagen

UpperMedium Alfa Romeo*, Audi, Honda, MG*, Saab, Volvo

Prestige BMW, Lexus*, Lotus*, Mercedes Benz

High* Aston Martin, Bentley, Ferrari, Jaguar, Lamborghini, Maserati, Porsche,

Rolls Royce
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Appendix 2: Models of Probabilistic Choice

In this Appendix we compare four models of probabilistic choice. This

comparison demonstrates two points. First, under some reasonable assump-

tions, one can move freely between different interpretations of random choice

models. Second, that the Markovian and Machina-type models provide an

easier framework than the random-utility and address models, to analyse the

effect of introducing new varieties. Hence in the body of the paper we use

the Luce model of probabilistic choice as a particularly simple foundation for

our model of consumer behavior. Though one could use a random-utility or

address model, modelling would just be more complex.

Markovian learning models

Though these models originated in mathematical psychology in the work

of Bush and Mosteller (1955), they have been widely used in economics (e.g.

Foster and Young (1990), Fudenberg and Harris (1992), Kandori, Mailath,

Rob (1993), Young (1993), Friedman and Yellin (1997), Anderson, Goeree,

and Holt (2004), Friedman (2000), and Basov (2003)). Though most eco-

nomic applications assume a continuous choice space, for simplicity of pre-

sentation and for consistency with our application, we assume a finite choice

space.

Suppose an individual faces a choice among n different options. A bound-

edly rational individual is assumed to start with a random choice and adjust

her choice over time in a way that appears beneficial given her current expe-

rience. From time to time the individual may also experiment. This kind of
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behavior usually leads to a Markov process over the choice space, which can

be described as:

pt+1 = f(pt, u), (50)

where pτ ∈ ∆n is the vector of choice probabilities at time τ, u ∈ Rn is the

vector of utilities associated with different choices, f : ∆n → ∆n is a contin-

uous function and ∆n is the n− dimensional unit simplex. The steady states

of equation (50) can be interpreted as long-run choice probabilities.13 A sim-

ple form of this relationship occurs if the transition probabilities between the

states of the system are constant:

f(pt, u) = A(u)pt, (51)

where A is an n × n matrix.14

The steady state probabilities for equation (50) can be written as:

p∗ = p∗(u) (52)

Let us also impose the following symmetry condition: for any permutation

δ : {1, 2, ..., n} → {1, 2, ..., n} one obtains

qt+1 = f(qt, v), (53)

where

qi
τ = pδ(i)

τ , vi
τ = uδ(i)

τ , (54)

13Note that a steady of system (50) exists according to the Brouwer fixed point theorem.
14Condition (51) is usually violated in social learning models. For examples of such

models, see Basov (2006).
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i.e. dynamics (50) remains invariant under the relabelling of the choices. If

the symmetry condition holds system (50) should generically possess at least

one symmetric steady state,15 i.e. a steady state where the choices that have

equal utilities will be made with equal probabilities.16 Symmetry also implies

there is a simple transformation of the relationship in equation (50) when a

new alternative is added such that the probabilities of previously available

options fall. Also, note that the probability with which each outcome is

chosen depends solely on the vector of utilities.

Finally, note that, as argued by Anderson et al (2004), the Luce model

can be derived directly from a Markovian learning model.

Random utility and Address Models

In random utility models it is assumed that the utility of each option

is affected by a random idiosyncratic shock, which is unobservable to an

econometrician. Individuals are rational and choose the option with the

highest total utility, which is the sum of the observable and unobservable

components. However, from the point of view of an econometrician the choice

is probabilistic.

In address models probabilistic choice on market level arises from unob-

served heterogeneity of the consumers in the horizontal direction. Anderson,

de Palma, Thisse (1992) establish that under broad assumptions these models

15This follows from the index theorem (see, for example, Section 17D of Mas-Colell,
Whinston, Green, 1995), which implies that generically the number of the fixed points is
odd.

16If condition (51) is satisfied then the steady state is generically unique, and therefore
symmetric.
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are equivalent to random utility models.

Hence, in the standard random utility (or address) model, as described

by Anderson, de Palma and Thisse (1992), an individual chooses one of the n

alternatives, with which the payoffs u1 + ε1, ..., un+ εn are associated. Vector

u is publicly observable and common among the individuals. For example,

if the alternatives are jobs vector y, u can refer to wages. Vector ε, on the

contrary, is the private information of the individual. We assume that it

is distributed over Rn with some strictly positive density, which does not

depend on the base payoff vector u. An econometrician will observe the

following choice probabilities:

pi(y) = Pr(ui = maxuj) = Pr(εj ≤ ui + εi − uj, ∀j = 1, n). (55)

First, note that any random utility model can be re-interpreted as resulting

from Markovian learning. Indeed, if q ∈ ∆n is the vector of probabilities

generated by the random utility model, consider a Markovian model with

f(p, u) = (qqT)p, (56)

where qT is a row vector transposed to the column vector q. It is easy to see

that vector p = q is a steady state of system (50) (recall that since q is a prob-

ability vector, qTq = 1). The reverse, however, is not always true. Falmange

(1978) proved that a system of choice probabilities has a random utility rep-

resentation if and only if its Block-Marschak polynomials are non-negative.

Intuitively, non-negative Block-Marschak polynomials imply that adding an

alternative never increases the probabilities of the remaining choices and the
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marginal effect of adding an alternative (as well as the marginal effect it has

on the marginal effect, etc.) decreases as choice set shrinks (see, Anderson,

de Palma, Thisse, 1992).

Second, note that the choice probabilities depend on both the utilities

and the distribution of the random shocks (as there are infinitely many

joint distributions of (n + 1) random variable with the same n−dimensional

marginals).

Finally, the Luce model can be derived from a random-utility model if the

unobserved components of utility are independently, identically distributed

according to the extreme value distribution, with parameter λ (see Ander-

son, de Palma and Thisse, 1992). However, generating the specific result

that probabilities of existing varieties decline as new varieties are introduced

requires extra assumptions on the joint probability distribution of random

components of utility for the new and old varieties, as the general random-

utility requires only that probabilities are non-increasing.

Machina’s approach

Machina (1985) proposes that individuals have direct preferences over

probability distributions summarized by a function V (p). Machina’s ap-

proach can be interpreted as a model of bounded rationality by associating

with each probability distribution a numerical function, the cost of compu-

tation.

Definition A continuously differentiable convex function c : ∆ → R+ is

44



called a cost of computation if

lim
y→x

‖∇c(y)‖ = ∞ (57)

for any x on the boundary of ∆.

This definition implies that definitely excluding even one alternative (as

represented by a point on the boundary of the unit-simplex) as a possible

solution is prohibitively costly. On the other hand, selecting some distribu-

tions may entail very low cost. For example, I may look at my watch and

select the alternative whose number in the list equals the number of minutes

past after the last whole hour. This rule will produce some distribution of

choices that depends on my behavioral habits. Though the quality of choice

will be very poor, since the rule has no relation to the actual payoffs, the

cost of computation in this case is minimal. A boundedly rational individual

selects the vector of choice probabilities p∗(u) to solve:

p∗(u) = arg max(
n

∑

i=1

piui − c(p)), (58)

i.e. Machina’s utility function has a form:

V (p) =
n

∑

i=1

piui − c(p). (59)

For a given set of choices, any choice probabilities derived from a random

utility model can be obtained from (58) for an appropriate choice of c(·).

More precisely, the following theorem holds:

Theorem (Hofbauer and Sandholm, 2002) Let p∗(u) be the vector of choice

probabilities obtained from (55), where the components of vector ε are i.i.d.
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over Rn with some strictly positive density, which does not depend on the

payoff vector π. Then there exists a convex function c : ∆ → R, continuous

on ∆ and continuously differentiable on its interior such that

p∗(π) = arg max(

n
∑

i=1

piui − c(p)) (60)

lim
p→q

‖∇c(p)‖ = ∞ (61)

for any q on the boundary of ∆.

Note that, as with the Markovian model, probabilities are solely a func-

tion of the utilities. Furthermore, if we specify the cost of computation as

c(p) = η(lnn +
n

∑

i=1

pi ln pi). (62)

we can directly derive the Luce model (Fudenberg and Levine, 1998).
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Table 1

SUMMARY OF DATA

Category Features Price Reg’ns Makes Models Variants Observations
All 11 59.6 584.3 37 175 484 1081
Small 7 22.6 251.4 19 39 133 397
Medium 11 34.6 268.6 9 16 54 207
Luxury 15 114.3 47.9 26 97 251 390

Reg’ns per Per Make
Category Make Model Variant Obs. Models Variants Obs.
All 15.79 3.33 1.21 0.54 4.73 13.08 29.22
Small 13.23 6.44 1.89 0.63 2.05 7.00 20.89
Medium 29.84 16.78 4.97 1.30 1.78 6.00 23.00
Luxury 1.84 0.49 0.19 0.12 3.73 9.65 15
Note: Price and Features data supplied by Glass’s Guide. Registrations data from Glass’s Guide (1998).

Price and Registrations are in thousands. All includes Small, Medium, Luxury, Sports and People Movers.

Small combines the Glass categories of Small and Light. Medium combines the Glass categories of Medium

and Upper Medium. Luxury combines the Glass categories of Prestige and Luxury

Table 2

SUMMARY BY MAKE

Category Observations Makes Reg’ns Price
Low 187 7 94.4 20.3
Medium 544 11 443.2 34.2
UpperMedium 155 6 27.1 63.1
Prestige 135 4 18.1 107.6
High 60 9 1.5 294.7
Note: Price and Options data supplied by Glass’s Guide. Registrations data from Glass’s Guide (1998).

Price and Registrations are in thousands. See Appendix 1 for assignment of makes to groups.
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Table 3

SUMMARY OF KERNEL DENSITIES BY MAKE

Category Number Mean Median Minimum Maximum
of Makes Share Share Share Share

Low 3 0.61 0.62 0.59 0.63
Medium 8 0.49 0.51 0.14 0.76
UpperMedium 4 0.45 0.4 0.27 0.73
Prestige 2 0.42 0.42 0.28 0.56
Note: Price and Options data supplied by Glass’s Guide. Registrations data from Glass’s Guide (1998).

See Appendix 1 for assignment of makes to groups.

Table 4

SUMMARY OF KERNEL DENSITIES BY MAKE - SMALLER BANDWITH

Category Number Mean Median Minimum Maximum
of Makes Share Share Share Share

Low 3 0.58 0.70 0.32 0.73
Medium 8 0.48 0.48 0.11 0.81
UpperMedium 4 0.43 0.3 0.16 0.7
Prestige 2 0.44 0.44 0.31 0.56
Note: Price and Options data supplied by Glass’s Guide. Registrations data from Glass’s Guide (1998).

See Appendix 1 for assignment of makes to groups.
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