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1 Introduction

The aim of this paper is to study forecast uncertainty in the U.S. money market by

estimating changes in uncertainty about forecasts of the Federal Funds Rate in the

U.S. Estimates of interest rate uncertainty are important for a wide range of financial

market applications such as portfolio allocation, derivative pricing, risk management

etc. Furthermore, as the Federal Funds Rate is the indicator of monetary policy in

the U.S., it is also important for evaluating monetary policy. For example, uncertainty

about future money market rates is an indicator of the credibility and predictability of

the central bank’s monetary policy. To keep this uncertainty low is an important goal of

central banks’ communication policy which “guides” expectations about future policy

decisions (for example, European Central Bank (2008), Reinhart (2003)). Concern

about interest rate uncertainty is also due to possible negative effects of increasing

uncertainty about future interest rates on economic stability (e.g. Poole (2005)).1

The empirical importance of time-variation in uncertainty about short-term interest

rates has been documented in many studies. Mostly, measures of interest rate uncer-

tainty are constructed from the time series of historical interest rate changes, either by

estimating ARCH/GARCH models (e.g. Chuderewicz (2002) and Lanne and Saikko-

nen (2003)), stochastic volatility models (e.g. Caporale and Cipollini (2002)) or regime

switching models of volatility (e.g. Sun (2005)).2 An important drawback of these ap-

proaches is however, that changes in the extracted measure of uncertainty are difficult

to interpret economically.

Since the most important driving force of short-term interest rates is monetary pol-

icy much can be gained by basing any interpretation of forecast uncertainty about

short-term interest rates on a model that accounts for how financial markets perceive

monetary policy to respond to changes in economic conditions. Combining an interest

1For example, an increase in the volatility of money market rates can be transmitted through the

yield curve (Ayuso et al. (1997)) causing the volatility of longer-term interest rates to rise as well

which has negative effects on real growth (e.g. Muellbauer and Nunziata (2004)) and investment (e.g.

Byrne and Davis (2005)).
2A third approach uses derivative prices to estimate interest rate uncertainty. See, for example

Fornari (2005).
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rate rule which is widely accepted as an approximation to the behavior of the Federal

Reserve (Fed) with a model of the evolution of economic fundamentals I am able to

separate various components of forecast uncertainty about the Federal Funds Rate in

an economically meaningful way.

The starting point of the analysis is the famous Taylor rule (Taylor (1993)) that is

generally accepted as a descriptive model of how the Fed sets the Federal Funds Rate

in response to (expected) economic conditions. Even though the Fed certainly does not

follow a Taylor rule mechanically, financial market participants often use Taylor-type

rules as a forecasting tool.

Forecasting the Federal Funds Rate using a Taylor rule requires predictions of how the

economic situation the Fed will have to respond to in the future will look like. Hence,

uncertainty concerning the forecasts of the information the central bank is expected to

act upon, is one source of uncertainty about future interest rates (uncertainty about

economic fundamentals).

The second element of uncertainty is related to imperfect knowledge about the central

bank’s reaction to given future economic conditions. The reaction coefficients in esti-

mated simple interest rate rules such as the Taylor rule have been shown to change over

time (e.g. Mehra (1999), Judd and Rudebusch (1999), Clarida et al. (2000), Tchaidze

(2001), Gordon (2005)). One reason for this is that the coefficients in optimally derived

monetary policy reaction functions depend on the central bank’s preferences about out-

put stabilization, inflation and possibly other goals as well as on structural parameters

of the model of the economy. Changes in preferences and changes in the structure of

the economy will both affect the coefficients in the monetary policy reaction function.

Another reason is that simple interest rate rules generally are only crude approxima-

tions to an optimal monetary policy reaction function. Central banks base their policy

decisions on a much more comprehensive data set than a simple Taylor-type interest

rate rule which only accounts for (forecasts of) the output gap and inflation. Hence,

situations with identical (forecast) values of the output gap and inflation can be sig-

nificantly different economically if judged by the much larger optimal information set.

Thus, the central bank does not necessarily have to react to (apparently) identical

economic situations in the same way and this will lead to changing reaction coefficients

in estimated simple interest rate rules. Finally, changes in the reaction coefficients can
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also result from fitting a linear reaction function when the true reaction function is in

fact non-linear. Time variation in the coefficients in the Fed’s reaction function are a

second source of uncertainty about the future Federal Funds Rate.

The third element of Federal Funds Rate forecast uncertainty is due to the fact that

the estimated reaction function is an approximation. The approximation error of the

Taylor rule relative to the actual Federal Funds Rate is represented by the error term

in the empirically estimated interest rate rule.

Changes in the Fed’s reaction function and financial market participants’ learning about

these changes are modelled empirically by estimating a time-varying interest rate rule.

Empirical studies on monetary policy rules have shown that estimation from ex-post

revised data results in distorted estimates of reaction coefficients (e.g. Orphanides

(2001), Perez (2001) ). The estimation of a monetary policy reaction function using

ex-post revised data assumes to much information on part of the monetary policy

authority: First it contains observations that actually were not available at the time

of the actual monetary policy decision and second, some observations have undergone

revisions relative to the information that the central bank had to act upon.3 Hence, the

results presented in this paper are derived from recursive estimates using a real-time

data set of macroeconomic variables.

An important contribution of this paper is to offer a new application in the growing

empirical literature on time-varying monetary policy rules: the study of uncertainty

about future monetary policy. Previous analyses have focused on ex-post descriptions of

central bank behavior: For example, Clarida, Galì and Gertler (2000) provide evidence

of pronounced changes in Taylor-type interest rate rules for the U.S. using split-sample

regressions. They show a strong shift in the Fed’s reaction function related to the

appointment of Fed Chairman Volcker in 1979. More recently Boivin (2006) and Kim

and Nelson (2006) estimate forward-looking Taylor rules with time-varying parameters

and report sizeable but more gradual changes in the coefficients. Trecroci and Vassali

(2006) show that time-varying monetary policy reaction functions for the U.S., the

U.K., Germany, France and Italy perform superior to constant parameter rules in

3See also Orphanides (2002, 2003) for a discussion of the importance of using real-time data for

the empirical modelling of monetary policy.
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accounting for observed changes in interest rates.4 However, most of these studies on

time-varying monetary policy reaction functions use ex-post revised data which might

bias the results.5

The two-step estimation approach of using model-generated forecasts in the estimation

of a Taylor-type interest rate rule is related to the one advocated in Nikolsko-Rzhevsky

(2008). Since the Fed’s internal forecasts of future economic conditions (Greenbook

forecasts) are available only with a lag of five years he looks among different univariate

and multivariate forecasting models for one which is able to generate out-of-sample

forecasts closely tracking the Greenbook forecasts. Using forecasts generated from this

model he then estimates a forward-looking Taylor rule for the Fed. Similarly, McCul-

loch (2007) estimates a forward-looking Taylor rule using an adaptive least squares

technique. The forecasts which enter the monetary policy reaction function are gener-

ated from structural vector autoregressions. While the two-step procedures employed

in these papers is similar to the one presented here, these papers do not consider

forecast uncertainty.

The paper is structured as follows: Section 2 outlines the empirical models for the

monetary policy reaction function and for the economic fundamentals that enter into

it. Section 3 presents the data set and explains how the real-time data are used in the

estimation. The results are discussed in Section 4.

2 A model of policy and economic fundamentals

The empirical model for the Federal Funds Rate is based on the notion that the Fed

adjusts the Federal Funds Rate in response to the current or expected state of the

economy. Thus, Federal Funds Rate forecasts suffer from two elements of uncertainty:

(i) uncertainty about the future state of the economy and (ii) uncertainty about future

policy response to a given state of the economy. The first type of uncertainty concerns

forecasting future values of the variables in the central bank’s reaction function while

4Time-varying Taylor rules have also been estimated for the Deutsche Bundesbank by Kuzin (2005)

and using a regime-switching model by Assenmacher-Wesche (2008).
5An exception is Boivin (2006) who uses the Fed’s own forecasts of economic fundamentals.
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the second type concerns forecasts of future values of the reaction function’s coefficients.

The next sections outline the empirical model for the monetary policy reaction function

and the model from which the forecasts for economic fundamentals are generated.

2.1 The Taylor rule

I assume that the central bank follows a Taylor-type rule in setting the short-term

interest rate6

it = r̄t + πt + απ,t(πt − π̄t) + αz,tzt (1)

where it is the Federal Funds Rate, r̄t is the time-varying equilibrium real interest rate,

πt is the inflation rate, π̄ is the time-varying inflation target, and zt is the output gap.

Equation (1) allows for time variation in the reaction coefficients απ,t and αz,t. The

interest rate rule can be rewritten as

it = α0,t + απ,tπt + αz,tzt, (2)

where α0,t = r̄t + π̄t − αππ̄t.

In empirical studies of interest rate rules of this type it is standard practice to assume

that equation (2) describes the interest rate desired by the central bank while the actual

interest rate is adjusted gradually towards this target, i.e.

it = (1 − ρ)(α0,t + αππt + αzzt) + ρit−1, 0 ≤ ρ ≤ 1. (3)

(3) can be rewritten as

it = β0,t + βπ,tπt + βz,tzt + ρtit−1 + ǫt, (4)

6For the following analysis to be valid it is not absolutely necessary that the central bank exactly

follows such a rule. The model presented here would be also valid if, for example, participants in

financial markets perceived the central bank to do so or if they themselves use a Taylor rule to

describe the setting of the short-run interest rate.
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with βi,t = (1 − ρt)αi,t. Equation (4) includes an error term to capture the non-

systematic component of monetary policy or the approximation error of the Taylor

rule relative to the actually observed Federal Funds Rate.

Since the economy responds to changes in the monetary policy instrument with a time

lag, the central bank generally does not react to the contemporaneous values of inflation

and of the output gap but to forecasts of these variables. I assume that the central

bank sets its policy rate in response to forecasts of inflation and of the output gap two

quarters ahead. Furthermore, contemporaneous observations of inflation and output

are not available to policy makers and the central bank has to base these forecasts on

information from period t − 17

it = β0,t + βπ,tπt+2|t−1 + βz,tzt+2|t−1 + ρtit−1 + ǫt, (5)

where xt+2|t−1 denotes the conditional expectation of variable x in period t + 2 based

on information available in period t − 1.

2.2 Output gap and inflation forecasts

The output gap which enters the Taylor rule (5) is an unobservable variable and can

only be inferred indirectly from the observed output dynamics. Various empirical

decompositions of actual output into a long-run trend component (potential output)

and a short-run cyclical component (output gap) have been suggested in the literature.8

The output gap is related to the inflation rate – the second independent variable in the

interest rate rule equation (5) – by a Phillips curve-type relationship. To exploit both

sources of information, it is preferable to jointly model the dynamics of inflation and of

the output gap using an unobserved components model suggested by Kuttner (1994):

The output equation is based on Watson (1986) and decomposes the log of real GDP

(y) into a random walk and a stationary AR(2) component

7Various assumptions about the length of the forecasting horizon have been used in the literature.

Due to the high degree of autocorrelation of the forecasts the choice of the forecast horizon has only

modest effects on the results. See also Boivin (2006).
8These include the Hodrick-Prescott filter als well as decompositions suggested by Watson (1986)

and Clark (1989).
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yt = nt + zt (6)

zt = φ1zt−1 + φ2zt−2 + ez
t (7)

nt = µy + nt−1 + en
t . (8)

n is the trend component and follows a random walk with drift µy while z is the (log)

deviation of real GDP from potential output, i.e. the output gap. Note that a negative

output gap represents a recession as for zt < 0 it follows from (6) that yt < nt, i.e.

actual output falling short of potential output.

Inflation dynamics are modelled as an ARIMA process in which the change in the rate

of inflation depends on the lagged output gap.9

α(L)∆πt = µπ + γ(L)zt−1 + δ(L)νt, (9)

where α(L), γ(L), and δ(L) are polynomials in the lag operator of order p, r, and q, µπ

is a constant and ν is a normally i.i.d error term. Preliminary estimations not shown

here suggested lag orders of p=0, q=3, and r=1. Furthermore µπ was restricted to

zero.

The model (6 - 9) can be written in state-space form which yields the observation

equation - already including the restrictions from the previous paragraph –

Yt = µ + Hx̃t + et, (10)

Yt =

⎡

⎣

∆yt

∆πt

⎤

⎦ , µ =

⎡

⎣

µy

0

⎤

⎦ , et =

⎡

⎣

en
t

0

⎤

⎦

H =

⎡

⎣

1 −1 0 0 0 0

0 γ 1 δ1 δ2 δ3

⎤

⎦

Eete
′
t = ΣY =

⎡

⎣

σ2
e,n 0

0 0

⎤

⎦ ,

9Preliminary unit-root tests strongly reject the hypothesis of a stationary inflation rate and suggest

a model in first differences.
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and the transition equation for the state variables

x̃t+1 = Fx̃t + ζt+1 (11)

x̃t =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

zt

zt−1

νt

νt−1

νt−2

νt−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ζt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ez
t

0

eν
t

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φ1 φ2 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Eζtζ
′
t = Σζ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ2
e,z 0 0 0 0 0

0 0 0 0 0 0

0 0 σ2
e,ν 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The shocks eν , en and ez are assumed to be serially and mutually uncorrelated. The

model parameters can be estimated by maximum likelihood using the Kalman filter.

For each period t forecasts for the output gap and for the inflation rate in t + 2 based

on period t−1 information can be obtained from the estimated model. As the estimate

of the period-t output gap from data up to and including t − 1 is zt|t−1, which is the

first element of x̃t|t−1, the forecast for the output gap in t + 2 based on period-t − 1

information is

zt+2|t−1 = 1′zFFFx̃t|t−1, (12)

where 1z is a unit vector for the first element of x̃. Forecasts of inflation in t + 2 based
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on data available in t − 1 can be constructed as

πt+2|t−1 = πt−1 + 1′π
[

3µ + H(I + F + FF )x̃t|t−1

]

. (13)

These forecasts are used as explanatory variables in the estimation of the Taylor rule

(5). Thus, I assume that either the central bank uses this or a related model to

estimate the current state of the economy or that financial market participants accept

this model as an approximation of how the central bank arrives at its estimates of

economic fundamentals.

The monetary policy reaction function (5) can be written in state-space form as

it = x′
tβt + ǫt, (14)

x′
t =

[

1 πt+2|t−1 zt+2|t−1 it−1

]

Eǫ2
t = σ2

ǫ,t.

The time-varying parameters are assumed to follow a random walk (Cooley and Prescott

(1976))

βt+1 = βt + wt+1 (15)

βt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β0,t

βπ,t

βz,t

ρt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, wt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

wc
t

wπ
t

wz
t

wi
t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Ewtw
′
t = Σw.

The shocks within w and ǫ are serially and mutually uncorrelated, as well as uncorre-

lated with any shocks in the output gap/inflation model. The parameters of this model

again can be estimated by maximum likelihood and application of the Kalman filter.

The estimates of the time-varying parameters β will be interpreted as representing

market participants’ view of the currently relevant central bank reaction function and

will be used for forecasting future interest rates.
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The version of (13-14) which is actually estimated in this paper contains two modifica-

tions: First, the interest-rate smoothing parameter ρ has to be restricted to 0 ≤ ρt ≤ 1

resulting in a non-linear interest rate rule and a modification of the Kalman filter ap-

proach shown in Appendix B. Second, the error in the Taylor rule ǫt is modelled as an

ARCH(2) process in order to account for temporary deteriorations in the Taylor rule’s

ability of tracking the Federal Funds Rate10

σ2
ǫ,t = α0 + α1ǫ

2
t−1 + +α2ǫ

2
t−2.

3 Data and Estimation

Quarterly observations of output and inflation for the U.S. are obtained from the

Real-time data set for Macroeconomists (RTDSM) at the Federal Reserve Bank of

Philadelphia.11 Output is real GNP (from 1993 on real GDP) while the inflation rate

is 100 times the quarterly log difference of the GNP/GDP deflator. The output and

inflation series are grouped into data vintages containing only time series that would

have been available at a specific point in time. In the RTDSM the first real-time vintage

is available for 1965Q4 and contains time series from 1947Q1 to 1965Q3. For each of

the following quarters new vintage series are available with new observations for the

most recent quarter and revised data for some of the previous observations. Since both

the price level and real output are observed with a one period lag each vintage ends

one quarter before the date it applies to. The four vintages from 1993 are missing

observations for the time period from 1947Q1 to 1959Q1. The policy indicator it is the

quarterly average of the Federal Funds Rate. In contrast to the data on output and

inflation the Federal Funds Rate is not subject to revisions.

Table 1 is a stylized representation of real-time observations on a variable x. The

columns contain the data vintages beginning with τ0 = 1965Q4 and ending in T =

2007Q3. xt|τ is variable x in period t as observed in period τ . For the RTDSM

10The most obvious example is the period between 1979 and 1983 in which the Fed targeted non-

borrowed reserves.
11A detailed description of the data set can be found in Croushore and Stark (1999, 2001, 2003).
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τ0 τ0 + 1 . . . T-1 T

t0 xt0|τ0 xt0|τ0+1 . . . xt0|T−1 xt0|T

t0 + 1 xt0+1|τ0 xt0+1|τ0+1 . . . xt0+1|T−1 xt0+1|T

...
...

...
. . .

...
...

τ0 − 1 xτ0−1|τ0 xτ0−1|τ0+1 . . . xτ0−1|T−1 xτ0−1|T

τ0 - xτ0|τ0+1 . . . xτ0|T−1 xτ0|T

τ0 + 1 - - . . . xτ0+1|τ0 xτ0+1|τ0+1

...
...

...
. . .

...
...

T − 2 - - . . . xT−2|T−1 xT−2|T

T − 1 - - . . . - xT−1|T

T - - . . . - -

Table 1: Stylized real-time data set

t0 = 1947Q1 and t < τ because the variables are observed with a lag of one period.

The empirical model of the output gap and the inflation rate (9-10) is estimated re-

cursively from the real-time data to generate forecasts of these variables for period

t + 2 based on information up to t − 1. At each of these dates only the time series of

the variables that would have actually been available to the central bank are used to

estimate the model parameters, the output gap series, and to derive the forecasts. The

sample period for each estimation starts in 1959Q4. The first vintage used is 1966Q1

with the last observation for 1965Q4. Hence, the first forecasts for the output gap and

for the inflation rate are z1966Q3|1965Q4 and π1966Q3|1965Q4. For 1966Q2 the model is re-

estimated from the 1966Q2 vintage and new forecasts z1966Q4|1966Q1 and π1966Q4|1966Q1

are made etc. The coefficients of the time-varying Taylor rule are estimated recursively

from these model-generated forecasts starting in 1966Q1 since the Federal Funds Rate

cannot be taken to be the principal indicator for the Fed’s monetary policy before

this date (e.g. Lansing (2003)). For each quarter from 1966Q1 to 2007Q3 the free

parameters in (13-14) are re-estimated using the real-time forecasts for the output gap.

Two assumptions are required to actually estimate the monetary policy reaction func-

tion from the model-generated forecasts of economic fundamentals: First, the con-

temporaneous value of xt = (1πt+2|t−1zt+2|t−1it−1)
′ that underlies the central bank’s
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decision is known to the public. Second, xt must be exogenous to βt. For example,

the model does not allow for asymmetries in the interest rate response to the output

gap or inflation, i.e. for the β parameters to vary systematically with changes in the

output gap or inflation forecasts.12

4 Estimation results

Figure 1 presents two time series of one-sided Kalman filter estimates of output gaps.

The solid line is the output gap estimated from ex-post revised data (1959Q4 - 2007Q3)

while the dashed line represents output gap estimates in real-time, i.e. the estimates

that would have been obtained at each point in time using the most recent available

data at that specific point in time. The difference between both time series is the

real-time measurement error in the terminology of Orphanides and van Norden (2002).

The estimated output gap from ex-post revised data is smoother than the real-time

output gap and the real-time estimates for particularly negative values of the output

gap are much more pronounced.

« insert Figure 1 »

Figure 2 compares one-sided estimates of output gaps over time for three different

vintages. While the dashed line in Figure 1 shows the output gap at each point in time

estimated from the latest available vintage of data. Figure 2 traces estimated output

gaps obtained from three specific vintages for the time period from 1964Q4 to 1997Q2.

In contrast to Figure 1 the data used in the estimation of the output gap does not

change along a specific line. The solid line shows output gap estimates from the data

set from 2007Q2, the dashed line from 2002Q2, and the dotted line from 1997Q2. The

data sets differ in the extent to which the data has been revised and in the number of

observations which is higher for later vintages. It can be seen that the low points of

the business cycle tend to be more pronounced for shorter data sets with less revisions.

As we move to the right and approach the vintage data of each data set the estimates

diverge more strongly since data revisions are more drastic closer to the release date

12Note that the regressors in the Taylor rule are not endogenous in the sense of Kim (2006) and

Kim and Nelson (2005) since et and ǫt are assumed to be uncorrelated.
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of the data.13

« insert Figure 2 »

Figure 3 presents the inflation forecast which is used together with the forecast of the

output gap in the estimation of the forward-looking Taylor rule. The top panel shows

actual inflation together with the inflation forecast. Forecast errors are presented in

the bottom panel. The RMSE of the inflation forecast is 0.039.

« insert Figure 3 »

The next two figures contain graphs of the recursive estimates of the model parameters.

They show how the estimated parameters of the structural economic model change

as more and improved data becomes available and economic agents learn about the

structural relations in the economy. The autoregressive coefficients on the output gap

φ1 and φ2 are shown in Figure 4 together with the drift of potential output µy. The

dashed line are bands of two standard deviations around the parameter estimates. All

parameter estimates are statistically significant. Both autoregressive parameters are

relatively stable over time and are highly correlated. As shown in the bottom right

panel their sum is is roughly constant and highly significant.

« insert Figure 4 »

Of special interest is the “Phillips-curve” parameter γ which describes the effect of the

output gap on the change in the inflation rate. Figure 5 shows recursive estimates of

γ together with error bands of two standard deviations. Except for two short periods

of time in the 1970s and in the mid 1980s the Phillips-curve coefficient is significantly

different from zero. However, the size of the effect of the output gap on inflation

is relatively low with estimates between 0.02 and 0.3 from the mid 1980s up to the

present.

« insert Figure 5 »

The estimated time series for the output gap forecast zt+2|t−1 and for the inflation

forecasts πt+2|t−1 together with observations on the Federal Funds Rate are used to es-

timate the parameters of the time-varying Taylor rule. These parameters are estimated

13For similar results see Orphanides and van Norden (2002).
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recursively implying that at each point in time the parameter estimates are based only

on the model generated real-time forecasts for the output gap and inflation running

from 1966Q1 up to the date of the estimation. The recursive one-sided estimates of

the coefficients in the Fed’s reaction function are shown in Figure 6.

The Taylor-rule coefficients exhibit strong variations over time. Often the coefficient

on the inflation forecast (upper right panel) is less than one thus violating the Taylor

principle (Taylor (1999)). It sometimes even becomes negative, for example in the mid

1970s, the mid 1990s and after the bursting of the new economy bubble in 2001. The

coefficient on the output gap (lower left panel) trends upward from the mid 1980s on

but exhibits pronounced cyclical swings. Changes in the intercept (upper left panel)

can be attributed to both changes in the equilibrium real interest rate and changes in

the Fed’s inflation target. The intercept is extremely high in the high-inflation era of

the 1970s and early 1980s. This is caused by the breakdown in fit of TR which occurs

at this time.

« insert Figure 6 »

5 Federal Funds Rate forecast uncertainty

5.1 The one-period ahead interest-rate forecast

Forecast uncertainty about the Federal Funds Rate in the next quarter is defined as

Et

[

(it+1 − ît+1|t)
2|Ωt

]

, (16)

where

ît+1|t = Et [it+1|Ωt] = Et

[

x′
t+1βt+1|Ωt

]

. (17)

Ωt represents the information available to market participants immediately after the

interest rate is set at time t. This information set consists of the estimated reaction
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function in (14) and (15), the estimated model in (10) and (11), and the series of

current and past interest rates and output gap and inflation forecasts.14

Since β and x to be uncorrelated.15

ît+1|t = Et

[

x′
t+1|Ωt

]

Et [βt+1|Ωt] = x̂′
t+1|tβt+1|t. (18)

Note that since xt = (1 πt+2|t−1 zt+2|t−1 it−1), the forecast of xt+1 based on Ωt, is

x̂t+1|t = (1 πt+3|t−1 zt+3|t−1 it). However the forecast of βt+1 based on Ωt is βt+1|t

as it is part of the information set in period t.

The interest rate forecasts from the time-varying Taylor rule using the recursively

estimated coefficients from Figure 6 in combination with real-time predictions of next

quarter’s forecasts of the output gap and the inflation rate are shown in Figure 7. The

estimated model provides a reasonable approximation to the observed Federal Funds

rate with a RMSE of 1.54. Some very high forecast errors result for the period from

1979 to 1982 in which the Fed targeted nonborrowed reserves instead of the Federal

Funds Rate and for the mid 1970s. Generally, forecast errors for the time period up to

the mid 1980s are larger than those for the later time period.

« insert Figure 7 »

Combining (14), (16) and (18) leads to

14Instead of assuming that market participants know the model the central bank uses to estimate

the output gap and the current inflation rate the results could also be obtained under the assumption

that market participants accept the model as a relatively accurate representation of the way the central

bank acquires and uses its information.
15This assumption is implied by using the Kalman filter to estimate β.
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Et

[

(it+1 − ît+1|t)
2|Ωt

]

= Et

[

(x′
t+1βt+1 − x̂′

t+1|tβt+1|t)
2|Ωt

]

= Et

[

β′
t+1xt+1x

′
t+1βt+1|Ωt

]

− β′
t+1|tx̂t+1|tx̂

′
t+1|tβt+1|t

+σ2
ǫ,t+1|t (19)

= x̂′
t+1|tEt

[

(βt+1 − βt+1|t)(βt+1 − βt+1|t)
′|Ωt

]

x̂t+1|t

+β′
t+1|tEt

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

βt+1|t

+σ2
ǫ,t+1|t

= x̂′
t+1|tPβ,t+1|tx̂

′
t+1|t + β′

t+1|tPx,t+1|tβt+1|t + σ2
ǫ,t+1|t. (20)

σ2
ǫ,t+1|t is the forecast of the variance of the approximation error using the estimated

ARCH coefficients. Pβ,t+1|t = Et

[

(βt+1 − βt+1|t)(βt+1 − βt+1|t)
′
]

is obtained from the

Kalman filter. The first term in (20) is the component of the overall interest rate

forecast uncertainty due to possible changes in the way the Fed responds to the funda-

mental variables in its reaction function. This uncertainty rises if there is an increase

in absolute value of the variables that enter the policy rule. The reason is that even

if uncertainty about the β-parameters remains unchanged, uncertainty about the size

of the interest rate response of the central bank increases when the absolute values of

the variables the β-coefficients are multiplied with rise.

Px,t+1|t = Et

[

(xt+1 − xt+1|t)(xt+1 − xt+1|t)
′|Ωt

]

represents the uncertainty about the

forecast of the economic variables the interest rate responds to. A detailed derivation

of this expression can be found in Appendix C.

The results for the one-quarter ahead forecast uncertainty from (20) are presented in

Figure 8. The solid line indicates aggregate interest rate uncertainty while the other

two lines represent uncertainty about the reaction coefficients in the Taylor rule which

will prevail in the next quarter

βunc = x̂′
t+1|tPβ,t+1|tx̂

′
t+1|t,

and uncertainty about economic fundamentals in the next quarter

xunc = β′
t+1|tPx,t+1|tβ

′
t+1|t.
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Aggregate interest rate uncertainty is the sum of the two other series plus the time-

varying residual uncertainty.

« insert Figure 8 »

Figure 8 indicates considerable changes in uncertainty about one-quarter ahead fore-

casts of the Federal Funds Rate. Peaks in forecast uncertainty were in the mid 1970s,

in the early 1980s, in 1984Q4 and in 2002Q2. The lower panel shows a cropped version

of the graph not including the very high estimated uncertainty in 1980Q3. It shows

that even when ignoring extreme values uncertainty about the one-quarter ahead Fed-

eral Funds Rate was significantly higher in the 1970s and 1980s than in the 1990s and

2000s.

The first strong rise beginning in 1973 is caused by an increase in uncertainty about

the the reaction coefficients in the Taylor rule. After a brief decline, uncertainty about

future policy coefficients increases once more after 1977 and remains high up to the mid

1980s. The extreme hike in forecast uncertainty in the early 1980s however, can only

partially explained by uncertainty about the coefficients in the Fed’s reaction function.

Its primary cause is a strong increase in residual uncertainty, i.e. a massive deteriora-

tion of Taylor rule’s ability to track the actual Federal Funds Rate.16 The same applies

to the peak in uncertainty in 1984Q4.

Uncertainty about economic fundamentals, i.e. output gap and inflation forecasts, pre-

vailing in the next quarter increases temporarily in the mid 1970s but remains fairly

low throughout the whole sample period. From the late 1980s on uncertainty about

future fundamentals and about future policy reactions are very low and close to each

other. Up to the late 1980s however, uncertainty about the Taylor rule coefficients

dominates uncertainty about future fundamentals.

« insert Figure 9 »

Figure 9 presents the time-varying variance of ǫ which results from the recursive esti-

mation of the Taylor rule and is assumed to follow a ARCH process. The lower panel

contains a cropped version of the upper panel without the extreme value estimated for

16Residual uncertainty is the difference between aggregate uncertainty and the sum of the other two

components
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1980Q2. Surprisingly the conditional variance is very low up to 1980Q2.17 After 1980

however, the conditional variance exhibits pronounced changes over time.

The estimates of interest rate forecast uncertainty shown in Figure 10 were obtained

from a Taylor rule specification under the assumption of a constant variance of ǫ. In

this case changes in the estimated residual variance result only from the re-estimation

of the Taylor rule parameters at each point in time. The omission of ARCH effects lead

to almost all uncertainty about the Federal Funds Rate forecast being attributed to

uncertainty about the Taylor rule coefficients. Residual uncertainty is extremely low

even for the 1979-82 period.18 This causes the Kalman filter algorithm to attribute

forecast errors predominantly to changes in the Taylor rule coefficients and leads to

strong revisions in the coefficients of the interest rate rule.

« insert Figure 10 »

Figure 11 compares forecast uncertainties for the ARCH specification and the Taylor

rule without ARCH errors. Until the early 1980s both specifications lead to almost

identical results. However, the peaks in uncertainty in the early and mid 1980s are

less pronounced for the model without ARCH effects. For this model interest rate

uncertainty increases less drastically but comes down much slower as well. The hike in

2001/2002 which the ARCH model attributes mostly to an increase in the conditional

variance of the error term is not captured by the model without ARCH errors.

« insert Figure 11 »

5.2 The two-period ahead interest-rate forecast

Forecast uncertainty about the Federal Funds Rate two quarters ahead is

Et

[

(it+2 − ît+2|t)
2|Ωt

]

, (21)

17This might be caused by problems with the estimation of the ARCH parameters using the relatively

short sample at the beginning. Up to 1980Q4 the estimates for the sum of α1 and α2 is well below

0.1 and not statistically significant. From 1980Q4 on the sum is greater than one and significant.
18This is evident from the fact that aggregate forecast uncertainty is tracked almost perfectly by

the time series of uncertainty about policy reactions alone.
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where

ît+2|t = Et [(it+2|Ωt] = Et

[

x′
t+2βt+2|Ωt

]

(22)

= Et

[

x′
t+2|Ωt

]

Et [βt+2|Ωt] = x̂′
t+2|tβt+2|t,

Expanding (22) gives

Et

[

(it+2 − ît+2|t)
2|Ωt

]

= Et

[

(x′
t+2βt+2 − x̂′

t+2|tβ̂t+2|t)
2|Ωt

]

= Et

[

β′
t+2xt+2x

′
t+2βt+2|Ωt

]

− β′
t+2|tx̂t+2|tx̂

′
t+2|tβt+2|t

+σ2
ǫ,t+2|t (23)

= x̂′
t+2|tEt

[

(βt+2 − βt+2|t)(βt+2 − βt+2|t)
′|Ωt

]

x̂t+2|t

+β′
t+2|tEt

[

(xt+2 − x̂t+2|t)(xt+2 − x̂t+2|t)
′|Ωt

]

βt+2|t

+σ2
ǫ,t+2|t

= x̂′
t+2|tPβ,t+2|tx̂

′
t+2|t + β′

t+2|tPx,t+2|tβ
′
t+2|t + σ2

ǫ,t+2|t. (24)

Pβ,t+2|t = Et

[

(βt+2 − βt+2|t)(βt+2 − βt+2|t)
′|Ωt

]

can be computed using the delta method

from Pβ̃,t+2|t = GPβ̃,t+1|tG
′ + Σw,t+1|t, where Pβ̃,t+1|t follows from (B13). See Appendix

B for details.

As expected Figure 12 shows forecast uncertainty over two quarters to be generally

higher than that over one quarter. The relative importance of residual uncertainty de-

clines while uncertainty about future economic fundamentals becomes more important

in explaining periods of high forecast uncertainty. Uncertainty about the Taylor rule

coefficients is still the main reason for the increase in overall forecast uncertainty in the

mid 1970s and around 1980. However, as shown in Figure 13 for the longer forecast

horizon uncertainty about future output gap and inflation forecasts is quantitatively

more important than uncertainty about the future policy reaction function for most of

the time after the 1980s.

« insert Figure 12 »

« insert Figure 13 »
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6 Conclusion

This paper has presented a simple model of monetary policy in the U.S. that separates

the forecast uncertainty about future values of the Federal Funds Rate into uncertainty

about the state of the economy in the future and uncertainty about how the central

bank will react to it.

The results from real-time U.S. data show considerable time variation in the parameters

of the policy rule as well as marked changes in the components of Federal Funds rate

forecast uncertainty. In particular, uncertainty about the strength of the Fed’s future

responses to economic fundamentals changed strongly through time and was most

pronounced in mid 1970s and the in the late 1970s through the early 1980s. For a

short forecasting horizon of one quarter uncertainty about future economic conditions

has a very limited impact. However, increasing the forecast horizon to two quarters the

situation is reversed and uncertainty about the future state of the economy becomes

relatively more important.
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Appendix A: The Kalman filter equations

The estimates of the unobserved component x̃t|t−1 = Et−1[x̃t] and of its covariance

matrix Px̃,t|t−1 = Et−1[(x̃t − x̃t|t−1)(x̃t − x̃t|t−1)
′] are formed recursively

x̃t|t−1 = Fx̃t−1|t−1, (A1)

Px̃,t|t−1 = FPx̃,t−1|t−1F
′ + Σζ , (A2)

with x̃t|t = Et[x̃t] and its covariance matrix Px̃,t|t = Et[(x̃t − x̃t|t)(x̃t − x̃t|t)
′].

After the information on Yt has become available, the estimates are updated as

x̃t|t = x̃t|t−1 + Kt|t−1(Yt − Yt|t−1)

= x̃t|t−1 + Kt|t−1(Yt − µ − Hx̃t|t−1)

= x̃t|t−1 + Kt|t−1(H(x̃t − x̃t|t−1) + et) (A3)

Px̃,t|t = Px̃,t|t−1 − Kt|t−1HPx̃,t|t−1, (A4)

with Kt|t−1 = Px̃,t|t−1H
′[HPx̃,t|t−1H

′ + ΣY ]−1.

The second second row of (A3) is used to generate the estimates x̃t|t while the third

row is used to compute the expressions for interest rate uncertainty (see below).

Appendix B: The linearized state-space model for the

Taylor rule

The Taylor rule is rewritten as

it = β0,t + βπ,tπt+2|t−1 + βz,tzt+2|t−1 + f(it−1, βρ,t) + ǫt, (B1)

with
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f(it−1, βρ,t) =
1

1 + exp(−βρ,t)
it−1 ≡ ρtit−1,

and

βt = βt + wt+1, (B2)

where

βt = (β0,t, βπ,t, βz,t, βρ,t)
′.

The Kalman filter is applied to a linearized version of (B1) (see Harvey (1989)): A

Taylor approximation to (B1) around βρ,t = βρ,t|t−1 results in

it = β0,t + βπ,tπt+2|t−1 + βz,tzt+2|t−1 +
1

1 + exp(−βρ,t|t−1)
it−1 (B3)

+
exp(−βρ,t|t−1)it−1

(1 + exp(−βρ,t|t−1))2
(βρ,t − βρ,t|t−1) + ǫt.

This can be written as

ĩt = β0,t + βπ,tπt+2|t−1 + βz,tzt+2|t−1 +
exp(−βρ,t|t−1)it−1

(1 + exp(−βρ,t|t−1))2
βρ,t + ǫt, (B4)

with

ĩt = it −
it−1

1 + exp(−βρ,t|t−1)
+

exp(−βρ,t|t−1)it−1

(1 + exp(−βρ,t|t−1))2
βρ,t|t−1.

In each iteration of the Kalman filter there is now an additional step to compute ĩ

using the estimate from the previous estimation β̃ρ,t|t−1.

The modifications that result from the assumption of an ARCH-process for the error

term are as shown in Kim und Nelson (2006). The error term is included in the

unobserved component. Thus
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ĩt =
[

1 πt+2|t zt+2|t
exp(−βρ,t|t−1)it−1

(1+exp(−βρ,t|t−1))2
1

]

⎡

⎣

βt

ǫt

⎤

⎦ (B5)

= x̃′
tβ̃t, (B6)

and

β̃t = Gβ̃t−1 + w̃t, (B7)

where

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B8)

w̃t =
[

wt ǫt

]

, (B9)

and

Ew̃tw̃
′
t = Σw̃,t =

⎡

⎣

Σw 0

0 σ2
ǫ,t

⎤

⎦ , (B10)

σ2
ǫ,t = α0 + α1ǫ

2
t−1 + α2ǫ

2
t−2. (B11)

The forecasting equations of the Kalman filter become

β̃t|t−1 = Gβ̃t−1|t−1, (B12)

Pβ̃,t|t−1 = GPβ̃,t−1|t−1G
′ + Σw̃,t. (B13)

After it is observed the estimates are updated as
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β̃t|t = β̃t|t−1 + Pβ̃,t|t−1x̃t[x̃
′
tPβ̃,t|t−1x̃t]

−1(̃it − x̃′
tβ̃t|t−1), (B14)

Pβ̃,t|t = Pβ̃,t|t−1 − Pβ̃,t|t−1x̃t[x̃
′
tPβ̃,t|t−1x̃t]

−1x̃′
tPβ̃,t|t−1. (B15)

The covariance matrix of the unobserved states Pβ̃ is based on β̃ = (β0,t, βπ,t, βz,t, βρ,t)
′.

It can be transformed to the covariance matrix for (β0,t, βπ,t, βz,t, ρt)
′ by using the delta

method.

Since I require only the one-sided estimates for x̃ and β the equations for the smoothing

algorithm are not necessary and thus not reproduced here.19

19For more details on the Kalman filter see, for example, Hamilton (1996) or Kim and Nelson (1999).
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Appendix D: Uncertainty measures

Uncertainty about economic conditions in the one-period case

Derivation of (20): A Taylor-Approximation can be used for

E
[

β′
t+1xt+1x

′
t+1βt+1|Ωt

]

≈ β′
t+1|tx̂t+1|tx̂

′
t+1|tβt+1|t

+2E(βt+1 − βt+1|t|Ωt)
′x̂t+1|tx̂

′
t+1|tβt+1|t

+2E(xt+1 − x̂t+1|t|Ωt)
′βt+1|tβ

′
t+1|tx̂t+1|t

+x̂′
t+1|tE

[

(βt+1 − βt+1|t)(βt+1 − βt+1|t)
′|Ωt

]

x̂t+1|t

+β′
t+1|tE

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

βt+1|t

+4x̂′
t+1|tE

[

(βt+1 − βt+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

βt+1|t

≈ β′
t+1|tx̂t+1|tx̂

′
t+1|tβt+1|t (D1)

+x̂′
t+1|tE

[

(βt+1 − βt+1|t)(βt+1 − βt+1|t)
′|Ωt

]

x̂t+1|t

+β′
t+1|tE

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

βt+1|t.

Substituting this expression into (19) yields (20).

Since xt+1 = (1 πt+3|t zt+3|t it) and x̂t+1 = (1 πt+3|t−1 zt+3|t−1 it) I can write

Px,t+1|t = Et

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 pπ,π,t+1 pπ,z,t+1 0

0 pπ,z,t+1 pz,z,t+1 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (D2)

where pπ,π,t+1 = E
[

(πt+3|t − πt+3|t−1)
2|Ωt

]

, pz,z,t+1 = E
[

(zt+3|t − zt+3|t−1)
2|Ωt

]

, and

pπ,z,t+1 = E
[

(πt+3|t − πt+3|t−1)(zt+3|t − zt+3|t−1)|Ωt

]

.

The individual elements can be derived as follows: The inflation forecast the central

bank will react to in the next period is πt+3|t = πt−1 + ∆πt +
∑3

i=1 ∆πt+i|t while
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the forecast of this variable based on information dated t − 1 is πt+3|t−1 = πt−1 +
∑3

i=0 ∆πt+i|t−1. Hence,

πt+3|t − πt+2|t−1 = = (∆πt − ∆πt|t−1) +
3

∑

i=1

(∆πt+i|t − ∆πt+i|t−1)

= 1
′
2

[

(Yt − Yt|t−1) +
3

∑

i=1

(Yt+i|t − Yt+i|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et +
3

∑

i=1

H(x̃t+i|t − x̃t+i|t−1)
]

(D3)

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F + FF + FFF )(x̃t|t − x̃t|t−1)
]

.

At the time the policy rate in period t is announced, uncertainty about πt+3|t, the

estimate of inflation the central bank will react to in the next period stems from two

sources: First, (∆πt−∆πt|t−1) is the error made in estimating the change in the inflation

rate from the previous to the current period. Second,
∑3

i=1(∆πt+i|t − ∆πt+i|t−1) is the

difference between the changes in inflation from period t + 1 to t + 3 forecast by the

central bank at the time it has to set it+1 – and thus formed with knowledge of πt – and

the forecast of the changes in inflation made by the public in t−1 without knowing πt.

With 12 = (0 1)′. Using (10), (11) and (A3) and (C3) we get

πt+3|t − πt+3|t−1 = 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F + FF + FFF )Kt|t−1(H(x̃t − x̃t|t−1) + et)
]

= 1
′
2

[

H(I + (F + FF + FFF )Kt|t−1H)(x̃t − x̃t|t−1) (D4)

+(I + H(F + FF + FFF )Kt|t−1)et

]

,

which can be written as

πt+3|t − πt+3|t−1 = 1
′
2

[

A1,x̃(x̃t − x̃t|t−1) + A1,et
et

]

. (D5)

Using this expression the result is
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pπ,π,t+1 = E
[

(πt+3|t − πt+3|t−1)
2|Ωt

]

= 1
′
2

[

A1,x̃Px̃,t|t−1A
′
1,x̃ + A1,et

ΣY A′
1,et

]

12. (D6)

zt+3|t is the (1,1) element of x̃t+3|t = FFFx̃t|t, while zt+3|t−1 is the (1,1) element of

x̃t+3|t−1 = FFFx̃t|t−1. Hence,

zt+3|t − zt+3|t−1 = 1
′
1FFF (x̃t|t − x̃t|t−1)

= 1
′
1FFFKt|t−1(H(x̃t − x̃t|t−1) + et). (D7)

Defining

zt+3|t − zt+3|t−1 = 1
′
1

[

B1,x̃(x̃t − x̃t|t−1) + B1,et
et

]

, (D8)

with the respective coefficients shown in (C7) leads to

pz,z,t+1 = E
[

(zt+3|t − zt+3|t−1)
2|Ωt

]

= 1
′
1E

[

(x̃t+1|t − x̃t+1|t−1)(x̃t+1|t − x̃t+1|t−1)
′|Ωt

]

11

= 1
′
1

[

B1,x̃Px̃,t|t−1B
′
1,x̃ + B1,et

ΣY B′
1,et

]

11, (D9)

with 11 = (1 0 0 0 0 0 0)′. Uncertainty about the central bank’s forecast

for the output gap is due to the fact that when policy is set next period additional

information in form of observations of πt and yt will be available.

Finally, combining (C5) with (C8) yields

pπ,z,t+1 = E
[

(πt+3|t − πt+3|t−1)(zt+3|t − zt+3|t−1)|Ωt

]

= 1
′
2

[

A1,x̃Px̃,t|t−1B
′
1,x̃ + A1,et

ΣY B′
1,et

]

11. (D10)

All these expressions can be evaluated using the model estimates from section 3 and

the results from the Kalman filter.
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Uncertainty about economic conditions in the two-period case

Px,t+2|t = Et

[

(xt+2 − x̂t+2|t)(xt+2 − x̂t+2|t)
′|Ωt

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 pπ,π,t+2 pπ,z,t+2 pπ,i,t+2

0 pπ,z,t+2 pz,z,t+2 pi,z,t+2

0 pπ,i,t+2 pi,z,t+2 pi,i,t+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (D11)

where pπ,π,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)
2|Ωt

]

, pz,z,t+2 = E
[

(zt+4|t+1 − zt+4|t)
2|Ωt

]

, pπ,z,t+2 =

E
[

(πt+4|t+1 − πt+4|t−1)(zt+4|t+1 − zt+4|t)|Ωt

]

, pi,i,t+2 = E

[

(it+1 − ît+1|t)
2|Ωt

]

, pπ,i,t+2 =

E

[

(πt+4|t+1 − πt+4|t−1)(it+1 − ît+1|t)|Ωt

]

, and pi,z,t+2 = E

[

(it+1 − ît+1|t)(zt+4|t+1 − zt+4|t)|Ωt

]

.

The inflation forecast the central bank will react to two periods in the future is

πt+4|t+1 = πt−1 + ∆πt + ∆πt+1 +
∑4

i=2 ∆πt+i|t+1, while πt+4|t−1 = πt−1 + ∆πt|t−1 +

∆πt+1|t−1 +
∑4

i=2 ∆πt+i|t−1. Thus,

πt+4|t+1 − πt+4|t−1 = (∆πt − ∆πt|t−1) + (∆πt+1 − ∆πt+1|t−1) +
4

∑

i=2

(∆πt+i|t+1 − ∆πt+i|t−1)

= 1
′
2

[

(Yt − Yt|t−1) + (Yt+1 − Yt+1|t−1) +
4

∑

i=2

(Yt+2|t+1 − Yt+2|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(x̃t+1 − x̃t+1|t−1) + et+1

+
4

∑

i=2

H(x̃t+i|t+1 − x̃t+i|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(x̃t+1 − x̃t+1|t−1) + et+1

+H(F + FF + FFF )(x̃t+1|t+1 − x̃t+1|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(x̃t+1 − x̃t+1|t−1) + et+1

+H(F + FF + FFF )(x̃t+1|t+1 − x̃t+1|t + x̃t+1|t − x̃t+1|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(x̃t+1 − x̃t+1|t−1) + et+1

+H(F + FF + FFF )(x̃t+1|t+1 − x̃t+1|t + F (x̃t|t − x̃t|t−1))
]

, (D12)

with 12 = (0 1)′. Using (10) and (11) yields
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πt+4|t+1 − πt+4|t−1 = 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F (x̃t − x̃t|t−1) + ζt+1) + et+1

+H(F + FF + FFF )[Kt+1|t(H(x̃t+1 − x̃t+1|t) + et+1)

+FKt|t−1(H(x̃t − x̃t|t−1) + et))]
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F (x̃t − x̃t|t−1) + ζt+1) + et+1

+H(F + FF + FFF )[Kt+1|t(H(F (x̃t − x̃t|t) + ζt+1) + et+1)

+FKt|t−1(H(x̃t − x̃t|t−1) + et))]
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F (x̃t − x̃t|t−1) + ζt+1) + et+1

+H(F + FF + FFF )[Kt+1|t(H(F (x̃t − x̃t|t−1 − Kt|t−1(H(x̃t − x̃t|t−1)

+et) + ζt+1) + et+1) + FKt|t−1(H(x̃t − x̃t|t−1) + et))]
]

= 1
′
2

[

H(I + F + (F + FF + FFF )[Kt+1|t(HF (I − Kt|t−1H))

+FKt|t−1H])(x̃t − x̃t|t−1)

+(I + H(F + FF + FFF )(FKt|t−1 − Kt+1|tHFKt|t−1))et

+(I + H(F + FF + FFF )Kt+1|t)et+1 (D13)

+H(I + (F + FF + FFF )Kt+1|tH)ζt+1

]

,

where in going from the second to the third step we have added and subtracted xt|t−1

to and from the expression (x̃t − x̃t|t). Define

πt+4|t+1 − πt+4|t−1 = 1
′
2

[

A2,x̃(x̃t − x̃t|t−1) + A2,et
et + A2,et+1

et+1 (D14)

+A2,ζζt+1

]

,

where the respective coefficients are shown in (C13). This leads to

pπ,π,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)
2|Ωt

]

(D15)

= 1
′
2

[

A2,x̃Px̃,t|t−1A
′
2,x̃ + A2,et

ΣY A′
2,et

+ A2,et+1
ΣY A′

2,et+1
+ A2,ζΣζA

′
2,ζ

]

12.

zt+4|t+1 is the (1,1) element of x̃t+4|t+1 = FFFx̃t+1|t+1, while zt+4|t−1 is the (1,1) element

of x̃t+4|t−1 = FFFx̃t+1|t−1. Hence,
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zt+4|t+1 − zt+4|t−1 = 1
′
1FFF (x̃t+1|t+1 − x̃t+1|t−1)

= 1
′
1FFF (x̃t+1|t+1 − x̃t+1|t + x̃t+1|t − x̃t+1|t−1)

= 1
′
1FFF [Kt+1|t(H(x̃t+1 − x̃t+1|t) + et+1) + FKt|t−1(H(x̃t − x̃t|t−1) + et)]

= 1
′
1FFF [Kt+1|t(H(F (x̃t − x̃t|t) + ζt+1) + et+1) + FKt|t−1(H(x̃t − x̃t|t−1) + et)]

= 1
′
1FFF [Kt+1|t(H(F (x̃t − x̃t|t−1 − Kt|t−1(H(x̃t − x̃t|t−1) + et)) + ζt+1) + et+1)

+FKt|t−1(H(x̃t − x̃t|t−1) + et)]

= 1
′
1

[

FFF [Kt+1|tHF (I − Kt|t−1H) + FKt|t−1H](x̃t − x̃t|t−1)

+FFF [FKt|t−1 − Kt+1|tHFKt|t−1]et

FFFKt+1|tet+1 + FFFKt+1|tHζz+1

]

, (D16)

where in going from the fourth to the fifth step we have added and subtracted xt|t−1

to and from the expression (x̃t − x̃t|t). Define

zt+4|t+1 − zt+4|t−1 = 1
′
1

[

B2,x̃(x̃t − x̃t|t−1) + B2,et
et + B2,et+1

et+1 (D17)

+B2,ζζt+1

]

,

with the respective coefficients shown in (C16). Hence

pz,z,t+2 = E
[

(zt+4|t+1 − zt+4|t−1)
2|Ωt

]

(D18)

= 1
′
1E

[

B2,x̃Px̃,t|t−1B
′
2,x̃ + B2,et

ΣY B′
2,et

+ B2,et+1
ΣY B′

2,et+1
+ B2,ζΣζB

′
2,ζ

]

11.

From (C14) and (C17) it follows that

pπ,z,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)(zt+4|t+1 − zt+4|t−1)|Ωt

]

(D19)

= 1
′
2

[

A2,x̃Px̃,t|t−1B
′
2,x̃ + A2,et

ΣY B′
2,et

+ A2,et+1
ΣY B′

2,et+1
+ A2,ζΣζB

′
2,ζ

]

11.

Next are the correlations of the forecast errors for the output gap and inflation with

the forecast error for the interest rate. The latter one is
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it+1 − ît+1|t = x′
t+1βt+1 − x̂′

t+1|tβt+1|t + ǫt+1

= x′
t+1(βt + wt+1) − x̂′

t+1|tβt|t + ǫt+1

= (xt+1 − x̂t+1|t)
′βt|t + x′

t+1(βt + wt+1 − βt|t) + ǫt+1. (D20)

Since x′
t+1 = (1 πt+3|t zt+3|t it) and x̂′

t+3|t = (1 πt+3|t−1 zt+3|t−1 it) the above

expression can be expanded to

it+1 − ît+1|t = (πt+3|t − πt+3|t−1)βπ,t|t + (zt+3|t − zt+3|t−1)βz,t|t

+(βc,t − βc,t|t) + πt+3|t(βπ,t − βπ,t|t)

+zt+3|t(βz,t − βz,t|t) + it(ρt − ρt|t)

+x′
t+1wt+1 + ǫt+1. (D21)

The inflation forecast made in period t + 1 is

πt+3|t = πt−1 + ∆πt +
3

∑

i=1

∆πt+i|t

= πt−1 + 1
′
2

[

Yt +
3

∑

i=1

Yt+i|t

]

= πt−1 + 1
′
2

[

4µ + Hx̃t + et + H(F + FF + FFF )x̃t|t

]

= πt−1 + 1
′
2

[

4µ + H((x̃t − x̃t|t−1) − (x̃t|t − x̃t|t−1))

+et + H(I + F + FF + FFF )x̃t|t

]

= πt−1 + 1
′
2

[

4µ + H(x̃t − x̃t|t−1) − HKt|t−1(H(x̃t − x̃t|t−1) + et)

+et + H(I + F + FF + FFF )(x̃t|t−1 + Kt|t−1(H(x̃t − x̃t|t−1) + et))

]

(D22)

= πt−1 + 1
′
2

[

4µ + H(I − Kt|t−1H + (I + F + FF + FFF )Kt|t−1H)(x̃t − x̃t|t−1)

+(I − HKt|t−1 + H(I + F + FF + FFF )Kt|t−1)et + H(I + F + FF + FFF )x̃t|t−1

]

,

and (πt+3|t − πt+3|t−1) is shown in (C5).

31



zt+3|t = 1
′
1x̃t+3|t

= 1
′
1FFFx̃t|t

= 1
′
1FFF (x̃t|t−1 + Kt|t−1(H(x̃t − x̃t|t−1) + et)) (D23)

= 1
′
1

[

FFFKt|t−1H(x̃t − x̃t|t−1) + FFFKt|t−1et + FFFx̃t|t−1

]

, (D24)

and (zt+3|t − zt+3|t−1) is shown in (C8).

Hence,

pπ,i,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)(it+1 − it+1|t)|Ωt

]

= 1
′
2

[

A2,x̃Px̃,t|t−1A
′
1,x̃βπt|t

+ A2,et
ΣY A′

1,et
βπt|t

]

12, (D25)

+1
′
2

[

A2,x̃Px̃,t|t−1B
′
1,x̃βzt|t

+ A2,et
ΣY B′

1,et
βzt|t

]

11.

and

pi,z,t+2 = E
[

(zt+4|t+1 − zt+4|t−1)(it+1 − it+1|t)|Ωt

]

= 1
′
1

[

B2,x̃Px̃,t|t−1A
′
1,x̃βπt|t

+ B2,et
ΣY A′

1,et
βπt|t

]

12, (D26)

+1
′
1

[

B2,x̃Px̃,t|t−1B
′
1,x̃βzt|t

+ B2,et
ΣY B′

1,et
βzt|t

]

11.

Finally, pi,i = E

[

(it+1|t − ît+1|t−1)
2|Ωt

]

is known from the one-step-ahead forecast un-

certainty.
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Figure 1: Output gap estimates from historical and real time data
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Figure 2: Output gap estimates from different vintages of real time data

vintage 2007Q2
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Figure 3: Actual inflation and real-time inflation forecasts
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Figure 4: Real-time estimates of output-inflation equation coefficients
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Figure 5: Real-time estimates of γ

39



Figure 6: One-sided coefficient estimates
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Figure 7: Real-time Federal Funds rate forecasts and forecast errors
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Figure 8: One-quarter ahead forecast uncertainty for Federal Funds Rate
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Figure 9: One-quarter ahead residual forecast uncertainty for Federal Funds Rate
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Figure 10: One-quarter ahead forecast uncertainty for Federal Funds Rate (ho-
moskedastic errors)
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Figure 11: One-quarter ahead forecast uncertainty for Federal Funds Rate (ho-
moskedastic vs. heteroskedastic errors)
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Figure 12: Two-quarter ahead residual forecast uncertainty for Federal Funds Rate
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Figure 13: Two-quarter ahead residual forecast uncertainty for Federal Funds Rate
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