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Abstract: 

 
In this paper we introduce an analyzing procedure using the Kullback-Leibler 

information criteria (KLIC) as a statistical tool to evaluate and compare the predictive abilities of 
possibly misspecified density forecast models. The main advantage of this statistical tool is that 
we use the censored likelihood functions to compute the tail minimum of the KLIC, to compare 
the performance of a density forecast models in the tails. Use of KLIC is practically attractive as 
well as convenient, given its equivalent of the widely used LR test. We include an illustrative 
simulation to compare a set of distributions, including symmetric and asymmetric distribution, 
and a family of GARCH volatility models. Our results on simulated data show that the choice of 
the conditional distribution appears to be a more dominant factor in determining the adequacy and 
accuracy (quality) of density forecasts than the choice of volatility model.  
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1 Introduction 
 
It is often argued that forecasts should be evaluated in an explicit decision context, that is, in 

terms of econometrics the consequences that would have resulted from using the forecasts to 

solve a sequence of decision problems. The incorporation of a specific loss function into the 

evaluation process would focus attention on the features of interest to the forecast user, perhaps 
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also showing the optimality of a particular forecast. In finance there is usually a more obvious 

profit and loss criterion, and there is a long tradition of forecast evaluation in the context of 

investment performance. This extends to volatility models but not yet to density forecasts (West 

et al 1993). Here there are relatively few results based on explicit loss functions. The basic result 

that a correct forecast is optimal regardless of the form of the loss function is extended from point 

forecasts to event probability forecasts by Granger and Pesaran (1996) and to density forecasts by 

Diebold et al. (1998). The latter authors also show that there is no ranking of sub-optimal density 

forecasts that holds for all loss functions. The problem of the choice of forecast would require the 

use of loss functions defined over the distance between forecast and actual densities. Therefore, 

the objective of density forecasters is to get close to the correct density in some sense, and 

practical evaluations are based on the same idea. 

The issues described in those working papers stem from the fact that the prediction 

produced by a density forecasting model can rarely be compared to the true generating 

distribution in real world problems. Instead, only a single instance of the generating distribution, 

the actual outcome, is available to the forecaster to optimize and evaluate their model. 

Conventional diagnostics for evaluating point predictions such as the root-mean-squared error 

(RMSE) and others fail to assess probabilistic predictions. Furthermore, the ranking of different 

density forecasting models is difficult because a ranking depends on the loss function of the user 

(Diebold et al. 1998). For example, a user’s loss function could be non-linear and/or asymmetric. 

In such cases the mean and variance of the forecast densities are not sufficient to rank predictive 

models. For example, a user with an asymmetric loss function would be particularly affected by 

the accuracy of a model’s predictions of the skew in the conditional densities. Diebold et al. 

(1999) suggests that the problem of ranking density forecasts can be solved by assuming that the 

correct density is always preferred to an incorrect density forecast. Using the true density as a 

point of reference it is possible to rank densities relative to the true densities to determine the best 

models to use. Therefore, in the absence of a well defined loss function, the best model is the one 

that approximates the true density as well as possible. Diebold et al. (1998) go on to suggest the 

probability integral transform (PIT) as a suitable means of evaluating density forecasts in this 

way. 

The research on evaluating each density forecast model has been very versatile since the 

seminal paper of Diebold et al. (1998), however there has been much less effort in comparing 

alternative density forecast models. Considering the recent empirical evidence on volatility 

clustering and asymmetry and heavy-tailed in financial return series, we believe that using a 

formal test in the context of density forecasts of a given model compared with alternative 
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distribution and volatility specifications, will contribute to the existing literature. Despite the 

burgeoning interest in and evaluation of volatility forecasts, a clear consensus on which 

distribution and/or volatility model specification to use has not yet been reached even for finance 

practitioners and risk professionals. As argued in (Poon & Granger 2003), “most of the volatility 

forecasting studies do not produce very conclusive results because only a subset of alternative 

models are compared, with a potential bias towards the method developed by the authors”. It is 

further claimed that, lack of a uniform forecast evaluation technique makes volatility forecasting 

a difficult task. Being able to choose the most suitable volatility and distribution specifications is 

a more demanding task. In this paper we demonstrate that this gap can be filled by a rigorous 

density forecast comparison methodology. 

 Therefore the main aim of this paper is to use and utilize the Kullback-Leibler 

Information Criterion (KLIC) as a unified test to evaluate, compare and assess which volatility 

model and/or distribution are statistically more appropriate to mimic the time series behavior of a 

return series. This generality follows from appreciation, that the (Berkowitz 2001) Likelihood 

Ratio (LR) test can be related to the KLIC (Bao et al. 2006), a well-respected measure of 

“distance” between two densities. As the true density is unknown, devising an equivalent LR 

evaluation test based on the PIT is computationally convenient. An extension to the aim of this 

paper is to modify the proposed test to compare the predictive abilities of alternative density 

forecast models in the tail area. For this purpose, a tail minimum KLIC discrepancy measure 

based on the censored likelihoods is used as a forecast loss function in the framework of (White 

2000) and (Hansen 2001) reality check. 

The structure of the remainder of this paper is as follows. We review the statistical 

evaluation of individual density forecasts using the PITs in section 2 and develop the distance 

measure based on the KLIC for candidate models in section 3. In section 4 we explain and discuss 

how the Berkowitz LR test can be re-interpreted as a test of whether the KLIC equals zero. 

Section 5 shows how the KLIC can be used to compare statistically the accuracy of two 

competing density forecasts applied to simulated data. Section 6 concludes the paper. 

2 Probability Integral Transform 

Statistical evaluations of real time density forecasts have recently begun to appear, although the 

key device, the probability integral transform, has a long history. The literature usually cites 

(Rosenblatt 1952) for the basic result, and the approach features in several expositions from 

different points of view, such as (Dawid 1984). For a sample of n one-step-ahead forecasts and 

the corresponding outcomes, the probability integral transform of the realized variables with 

respect to the forecast densities is defined as 
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It is well known that if (.)tf  coincides with the true density (.)tg , then the sequence {zt}t = 1 is iid 

U [0,1]. If the transformed time series {zt} is not iid U[0,1], then (.)tf is not an optimal density 

forecast model (Diebold et al. 1999). To describes the distribution, ( )t tq z , of the probability 

integral transform. Let ( )t tg x  be the true density of xt, and let ( )t tf x  be a density forecast of xt, 

and let zt be the probability integral transform of xt with respect to ( )t tf x . Then assuming that 
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−∂ ∂  is continuous and non-zero over the support of xt, zt has unit interval with density; 

 

( )

( )
( )

1
1

1

1

( )
( ) ( )

( )

( )

t t
t t t t t

t

t t t

t t t

F z
q z g F z

z

g F z

f F z

−
−

−

−

∂
=

∂

=

 

where 1( )
( )  and ( ).t t

t t t t t

t

F x
f x x F z

x

−∂
= =

∂
 Therefore, in particular, a key fact; if ( )t tf x = ( )t tg x , 

then (0,1)tz ∈  and ( )t tq z is simply the U(0,1) density. This idea dates at least to Rosenblatt 

(1952). Therefore, a natural test of optimality of a density forecast model is to test the iid U[1,0] 

properties of the series {zt}. Our task, however, is not to evaluate a single model, but to compare 

a battery of competing models. Since our objective, is to compare the out-of-sample predictive 

abilities among competing density forecast models. Suppose that, there are l+1 models 

(k=0,1,…,l) in a set of competing models, possibly misspecified. To establish the notation with 

the model index k, let the density forecast model k (k=0,1,…,l) be denoted by , ( )k tf x . We used 

to sub-samples { } 1

R

t t
z

=
 and { } 1

T

t t R
z

= +
, the first sample to estimate the unknown parameters and 

the second sub-sample to check if the transformed PITs are iid N(0,1). That is, we first construct  

, ,

,
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where the inverse normal transform of the PIT is  

 * 1
, ,k t k t

z z
−= Φ                                                           (3)  
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and (.)Φ is the CDF of the standard normal. In other words, testing the departure of 

{ }*
, 1

T

k t t
z

=
from iid N(0,1) is equivalent to testing the distance of the forecasted density from the 

true –unknown- density. Consequently various single and joint test of U(0,1), N(0,1) and iid have 

been employed in empirical studies. These include Kolmogorov-Smirnov, Anderson-Darling and 

others as shown in section 5. 

3 The Distance Measure 

The test for adequacy of a postulated distribution may be appropriately measured by  Kullback 

Information Criterion (Kullback & Leibler 1951) divergence measure between two conditional 

densities, [ ]( ; ) ln ( ) ln ( )
t t t t

D g f E g x f x= − , where the expectation is with respect to the true 

distribution. Following (Vuong 1989), we define the distance between a model and the true 

density as the minimum of KLCI 

 
( )

( ; ) ( ) ln  or
( )

t t
KLCI t t

t t

g x
D g f g x dx

f x

 
=  

 
∫  (4) 

                                        [ ]( ; ) ln ( ) ln ( )
KLCI t t t t

D g f E g x f x= −  (5) 

The smaller this distance the closer the density forecast is to the true density; ( ; ) 0D g f = if and 

only if ( ) ( )t t t tg x f x= .However, ( ; )D g f is generally unknown, since we can not observe 

(.)g and hence the expectation, it can be consistently estimated by 

 [ ]
1

1
( ; ) ln ( ) ln ( )

T

KLCI t t t t

t

D g f g x f x
T =

= −∑  (6)  

But we still do not know (.)g . The task of determining whether ( ) ( )t t t tg x f x= appear difficult, 

perhaps hopeless, because (.)g is never observed, even after the fact. Moreover, and importantly, 

the true density (.)g may exhibit structural change, as indicated by its time subscript. For this, we 

utilize the probability integral transform (PIT) of the actual realizations of the process with 

respect to the model’s density forecast and hence to compare possibly misspecified models in 

terms of their distance to the true model. 

4 Relating LR test to the KLIC 

Re-interpreting the Berkowitz LR test as a test of whether the KLIC ‘distance’ between the true 

(unknown) density and the forecast density equals zero. Note the following equivalence 

(Berkowitz 2001): 

 * *
, , ,ln ( ) ( ) ln ( ) ( )t t k t t t k t t k tg x f x p z zφ   =     (7) 
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where (.)p is the unknown density of *
,k t

z , (.)φ is the standard normal density. In other words, 

testing the departure of { }*
, 1

T

k t t
z

=
from iid N(0,1) is equivalent to testing the distance of the 

forecasted density from the true –unknown- density ( )t tg x . Along with (Bao et al. 2006), we 

believe that testing whether (.)p  is iid N(0,1) is both more convenient and more sensible than 

testing the distance between ( )t tg x  and , ( )k t tf x  since we do not know ( )t tg x . To test the null 

hypothesis that ( )t tg x = , ( )k t tf x  we exploit the theoretical framework of West (1996) and White 

(2000). Consider the loss differential  

 * *
, , ,ln ( ) ln ( ) ln ( ) ln ( ) ;( 1,..., )t t t k t t t k t k td g x f x p z z t Tφ  = − = − =     (8) 

the null hypothesis of the density forecast being correctly specified is then  

 0 : ( ) 0 0t KLICH E d D= ⇒ =  (9) 

The sample mean d  is defined as: 

 * *
, ,

1

1 ln ( ) ln ( )
T

KLIC t k t k t

t

d D p z z
T

φ
=

 = = − ∑  (10) 

To test the hypothesis about d  by a suitable central limit theorem we have the limiting 

distribution ( )( ) (0, )tT d E d N− → Ω where in general expression for the covariance matrix 

Ω  is rather complicated because it allows for parameter uncertainty (West 1996).  However, 

ignoring parameter uncertainty (which asymptotically we can as the sample size used to estimate 

the model’s parameter grows relative to T; West (1996, Theorem 4.1)) Ω  reduces to the long run 

covariance matrix associated with 
td  or 2π the spectral density of ( )( )

t
d E d− at frequency zero 

as is the case showed by  (Diebold & Mariano 1995). This long run covariance matrix 
dS is 

defined as 0 1
2d jj

S γ γ∞

=
= + ∑ , where ( )

j t t jE d dγ −= . Alternatively, to this asymptotic test, 

White (2000) suggested and justified using “bootstrap realty check” , a small sample test based on 

the bootstrap is called the “realty check p-value” for data snooping. This would involve re-

sampling the test statistic 
KLICd D= by creating R bootstrap samples from { } 1

T

t t
d

=
 accounting for 

dependence by using the so-called stationary bootstrap that resample using blocks of random 

length. 
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The test statistics 
KLICD  is proportional to the LR test of Berkowitz (2001), assuming 

normality of
tε . In terms of(10), we follow Berkowitz (2001) by specifying { }*

, 1

T

k t t
z

=
as an AR(1) 

process 

 * *
1t t t

z Zρ ε−= +  (11) 

where 2( )tVar ε σ= , ρ is a vector of parameters, and 
tε is iid distributed. In Berkowitz (2001), 

tε is assumed to be normally distributed. Actually, if we specify (.)p such as iid and normal, then 

our comparison based on the distance measure (10)  will suffer the same criticism of the LR test 

of Berkowitz, as pointed out by (Clements & Smith 2000; Bao et al. 2006). A remedy to such 

criticism is to consider more general forms for *
,( )

t k t
p z . Bao et al.(2006) suggested the use of the 

seminonparametric (SNP) density of (Gallant & Nychka 1987) for 
tε  in the AR process of the 

order K  
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              (12)       

A change of variables using the location-scale transformation, y Rε µ= + , where R is an 

upper triangular matrix and µ is an M-vector. The change of variable formula applied to 

the location-scale transformation, the density of *
,k t

z is  

 

 
* *
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,

( ) /
( )

t k t t

t k t

p z Z
p z

ρ σ

σ
− − =  (13)                

thus, the estimated minimum KLCI divergence measure is  
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1
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ln ln ( )
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KLIC k t

t

p z Z
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T

ρ σ
φ

σ
−

=
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∑  (14) 

The LR test statistics of the adequacy of the density forecast model , (.)
k t

f  in (Berkowitz 

2001) is simply the above formula with (.) (.)p φ= . Rather than evaluating the 

performance of the whole density we can also evaluate in any regions of particular 

interest. Risk managers and other practitioner in finance care more about the extreme 

values in the lower tail (larger loss) than about the values in other regions of the 
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distribution (small loss/gain). Therefore, a density forecast model that accurately predicts 

tail events, is of more interest in finance. For a complete evaluation of these forecasts, we 

need to integrate this approach with testing procedures applicable to the tails of the 

distribution. To do so, we can easily modify 
KLICD  distance measure for the tail parts. We 

focus on the lower tails only. Therefore, we define   

 
1 *

,*
, * *

, ,

( ) if  

if 
k t

k t

k t k t

z
z

z z

τ
τ

α τ τ
τ

−Φ ≡ ≥=  <
 (15) 

Let I(.) denote and indicator function that takes (1) if its argument is true and 0 otherwise, the 

distribution function for *
,k t

z
τ  can be constructed as  

 

** ,,
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, 1* 1
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( ) /
( ) 1

k t
k t

I zI z

k t tt
t k t

p z ZZ
p z p

ττ

τ τ
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−−

  −  −   = −  
     

 (16) 

Therefore, the teal minimum 
KLICD  divergence can be estimated analogously  

 * *
, ,

1

1 ln ( ) ln ( )
T

KLIC t k t k t

t

D p z z
T

τ τ τ τ τφ
=

 = − ∑  (17) 

where [ ]
**

,,
1( )1( )* *

, ,( ) 1 ( ) ( )
k tk t

zz

k t k t
z z

τττ τφ τ φ
<≥  = −Φ    

A closely related approach to compare density forecasts statistically have been proposed 

by (Corradi & Swanson 2004). Their approach is to compare the cumulative distribution function 

(CDF) of the unknown density to the empirical distribution (EDF) of the known density. The 

authors showed that, the distance of the unknown density to the true density is measured by the 

mean square error of the CDF and the EDF, integrated out over the domain of the series. But 

rather than rely on the PIT’s –our case- they estimate the true density or CDF empirically. In our 

opinion, benefits from based on the PIT’s and not relying on estimation of gt(xt). The relationship 

in (7) enable us to map the misspecification of a model to the deviation of { }*
, 1

T

k t t
z

=
from iid 

N(0,1). The equivalence relationship (7) also tells us that LR statistics based on the transformed 

PIT’s is actually an estimate of the KLIC divergence measure between the model and the true 

distribution. In additional, we believe these tests – over a specific region- which forecast will be 

more accurate at a future date rather than, as with the unconditional tests. 

5 Applications to Simulated Data 

Before proceeding to apply our density forecast evaluation methods to real data, it is useful to 

examine their efficacy on simulated data, for which we know the true data generating process.  
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We propose a simple and general simulation approach that examine both model adequacy and 

forecast accuracy. Returns are generated that match the statistical features of a financial asset, 

hence we examine data simulated from a realistic fat-tailed distribution with GARCH process 

designed to mimic high-frequency financial asset return data (Bollerslev 1986). Specifically, we 

use a GARCH(1,1) data generating process, the conditional density of which is a standardized 

Student’s-t with six degrees of freedom, 

( ) [ ] 1/ 21/ 2
/( 2)t t vy h v v t

−= −  

2
0 1 1 1 1t t t

h y hα α β− −= + +  

We create a simulated series of length 8000, chosen to mimic the sample sizes typical of high-

frequency financial data, and we choose the parameters in accordance with those typically 

obtained when fitting GARCH models to high-frequency financial asset returns. Given starting 

values α0 = 0.01, α1 = 0.13, β1 = 0.86, the simulated data is plotted in Figure 1. The persistence in 

conditional volatility is visually obvious. Then we estimate the GARCH parameters using the 

standard GARCH optimization technique on the first 4000 observations, the remaining 4000 

observation are used for out-of-sample forecast. 

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

0
2

0
4

0
6

0

 
 

Figure 1. Simulated GARCH(1,1)-t, the gray region indicates  

data points used for out-of-sample forecast evaluation. 

  
 

Through this section we demonstrate the utilization of the PITs and examine the usefulness of 

density forecast evaluation methods in assessing three density forecasts with two volatility 

models particularly GARCH(1,1) and EGARCH(1,1). 

Then, we evaluate forecasts that are based on the correctly specified volatility model GARCH 

estimated under three assumptions; (a) incorrect assumption that the conditional density is 
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Normal, (b) correct assumption that the conditional density is fat-tailed (student-t) and (c) 

incorrect assumption that the conditional density is fat and skewed (Skewed-t). Figure 2 shows 

the resulting PIT histograms form forecasting with GARCH(1,1) combined with three 

distributions and randomly sampled from the data generating distribution t(6) were used to 

determine each PIT histogram. First we evaluate GARCH-Normal, the histograms display peaks 

at either end and a hump in the middle, they have the butterfly shape, indicating the departure 

form U(0,1). To evaluate whether z is iid, the correlograms are obtained, figure 3 indicate that the 

N(0,1) forecasts shows no evidence of neglected conditional volatility, as expected, that the 

conditional GARCH-N(0,1) model delivers consistent estimates of the conditional variance 

parameters, in spite of the fact that the conditional density is misspecified (Bollerslev & 

Wooldridge, 1992). 
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that GARCH is an adequate volatility model and student-t makes an accurate density forecast 

model. 

In additional to modeling the simulated data with GARCH(1,1) model, we suggest to 

model the data with a more sophisticated misspecified volatility model. The EGARCH model is 

well known, and extensively used in the literature, therefore, we use EGARCH(1,1) model as a 

misspecified volatility model combined with three density forecasts particularly, Normal, student-

t and Skewed-t. The PIT histogram for the density forecasts are shown in Figure 4. The results in 

Figure 4 with EGARCH model are similar to the results drawn from GARCH in spite of the fact 

that the volatility model is misspecified. The correlograms in Figure 5 also remain good. 
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whether the maximum difference between the empirical CDF of the{ }, 1

T

k t t
z

=
are significantly 

different from the theoretical uniform CDF. The Kolmogorov-Smirnov D test statistic and the 

other test offers significant evidence against the null hypothesis of uniformity. Moreover, 

GARCH-t with a smallest A2 score of (0.697) has comparable statistical consistency with the 

other density forecast models. Anderson-Darling test is known as a quadratic test because it is 

based upon a weighted square of the vertical distance between the empirical stepwise density 

function and target cumulative density function. It differs from the well known Kolmogorov-

Smirnov test, which finds the maximum vertical distance between the empirical and target 

density.  

 

Table 1. Uniform distributional tests U(0,1) of probability integral transform (z) from  
              GARCH(1,1) model 
 
Test Statistic D A2 W2 U2 V 
      
Normal 0.084406 

(0.0000) 
72.49528 
(0.0000) 

12.58512 
(0.0000) 

12.57397 
(0.0000) 

0.164574 
(0.0000) 

Student-t 0.010265 
(0.7913) 

0.696606 
(0.5617) 

0.075248 
(0.7198) 

0.069698 
(0.4972) 

0.018855 
(0.5416) 

Skewed-t 0.159017 
(0.0000) 

19647.37 
(0.0000) 

32.23230 
(0.0000) 

21.45346 
(0.0000) 

0.243267 
(0.0000) 

      
      
While, the results in Table 2, on the misspecified volatility model (EGARCH) has a strong 

rejection of the null hypothesis for both Normal and Skewed-t density forecast, there are mixture 

of results with Student-t density forecast. The failure to reject uniformity for the EGARCH 

specification was probably due to a lack of statistical power, rather than to the good fit of the 

density forecast to the actual density. However, GARCH-t still holds smallest A2 score of (0.697) 

which make it statistically consistence compare to (3.814) with EGARCH-t. 

 

Table 2. Uniform distributional tests U(0,1) of probability integral transform (z) from    
              EGARCH(1,1) model 
 
Test Statistic D A2 W2 U2 V 
      
Normal 0.250635 

(0.0000) 
444.7028 
(0.0000) 

95.45883 
(0.0000) 

31.86551 
(0.0000) 

0.252287 
(0.0000) 

Student-t 0.021530 
(0.0483) 

3.814787 
(0.0107) 

0.606202 
(0.0216) 

0.599987 
(0.0000) 

0.041103 
(0.0001) 

Skewed-t 0.408080 
(0.0000) 

445868.5 
(0.0000) 

257.9255 
(0.0000) 

49.48348 
(0.0000) 

0.408080 
(0.0000) 
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Therefore, the issue of model selection is a critical one. However, a potential problem 

arises in the application of PIT approach; it is possible that an incorrect density model could have 

a uniform z series. (Hamill 2000), a uniform z series is a necessary but not sufficient criterion for 

determining that the model is reliable. And it becomes more problematic when using more than 

one volatility model combined with variant density forecasts. Therefore, a visualize graph 

provides a good indicator for uniformity test in the case of single volatility model combined with 

variant density forecasts.  On the other hand, goodness-of-fit tests for uniformity could be miss-

leading due to their weakness and lack of statistical power. In this case the accuracy distance 

measure (KLIC) should highlight the existence of an incorrectly specified model. However, it is 

important to be aware of this point. By claiming that most of the testing procedures outlined 

above are not powerful enough, we first apply a transformation to the PIT series and then obtain 

the distance measure with White’s (2000) and Hansen (2001) reality check-p-values as shown in 

Table 3.   

 
Table 3. The 

KLICD  distance measure and the Reality Check-p- values 

 
Panel A 
GARCH model Normal Student-t Skewed-t 
    
100% 0.02764370 

0.1001 
0.0000 

0.00006246 
1.0000 
1.0000 

0.002468316 
0.3068 
0.2112 

10% 0.017791262 
0.0000 
0.0000 

0.001133953 
0.9492 
0.9067 

0.0170185444 
0.5109 
0.3702 

5% 0.012090814 
0.0000 
0.0000 

0.000750008 
1.0000 
0.9984 

0.00110854240 
0.8709 
0.7290 

1% 0.008046276 
0.0000 
0.0000 

0.002452157 
0.9021 
0.8112 

0.0024593474 
0.8999 
0.8099 

 
Panel B 
EGARCH model Normal Student-t Skewed-t 
    
100% 0.040761623 

0.0020 
0.0000 

0.0000946779 
1.0000 
0.9653 

0.002468316 
0.2968 
0.0152 

10% 0.015568908 
0.0004 
0.0000 

0.001169720 
0.8952 
0.8089 

0.017043230 
0.5002 
0.3028 
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5% 0.013651425 
0.0000 
0.0000 

0.0007609941 
0.9900 
0.9209 

0.0011095617 
0.7987 
0.7091 

1% 0.009330717 
0.0000 
0.0000 

0.002649095 
0.9001 
0.7864 

0.002597212 
0.7979 
0.6942 

    
Critical values: 
at 10% (LR=19.81, 

KLICD = 0.00247625) 

at 5% (LR=22.36, 
KLICD =0.002795) 

at 1% (LR=27.69, 
KLICD =0.00346125) 

 

To evaluate the adequacy of each model in Table 3 we use KLIC measure to compare the 

different density forecast models. Noting that KLIC loss 
KLICD  is related to the LR, we may use 

the LR test statistic to assess the adequacy of each single model. Therefore, to evaluate the 

adequacy of each density forecast, the LR is to test the null hypothesis that { }, 1

T

k t t
z

=
follows iid 

N(0,1). The critical values for the LR statistic are 19.81 (at 10%), 22.36 (at 5%) and 27.69(at 

1%).  Thus, the critical values for 
KLICD  are the critical values of LR divided by 2(n-3), which 

are 0.0025 (at 10%), 0.0028 (at 5%) and 0.0035 (at 1%) for n=4000. Therefore, if the value of  

KLICD  reported in the table is greater than say (0.0028), then the model can be rejected as an 

adequate density forecast model. Note that, a smaller value of 
KLICD  the first number in each cell 

indicates a lower sample loss and hence a better density forecast model from a pair of volatility 

model and distribution. While, the larger reality check-p- value indicate the better density forecast 

model corresponding to the cell, as we fail to reject the null hypothesis that the other 5 competing 

models is no better than this model. In general, a low 
KLICD  should parallel with high reality 

check-p- value, however this relationship is not perfect since the testing not only depends on the 

point value of the loss differential, but also it depends on the variance. 

In Table 3 the results for 100%, 10% , 5%  and 1% tails of the simulated data are 

presented in Panels A and B. As expected that the best density forecast model is GARCH-t and 

out perform the rest of the density models, for 100% distribution GARCH-t has the lowest 

KLICD = 0.00006246 with White’s p-value=1 and Hansen adjusted p-value=1.. Turning to 10% 

tail, Student-t with GARCH specification produces the best performance with
KLICD = 

0.001133953. Similar results are obtained for 5% and 1% tail distributions, which support the true 
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data generating process of GARCH(1,1)-t. None of the other distribution and volatility model 

produce adequate density forecast 

 

6 Conclusions 

In recent years, there has been increasing concern among researchers, practitioners and regulators 

over how to evaluate models of financial risk. This paper has analyzed and used the Kullback-

Leibler Information Criterion (KLIC) as a unified statistical tool to evaluate, and compare density 

forecasts. Computation of the KLIC is facilitated by exploiting its relationship with the well-

known Berkowitz LR test for the evaluation of individual density forecasts based on the PITs. To 

compare the performance of density forecast models in the tails, we also use a censored LR 

statistics to estimate the tail minimum
KLICD . 

The testing framework on the simulated data is flexible and intuitive. Moreover, the 

KLICD  testing approach appears to deliver extremely good power. Our findings based on the 

simulated data confirm that successful density forecast depends much more heavily on the choice 

of distributional model than the choice of volatility model. 

 

Reference: 

BAO, Y., T. H. LEE and B. SALTOGLU (2006): Comparing Density Forecast Models. Journal of 

Forecasting 26(3), 203-225. 
BERKOWITZ, J. (2001): Testing density forecasts, with applications to risk management. Journal 

of Business and Economic Statistics 19(4), 465-474. 
BOLLERSLEV, T. (1986): Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics 31(3), 307–327. 
BOLLERSLEV, T. and J. WOOLDRIDGE (1992): Quasi maximum likelihood estimation and 

inference in dynamic models with time varying covariances Econometric Reviews 5. 
CLEMENTS, M. P. and J. SMITH (2000): Evaluating the forecast densities of linear and non-linear 

models: applications to output growth and unemployment. Journal of Forecasting 19(4), 
255-276. 

CORRADI, V. and N. R. SWANSON (2004): "Predictive Density Evaluation, in the Handbook of 
Economic Forecasting, G. Elliott, CWJ Granger and A. Timmermann ed. s," in.: North 
Holland Press, Amsterdam. 

D'AGOSTINO, R. B., M. A. STEPHENS and R. B. D'AGOSTINO (1986): Goodness-Of-Fit-

Techniques: Marcel Dekker. 
DIEBOLD, F. X., T. A. GUNTHER and A. S. TAY (1998): Evaluating Density Forecasts with 

Applications to Financial Risk Management. International Economic Review 39(4), 863-
883. 

DIEBOLD, F. X. and R. S. MARIANO (1995): Comparing Predictive Accuracy. Journal of Business 

& Economic Statistics 13(3), 253-263. 
DIEBOLD, F. X., A. S. TAY and K. WALLIS (1999): "Evaluating Density Forecasts of Ination: the 

Survey of Professional Forecasts," in.: Festschrift in Honor of CWJ Granger, Oxford: 
Oxford University Press, 76-90. 



 18 

FERNANDEZ-VILLAVERDE, J. and J. RUBIO-RAMÍREZ (2004): Comparing Dynamic Equilibrium 
Models to Data: A Bayesian Approach. Journal of Econometrics 123(1), 153–187. 

GALLANT, A. R. and D. W. NYCHKA (1987): Semi-Nonparametric Maximum Likelihood 
Estimation. Econometrica 55(2), 363-390. 

GRANGER, C. W. J. and M. H. PESARAN (1996): A Decision-theoretic Approach to Forecast 

Evaluation: University of Cambridge, Department of Applied Economics. 
HAMILL, T. M. (2000): Interpretation of Rank Histograms for Verifying Ensemble Forecasts. 

Monthly Weather Review 129(3), 550-560. 
HANSEN, P. R. (2001): An unbiased and powerful test for superior predictive ability. Manuscript, 

Brown University. 
KULLBACK, S. and R. A. LEIBLER (1951): On Information and Sufficiency. The Annals of 

Mathematical Statistics 22(1), 79-86. 
LI, F. and G. TKACZ (2001): Evaluating Linear and Non-linear Time-varying Forecast-

combination Methods: Bank of Canada. 
NOCETI, P., J. SMITH and S. HODGES (2003): An evaluation of tests of distributional forecasts. 

Journal of Forecasting 22(6-7), 447-455. 
POON, S. H. and C. W. J. GRANGER (2003): Forecasting Volatility in Financial Markets: A 

Review. Journal of Economic Literature 41(2), 478-539. 
ROSENBLATT, M. (1952): Remarks on a Multivariate Transformation. The Annals of 

Mathematical Statistics 23(3), 470-472. 
SARNO, L. and G. VALENTE (2004): Comparing the accuracy of density forecasts from competing 

models. Journal of Forecasting 23(8), 541-557. 
TAY, A. S. and K. F. WALLIS (2000): Density forecasting: a survey. Journal of Forecasting 19(4), 

235-254. 
VUONG, Q. H. (1989): Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. 

Econometrica 57(2), 307-333. 
WEST, K. D. (1996): Asymptotic Inference about Predictive Ability. Econometrica 64(5), 1067-

1084. 
WEST, K. D., H. J. EDISON and D. CHO (1993): A utility-based comparison of some models of 

exchange rate volatility. Journal of International Economics 35(1-2), 23–46. 
WHITE, H. (2000): A Reality Check for Data Snooping. Econometrica 68(5), 1097-1126. 
 
 


	2 Probability Integral Transform

