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Abstract. We analyze growth dynamics in an economy where a private good

can be consumed as a substitute for a free access environmental good. In

this context we show that environmental deterioration may be an engine of

economic growth. To protect themselves against environmental deterioration,

economic agents are forced to increase their labour supply to increase the

production and consumption of the private good. This, in turn, further depletes

the environmental good, leading economic agents to further increase their labour

supply and private consumption and so on. This substitution process may give

rise to self-enforcing growth dynamics characterized by a lack of correlation

between capital accumulation and private consumption levels, on one side, and

economic agents’ welfare, on the other.

Furthermore, we show that agents’ self-protection consumption choices can

generate indeterminacy; that is, they can give rise to the existence of a continuum

of (Nash) equilibrium orbits leading to the same attracting fixed point or periodic

orbit.

Keywords: self-protection choices, indeterminacy, undesirable economic

growth.

1 Introduction

Private goods can be consumed by individuals to defend themselves from the

deterioration of environmental resources. Classic examples of these types of

goods are water or air filters, mineral water, devices for protection from noise
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pollution generated by industrial activities or urban traffic (for example, double-

glazing) and drugs to treat respiratory illnesses caused by air pollution. Certain

consumption expenditures on the part of city dwellers are conditioned, at least

in part, by defensive reasoning. Consider the choice of using a car as a means

of transport, a choice which may be caused by air pollution: individuals who

would have preferred to go by bicycle are forced to use their car because the air

is unbreathable. The shortage of parks and areas where children can play without

the constant supervision of adults imposes further consumption expenditures. The

massive use of home entertainment by children is partly a result of the lack of

such areas, of the degradation of the urban environment and of the need to protect

children from the dangers of urban traffic. The shortage of green space can induce

individuals to purchase an entrance ticket for a protected nature area or to spend

money on a day out to find a place to enjoy nature and leisure activities. Another

possible expenditure could be joining a gym, substituting physical activity in a

park in the open air with exercise carried out in a sports centre.

However, these are only “textbook” examples; the literature of environmental

economics suggests that the category of defensive environmental spending can

be interpreted in a very broad manner, comprising a vast range of consumptions

that derive in part from environmental degradation, but are not merely a response

to it. The literature on this argument (see, e.g., [1–8]) supports the idea that

individuals may react to environmental deterioration in a great variety of ways.

When the environment deteriorates, individuals are more incentivated to adopt

consumption patterns based on the use of private goods rather than on the use of

free access environmental goods: spending a day on an uncontaminated beach

close to home can be more rewarding (and generally requires the consumption of

a lesser quantity of private goods) than spending a day in town; nevertheless, the

latter option becomes relatively more remunerative if the quality of the beach is

compromised.

In this paper we analyze economic growth dynamics in an economy where

there is an infinite number (a continuum) of identical economic agents, whose

welfare depends on three goods: leisure, a free access environmental good and

a private consumption good. Each agent produces the private good through his

own work and accumulated (physical) capital. The private good can be consumed
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as a substitute for the environmental good and can be saved and accumulated as

capital. The environmental good is deteriorated by the pollution caused by the

average consumption activity of the private good in the economy.

At every instant of time each economic agent has to choose the allocation

of his endowment of time between leisure and the production process of the

private good and the allocation of the output between present consumption and

accumulation of capital. Since the negative impact on the environmental good

of each agent’s consumption choice is negligible (agents being a continuum), he

doesn’t take this into account in his consumption choices.

In this context, by working harder, economic agents can consume more in

the present and/or in the future (via accumulation of capital) and consequently

can benefit from a better self-protection against environmental deterioration in

the present and/or in the future. Thus, economic agents may react to the deterio-

ration of the environmental good by increasing the production and consumption

of private goods; by doing so, they cause a further depletion of the environmental

resources, which can, in turn, force agents to further increase private consumption

and accumulation.

The paper is organized as follows. Section 2 illustrates the main results of

the paper, comparing them with those of related literature. Section 3 defines the

model. Sections 4–9 analyze the dynamics. Section 10 outlines the conclusions.

2 Related literature

The mechanism of economic growth that we intend to analyze is based on the

hypothesis that the consumption of the private good by each economic agent

contributes to the depletion of the environmental good, and therefore generates

a negative externality (in the model the agents do not take into consideration the

negative impact of their choices on the environmental good) on the other agents.

Consequently, in our model, defensive consumption choices may be classified as

self-protective choices “transferring” the negative externalities to other individu-

als [9]; that is, each victim of negative environmental externalities defends himself

by implementing the defensive consumption which generates further negative

externalities for other individuals.

This situation has been analyzed, in a static model, by Shogren and Crocker
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[10], who demonstrated that, in a context where individuals do not cooperate

(i.e., they do not “internalize” the externalities), the outcome is a degree of self-

protection that exceeds the socially optimal level. It implies that, if the individuals

protect themselves by consuming private goods, the expected outcome is an excess

in the consumption of private goods.

Such analysis has been extended to a dynamic context in several works1;

Antoci and Bartolini [1,2,12], have studied the dynamics of labor supply under the

assumption of bounded rationality (i.e., agents don’t have perfect foresight about

the future evolution of state variables), neglecting the accumulation of capital;

in particular, they have analyzed evolutionary games where individuals have to

choose their labor efforts from among a finite number of options and where the

better performing choices become widespread in the population of individuals

at the expense of those that are less rewarding. The analysis of these models

shows that economic dynamics can present two or more locally attracting fixed

points characterized by an inverse correlation between labor effort (and private

consumption level) and individuals’ welfare.

Bartolini and Bonatti [3] assume perfect foresight and analyze a model with-

out capital accumulation where economic agents choose their (identical) labor ef-

forts from among a continuum of values. In this context, they obtain results which

are analogous to those obtained in the above-mentioned evolutionary games, show-

ing that such results do not depend on the bounded rationality assumption.

Bartolini and Bonatti [4] analyze a discrete time perfect foresight dynamic

with capital accumulation; however, their model shows a single fixed point which

is a saddle point. Their analysis limits itself to the sensitivity analysis of the fixed

point with respect to the variations of the parameters of the model.

The present work intends to contribute to this line of research by showing

that, even in a model of capital accumulation and perfect foresight, there may exist

multiplicity of fixed points and that there may be no correlation between private

consumption and capital accumulation levels in such states and the welfare of

the economic agents; fixed points with high consumption and accumulation levels

1All this works build on the well known work of Hirsch [11] who suggests that individuals’

reactions to negative externalities (defensive consumptions) due to economic growth can be an

engine of economic growth. However, he doesn’t introduce his intuition in a mathematical model

of economic growth.
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can be Pareto-dominated by others characterized by lower levels. Furthermore the

substitution process between environmental and produced goods may have effects

on the stability of fixed points and may generate closed orbits; self-protection

choices can produce indeterminacy, that is the existence of an infinite number of

equilibrium orbits leading to the same (locally) attractive fixed point or periodic

orbit. When indeterminacy occurs, given the initial values of the capital stock

and the environmental good, the economy can reach the attracting fixed point

(or the periodic orbit) by following an infinite number (a continuum) of growth

paths, each characterized by different consumption patterns and welfare levels.

Consequently, the economy may experience very different welfare situations2.

Starting from different initial values of the state variables, it can reach different

fixed points (characterized by different welfare levels). Furthermore, when in-

determinacy occurs, each fixed point (or periodic orbit) can be reached along an

infinite number of possible orbits, each of them giving rise to possibly different

welfare levels3.

Finally, there is a strand of literature (see, e.g., [15–19]) that highlights other

mechanisms according to which natural resources abundance may inhibit eco-

nomic growth (for a review of this literature see [20]). However, according to the

mechanisms analyzed in the above-mentioned literature, economic growth always

generates welfare improvements.

3 The model

There exists a large number (a continuum) of identical economic agents. Since all

agents are identical, we can consider the choice process of a representative agent.

We assume that, at each instant of time t, representative agent’s welfare depends

on three goods:

1. Leisure 1 − l(t), where l(t) is representative agent’s labor input.

2. A free access (renewable) environmental good E(t).

2For a review of macroeconomic models featuring indeterminacy see [13].
3Antoci, Sacco and Vanin [14] analyse a growth model where economic agents can consume

private goods as a defensive device against the deterioration of social rather than environmental

capital.

7



A. Antoci, M. Galeotti, P. Russu

3. A private good which can be consumed either as a substitute for the environ-

mental good
(
c2(t)

)
, i.e., as a self-protection device against environmental

deterioration, or in order to satisfy needs different from those satisfied by the

environmental resource
(
c1(t)

)
.

We assume that the representative agent’s decision problem is

max
c1,c2,l

∞∫

0

(
ln c1 + a ln(E + bc2) + d ln(1 − l)

)
e−rtdt, (1)

k̇ = lαk1−αΩ − c1 − c2, (2)

Ė = βE(Ē − E) − γ(c̄1 + c̄2)E, (3)

where a, b, d, r, α, β, γ and Ē are strictly positive parameters, k(t) represents

physical capital accumulated by the representative agent and l(t) is the represen-

tative agent’s labor input; k̇ and Ė denote the time derivatives of k and E.

The representative agent has to choose the functions c1(t), c2(t) and l(t)

to maximize the integral in (1). Note that, according to the (instantaneous) utility

function ln c1+a ln(E+bc2)+d ln(1−l), an increase of substitutive consumption

c2(t) compensates the negative effect deriving from a reduction of E(t).

Equation (3) describes the dynamics of E(t); note that the value of the pa-

rameter Ē can be interpreted as the endowment of the environmental good in the

economy, i.e., the state variable E would reach such a value without the negative

effect due to the average economy-wide consumption c̄1 + c̄2. The assumption

that the renewable natural resource is depleted only by the consumption of the

private good and not by the production of the same can be motivated by several

real life examples; a paradigmatic example is that concerning the use of cars:

the negative impact of their production process is negligible in comparison to the

pollution generated by their daily use. This assumption is made for the sake of

analytical simplicity. However, it is reasonable to suppose that the predictions of

the model would be confirmed assuming that the production activity also depletes

the environment; in fact, the self-enforcing nature of the substitution process

described above, on which the results of the model are based, is fueled by the

negative impact of economic activity on the environmental resource; the higher

such impact, the greater the incentive to consume substitutes for the environmental

good.
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At each instant of time, the representative agent produces the quantity of

output lαk1−αΩ and, according to the equation (2), the difference between the

production lαk1−αΩ and the consumption c1 + c2 is accumulated as productive

capital.

In the production function lαk1−αΩ, Ω represents a positive externality due

to the economy-wide production activity. We assume that α < 1; so, with Ω

constant, the production function exhibits a constant return-to-scale technology

(i.e., it is a homogeneous function of degree 1). In accordance with the literature

on economic growth with externalities (see, e.g., [13, 21]), we model the positive

externality as follows

Ω := l̄δk̄ε,

where δ and ε are strictly positive parameters and l̄(t) and k̄(t) represent the

average use of labor and capital in the economy, respectively. When the average

capital or labor input goes up, the productivity of l and k grows in that Ω is increa-

sing in l̄ and in k̄. We assume that average values are considered as exogenously

given by the representative agent when optimizing. This assumption is plausible

in a context in which there is a very large number of agents (in particular, we

have assumed that they are a continuum); so, each agent considers as negligible

the impact that his own choices may have on the average values of economic

variables. A consequence of this assumption is that the growth dynamics we shall

analyze are not optimal; however, each growth path followed by the economy

represents a Nash equilibrium; that is, no agent has an incentive to modify his

choices if the choices of the others are fixed.

Since all agents are identical, they make the same choices; consequently, the

average values c̄1(t), c̄2(t), l̄(t), k̄(t) coincide (ex post) with the values of c1(t),

c2(t), l(t), k(t) chosen by the representative agent. Note that, by substituting

l̄(t) = l(t) and k̄(t) = k(t) in the production function lαk1−αΩ, we obtain

the function lα+δk1−α+ε, i.e., the function that would be considered by a social

planner who had the possibility of coordinating agents’ choices. Such function

exhibits decreasing (respectively, constant and increasing) marginal productivity

of the labor input l if α + δ < 1 (respectively, α + δ = 1 and α + δ > 1); an

analogous consideration holds for k and its exponent 1 − α+ ε.
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For space constraints, we restrict our analysis here to the study of case ε < α;

this assumption rules out the possibility of unbounded growth of k; the case ε ≥ α

will be considered in a future study.

The Hamiltonian function for our problem is

H(E, k, λ, θ, l, c1, c2) = ln c1 + a ln(E + bc2) + d ln(1 − l)

+ λ(lαk1−αΩ − c1 − c2)

+ θ
(
βE(Ē − E) − γ(c̄1 + c̄2)E

)
,

where λ and θ are the co-state variables associated with k and E respectively.

By applying the maximum principle we obtain that the dynamics of c1(t), c2(t),

l(t), k(t), E(t) must satisfy the following conditions

∂H

∂l
= − d

1 − l
+ αλlα−1k1−αΩ = 0, (4)

∂H

∂c1
=

1

c1
− λ = 0, (5)

∂H

∂c2
=

ab

E + bc2
− λ ≤ 0, c2 ≥ 0, c2

∂H

∂c2
= 0, (6)

k̇ =
∂H

∂λ
= lαk1−αΩ − c1 − c2, (7)

λ̇ = rλ− ∂H

∂k
= λ

(
r − (1 − α)lαk−αΩ

)
, (8)

Ė =
∂H

∂θ
= βE(Ē − E) − γ(c̄1 + c̄2)E, (9)

where c̄1, c̄2, l̄, k̄ must be replaced by c1, c2, l, k in expressions (4)–(9) and the

control variables c1, c2, l are determined by conditions (4)–(6). Notice that, in our

model the control variables c1 and l are always strictly positive and l < 1.

We omit the dynamics of the co-state variable θ since equations (7)–(9) do

not depend on it (precisely because c̄1 and c̄2 are considered exogenous by the

representative agent). Furthermore, we assume the usual transversality condition

lim
t→∞

k(t)λ(t)e−rt = 0,

which is satisfied by every orbit approaching a fixed point or a periodic orbit.
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4 Dynamics with c2 = 0

From (6) it follows that, if the condition

ab

E
− λ ≤ 0 (10)

is met, then the representative agent chooses c2 = 0; i.e., he doesn’t consume the

private good as a substitute for the environmental good. Otherwise, he chooses

c2 > 0. Condition (10) is satisfied if, given λ, the value of E is high enough. The

dynamics with c2 = 0 are analyzed in [22], where the possibility of substitution

between the private good and the environmental good is not considered. In this

section, the basic analytical results of the said paper are illustrated.

When c2 = 0, system (7)–(9) is decoupled in the planar system given by (7)

and (8) and the non-autonomous differential equation (9). We can easily observe

that at most one fixed point, say S′, exists, with the following coordinates

k′ =

[
1 − α

r

( α

α+ d

)α+δ
] 1

α−ε

,

λ′ =
1 − α

rk′
,

E′ = Ē − γr

β(1 − α)
k′.

Such a fixed point exists only if (10) is satisfied, which requires, coeteris paribus,

the endowment of the environmental good, Ē, to be sufficiently high and the

negative impact, γ, of average consumption on the environmental good to be

sufficiently low.

The stability of the fixed point is described by

Theorem 1. Let

p :=
α− ε

d(1 − α− δ) + α
,

q :=
(1 − α)

[
d(1 − α− δ) + α

]
+ (α+ d)ε

d(1 − α− δ) + α
.

Then:

(i) If p > 0, S′ is a saddle with a bi-dimensional stable manifold.
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(ii) If p < 0 and q > 0, S′ is a saddle with a one-dimensional stable manifold.

(iii) If p < 0 and q < 0, S′ is a sink.

If case (i) holds, given the initial values of k and E, there exists (at least

locally) a single initial value of λ (determined by the representative agent) from

which the economy approaches the fixed point.

Note that condition (i) is satisfied if α + δ ≤ 1, where α and δ are the

exponents of l and l̄, respectively, in the production function.

The fixed point cannot be (generically) reached if (ii) holds.

Vice versa, when (iii) is satisfied, given the initial values of k and E, there

exists a continuum of initial values of λ leading to the fixed point. In other words

there exist an infinite number of (Nash) equilibrium orbits that the economy may

follow to reach the fixed point. Along each orbit no economic agent has an

incentive to change his choices, given other agents’ choices.

Observe that the parameters r (discount rate), Ē (endowment of the envi-

ronmental good), γ (impact of average consumption on the environmental good)

play a role in the existence of the fixed point (condition (10)), but don’t affect its

stability properties.

Theorem 2. When δ crosses the value

δ̄ := 1 − α+
α

d
+

(α+ d)

1 − α

an attracting limit cycle (through a Hopf supercritical bifurcation) arises for

δ > δ̄.

Proof. Proofs of the above theorems are given in [22].

When an attracting orbit exists, by following such an orbit the economy may

enter the region of the plane (λ,E) where c2 > 0. However, this is not the case

if the periodic orbit is small enough. Antoci, Brugnano and Galeotti [22] show,

through numerical simulations, that the periodic orbit expands as the bifurcation

parameter δ increases.

In the next section we analyze dynamics in the subset of the positive orthant

of the space (k, λ,E) where condition (10) is not satisfied, and consequently eco-

nomic agents consume the private good also as a substitute for the environmental

good (i.e., c2 > 0).
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5 Fixed points in the regime c2 > 0

It is easy to check that, in the regime c2 > 0, there always exists a fixed point at

which the environmental good is completely depleted, that is S̃ = (k, c1, E) =

(k̃, c̃1, 0), c1 = 1
λ

with

k̃ =

(
r

1 − α

α(1 + a) + d

α(1 + a)

) 1

ε−α

, c̃1 =
α(k̃)1−α+ε

α(1 + a) + d
.

Denote by S = (k∗, c∗1, E
∗) a fixed point satisfying the conditions E > 0 and

c2 > 0. Then E∗, k∗, c∗1 > 0 and bc∗2 = abc∗1 − E∗ > 0 [see (6)].

Theorem 3. S = (k∗, c∗1, E
∗) is a fixed point satisfying the conditions E > 0 and

c2 > 0, if and only if

Ē = ψ(k∗) := m(k∗)
ε+δ

α+δ − nk∗, (11)

where

m :=
αb(a+ 1)

d

( r

1 − α

)α+δ−1

α+δ

, n :=
br(1 + a)

d(1 − α)

(
α+

d(bβ − γ)

bβ(a+ 1)

)
,

and, furtherly, k∗ ∈ (k1, k2), k1 and k2 being determined by the intersections of

the curve Ē = ψ(k∗) with the lines

Ē = m1k
∗ :=

(abβ + γ)r

(1 − α)β
k∗, Ē = m2k

∗ :=
γr

(1 − α)β
k∗.

Proof. See Appendix A.

Remark. S is unique whenever ψ′(k∗) does not change sign in (k1, k2) (see

Figs. 1, 2). So, from (11), it follows that there exists at most one fixed point S

if n ≤ 0 (implying ψ′(k∗) > 0 for k∗ > 0), whereas two fixed points (with c∗2,

E∗ > 0) can exist if ψ(k∗) has a maximum in (k1, k2) (see Fig. 3). Straightfor-

ward computations yield that the latter case holds, if and only if

γ < σ < abβ + γ, (12)

where

σ :=

[
α(a+ 1)bβ + (bβ − γ)d

]
(α− ε)

d(ε+ δ)
.
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k*

E

c
2
=0 

E>0 E=0 
c

2
>0 

E>0 

c
2
>0 

| 

ψ(k*) 

Fig. 1. Case σ ≤ γ.

k*

E

c
2
=0 

E>0 E=0 
c

2
>0 

E>0 

c
2
>0 

| ψ(k*) 

Fig. 2. Case σ ≥ abβ + γ.

Then, if (12) is verified, an interval (Ēl, Ēu) is given, with

Ēl := max
[
ψ∗(k1), ψ

∗(k2)
]
,

Ēu := ψ(k0), where ψ′(k0) = 0, k1 < k0 < k2,

such that for any Ē ∈ (Ēl, Ēu) there exist two fixed points with a strictly positive

E in the regime c2 > 0.

Observe that condition (12) is never satisfied if coeteris paribus, the negative

impact γ, on the environmental good of average consumption is high enough.

Figs. 1–3 illustrate the possible configurations of fixed points, in dependence

of the parameters. With any point in the positive Ē-axis being fixed (that is,
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given the endowment of the environmental good), the intersections between the

horizontal straight line passing through it and the continuous lines drawn in each

figure give the number of existing fixed points and the corresponding values of

k∗.

k*

E

E>0 

c
2
=0 

E=0 

c
2
>0 

c
2
>0 E>0 

| 

 

ψ(k*) 

Fig. 3. Case γ < σ < abβ + γ.

Note that, in Figs. 1–3, the fixed point with the lowest level of capital accu-

mulation is the one with E > 0 and c2 = 0 (when existing). Such a fixed point

would be unique if the private good could not be consumed as a substitute for the

environmental good.

Fig. 1 illustrates the case σ ≤ γ (that is, the case where the negative impact

on the environmental good of average consumption is sufficiently high). In such a

case at most three fixed points can exist. If the endowment Ē of the environmental

good is high enough, then there exist two fixed points: the one with E = 0 and

c2 > 0 and the one with E > 0 and c2 = 0. As Ē decreases, then three fixed

points appear: those with E = 0, c2 > 0 and E > 0, c2 = 0 and a fixed point

where E > 0 and c2 > 0. Finally, if Ē is sufficiently low, then only the fixed

point with E = 0 exists.

Fig. 2 can be interpreted in a similar way. Unlike in Fig. 1, at most two fixed

points can coexist.

Fig. 3 shows the more interesting case, where the highest number of fixed

points can exist, i.e., one with E > 0 and c2 = 0, two with E > 0 and c2 > 0,

one with E = 0 and c2 > 0. Such a regime exists if, coeteris paribus, Ē and γ

are not “too” high or “too” low.
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6 Stability analysis

6.1 Stability of the fixed point with E = 0

It is easy to check that at S̃ = (k̃, c̃1, 0) theE-axis is an eigenspace of the Jacobian

matrix, whose associated eigenvalue has the sign of Ē − ψ(k̃).

The stability of S̃ as well as the dynamics in the invariant E = 0 plane can

be reconducted to the projection on the (k, λ) plane of the c2 = 0 regime, by

replacing d with d′ := d
a+1 and λ with λ′ := λ

a+1 .

Thus, in particular:

Case 1. If δ < 1 − α+ α
d′
, S̃ is a saddle in the invariant plane E = 0.

Case 2. If δ > 1−α+ α
d′

+ (α+d′)ε
(1−α)d′ , S̃ is a source in the invariant plane E = 0.

Case 3. If 1 − α + α
d′
< δ < 1 − α + α

d′
+ (α+d′)ε

(1−α)d′ , S̃ is a sink in the invariant

plane E = 0.

Therefore, starting from a strictly positive value of E, the fixed point can

be (generically) reached by suitably choosing λ if Ē − ψ(k̃) < 0 is satisfied and

Case 1 or Case 3 holds. In particular, when Case 3 holds, there exists a continuum

of orbits approaching the fixed point, i.e., indeterminacy occurs.

6.2 Stability of the fixed points with E > 0 in the regime c2 > 0

Straightforward calculations enable the definition of the Jacobian matrix J(S)

J(S) =




A B − (a+ 1) 1
b

c∗
1

k∗

(
(1 − α)A− r

) c∗
1

k∗ (1 − α)B 0

0 −γ(a+ 1)E∗ γ−bβ
b
E∗




where A, B, and det
(
J(S)

)
are computed in Appendix B.

We can distinguish the following subcases.

6.2.1 Case α+ δ ≤ 1

Theorem 4. If α + δ ≤ 1 and ψ′(k∗) 6= 0, J(S) has at least one eigenvalue

with positive real part. In particular, if ψ′(k∗) > 0, S is a saddle with a
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one-dimensional stable manifold; if ψ′(k∗) < 0, S is either a saddle with a bi-

dimensional stable manifold or a repellor. In the last case, when k∗ approaches

k2, a Hopf bifurcation, generically, takes place: S is transformed from a repellor

into a saddle with a bi-dimensional stable manifold.

Proof. See Appendices C and D.

Remember that, in the production function of the representative agent, α is

the exponent of labor input l and δ is the exponent of average labor input l̄. The

above theorem says that, if α + δ ≤ 1, then the fixed points in the regime E > 0

and c2 > 0 cannot be attractive: that is, indeterminacy cannot occur.

Furthermore, if a fixed point satisfies ψ′(k∗) > 0, then it cannot be reached

(generically) by the economy. If instead the condition ψ′(k∗) < 0 holds, then

the fixed point has a bi-dimensional stable manifold (and can be reached by the

economy) if k∗ is near enough to k2; otherwise, it may be a repellor. In the

latter case, such a fixed point might be “surrounded”, via a Hopf bifurcation, by a

periodic orbit with a bi-dimensional stable manifold.

Remember that, if α + δ ≤ 1, the fixed point S′ in the c2 = 0 regime (when

existing) is always a saddle with a bi-dimensional stable manifold. If α + δ ≤ 1

and σ ≤ γ (see Fig. 1), the fixed point satisfying E > 0 and c2 > 0 cannot

be (generically) reached by the economy, being a saddle with a one-dimensional

stable manifold. The fixed point with E = 0 cannot be reached (starting from a

strictly positive value of E) if Ē is high enough, that is, when Ē > ψ(k∗) and the

Jacobian matrix has a strictly positive eigenvalue in the E-axis direction.

Observe that both the fixed point withE = 0 and the one with c2 = 0 can be

saddles with bi-dimensional stable manifolds. In such a case a bi-stable dynamic

regime occurs: the economy can approach either fixed point depending on the

initial values of E and k.

Analogous observations can be made about Figs. 2 and 3.

6.2.2 Case α+ δ > 1

Theorem 5. Whenever α + δ > 1, an attractor can exist, with E > 0, in the

c2 > 0 regime.
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Proof. Applying formulae (C.2)–(C.5), it is easy to see that the fixed point S is

an asymptotic attractor, if and only if

trJ(S), det J(S) < 0, H(S) > 0, |det J(S)| < H(S)| tr J(S)|, (13)

where H(S) is defined by formula (C.3).

In particular conditions (13) imply

r

1 − α
< (α+ δ − 1)

d

α

c∗1
k∗

, (14)

and

A+
c∗1
k∗

(1 − α)B < 0, (15)

where A and B are computed in Appendix B.

From the expression of det
(
J(S)

)
(formula (B.1)) and from (14) it follows

that

ψ′(k∗) < 0 if S is an attractor.

Two subcases are then to be examined:

1. γ < σ < abβ + γ, k∗ ∈ (k0, k2);

2. abβ + γ ≤ σ, k∗ ∈ (k1, k2).

Subcase 1. Since

Ē = ψ(k∗) and
c∗1
k∗

=
1

(a+ 1)b

ψ(k∗)

k∗
+

r(bβ − γ)

(a+ 1)(1 − α)bβ
,

c∗
1

k∗ decreases as k∗ ∈ (k0, k2) increases. Therefore (14) holds in a subinterval of

(k0, k2), if and only if it holds at the fixed point S0 = (k0, c10
, E0). If d

α
= 1

α+δ−1 ,

it is easily computed that

r

1 − α
− c10

k0
=

r

(1 − α)(a+ 1)bβ
(abβ + γ − σ) > 0. (16)

Hence (16) implies d >
α

α+ δ − 1
, i.e.,

1 − α+
α

d
< δ. (17)
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For example, fixed α and δ so that α + δ > 1, the other parameters can be

chosen to satisfy

a = b = β = 1, γ =
α(α− ε)

d(ε+ δ)
,

r =
1 − α

2
(
1 + d

α

)α+δ
,

(α+ δ − 1)d

2α
= 1 +

ε

2(1 − α)
.

Then, if α− ε > 0 is sufficiently small, the conditions

trJ0 < 0, H0 > 0

are seen to hold.

Hence, when k∗ belongs to a suitable right neighborhood of k0, the corres-

ponding fixed point S is attractive.

Subcase 2. In such a case σ ≥ abβ + γ and
c∗
1

k∗ decreases along (k1, k2). Hence

(14) holds in a subinterval of (k1, k2), if and only if it holds at k1.

Denote by S1 the fixed point (k1, c1, E1). We have

Ē1 = ψ∗(k1) =
r(abβ + γ)

(1 − α)β
k1,

c1

k1
=

1

(a+ 1)b

Ē1

k1
+

r(abβ − γ)

(a+ 1)(1 − α)bβ
=

r

1 − α
. (18)

Therefore, again, (14) implies (17).

Let us check, next, condition (15). Exploiting (14), through easy calculations,

(15) implies

r

1 − α
(1 − α+ ε) −

[
(1 − α)(α+ δ − 1) − ε

] dc1
αk1

> 0,

i.e., because of (18),

(1 − α)(α+ δ)
d

α
< (1 − α+ ε)

(
1 +

d

α

)
,

or

δ < 1 − α+
α

d
+
ε(α+ d)

d(1 − α)
. (19)
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Letting J1 = J(S1) and writing the characteristic polynomial P1(λ) of J1, it

follows that S is an attractor for k∗ belonging to a suitable right neighborhood of

k1, if and only if

detJ1 < 0, trJ1 < 0, H1 > 0, |detJ1| < | trJ1|H1.

For example, let α+ δ > 1, d satisfying (17) and (19), α− ε > 0 sufficiently

small. Furthermore set

b = β = 1, a =
α− ε

2(ε+ δ)
, γ = (α− ε)2, r =

1 − α

2

( α
d

α
d

+ 1

)α+δ

.

Then it can be checked that, when α − ε is small enough, for k∗ belonging to a

suitable right neighborhood of k1, the corresponding fixed point S is an attractor.

Remark. Let S be the attractor of the example in Subcase 1. Then, for the same

values of the parameters, two more fixed points with a positive E can exist, i.e.,

S′ = (k′, c′1, E
′) in the c2 = 0 regime and S′′ = (k′′, c′′1, E

′′) in the c2 > 0

regime, k′′ ∈ (k1, k0). Since (17) holds, it follows:

(i) S′ is either an attractor or a saddle with a one-dimensional stable manifold.

In fact, considering the above example, S′ is an attractor when, for instance,

both α and ε are sufficiently close to 1, while it can be a saddle when α and

ε are themselves “small”.

(ii) S′′ is a saddle with a bi-dimensional stable manifold. Such a manifold is

locally a separatrix.

Note that, when α + δ > 1, there is the possibility of three reachable fixed

points; this case occurs if, for example, the fixed point in c2 = 0 is attractive,

the one with E > 0, c2 > 0, ψ′(k∗) > 0 is a saddle with a bi-dimensional

stable manifold and the fixed point satisfying E > 0, c2 > 0, ψ′(k∗) < 0 is also

attractive.

7 Welfare analysis: numerical examples

Through two numerical examples, we show that capital accumulation level (and,

consequently, private consumption level) and economic agents’ welfare may be
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not positively correlated; that is, economic agents’ welfare at a fixed point with a

high accumulation level can be lower than at a fixed point with a low accumulation

level. Firstly, we assume: α = 0.8, β = 0.05, γ = 0.1, δ = 0.2, ε = 0.75,

a = 2.5, b = 0.1, d = 0.05, r = 0.1; in Fig. 4 we represent capital accumulation

values k∗, evaluated at the fixed points A, B, C and D, as functions of the

parameter Ē (remember that Ē is the endowment of the natural resource in the

economy). The context we consider is that of Fig. 3, so, in the fixed point A it

holds that c2 = 0 (i.e., the private good is not consumed as a substitute for the

environmental good) while in B, C and D we have c2 > 0; among these, D is

the fixed point where E = 0, that is where the natural resource is completely

depleted.
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Fig. 4. Case α = 0.8, β = 0.05, γ = 0.1, δ = 0.2, ε = 0.75, a = 2.5, b = 0.1,

d = 0.05, r = 0.1.

Reachable fixed points (i.e., those having at least two negative eigenvalues)

are indicated by continuous lines, the others by dotted lines. Note that, for suf-

ficiently low values of Ē, only D is reachable; for sufficiently high values of

Ē, only A is reachable; finally, for intermediate values of Ē, both A and D are

reachable. Therefore, as shown in the above analysis, our model predicts that a
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consequence of a reduction of Ē (due, for example, to an exogenous shock) can

be the convergence of the economy to a fixed point with a higher accumulation

level.

In Fig. 4 we also represent the values assumed by the utility function U at the

fixed points A, B, C and D, as functions of the parameter Ē. Observe that the

highest utility value is obtained at the fixed point A with the lowest accumulation

level; the opposite holds for the fixed point D where the highest accumulation

level is associated with the lowest utility level.

In Fig. 5 we modify the preceding example by assuming (coeteris paribus)

δ = 0.5. In Fig. 5a, we can see that only the fixed point D (respectively, only the

fixed point A) is reachable if Ē is low enough (respectively, if Ē is high enough).

For intermediate values of Ē, two fixed points are reachable: A andD orA andC.

Note that the effects of an increase of Ē on the values of k∗ at the reachable fixed

points are similar to those of the former example; however, in the latter example,

we can see that in D and C the utility function assumes values higher than in A;

consequently, in this context, economic growth is desirable.
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Fig. 5. Case α = 0.8, β = 0.05, γ = 0.1, δ = 0.5, ε = 0.75, a = 2.5, b = 0.1,

d = 0.05, r = 0.1.
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These results are due to the fact that the productive activity of each agent

also generates positive externalities on the productive activity of the others; con-

sequently, the level of welfare obtained is the result of the interaction of both

positive and negative effects deriving from the choices of each agent. In the former

example, negative externalities overcome positive externalities; vice versa in the

latter.

8 Hopf bifurcations

Our interest in the existence of periodic orbits is motivated by the fact that oscil-

lations of the state variables k and E produce a reduction in welfare compared

with a state of the economy where the values of k and E are equal to the time

averages of k and E along the periodic orbit, if economic agents are risk-averse

(see, e.g., [13]).

The existence of periodic orbits in the c2 = 0 regime was analyzed in [22],

where a supercritical Hopf bifurcation was shown to give rise to a locally at-

tracting periodic orbit (i.e., with a three-dimensional stable manifold). Let us now

investigate, in the c2 > 0 regime, local bifurcations taking place at the equilibrium

S = (k∗, c∗1, E
∗), with E∗ > 0, when k∗ varies in (k1, k2).

Case 1. Assume α+ δ ≤ 1 and S is a repellor for k∗ belonging to a sub-interval

I of (k1, k2).

Then
c∗
1

k∗ is decreasing and ψ′(k∗) < 0 in I . It follows that, when k∗ ap-

proaches k2, generically a Hopf bifurcation occurs, as the real part of two complex

conjugate eigenvalues turns from positive into negative. In other words, for k∗

belonging to a suitable left neighborhood of k2, S has a bi-dimensional stable and

a one-dimensional unstable manifold.

Case 2. Assume α+δ > 1 and S is an attractor for k∗ belonging to a sub-interval

I = (k3, k4) of (k1, k2).

Then ψ′(k∗)<0 and
c∗
1

k∗ is decreasing in I . Furthermore, recalling d′ := d
a+1 ,

1 − α+
α

d
< δ < 1 − α+

α

d′
+

(α+ d′)ε

(1 − α)d′
,

as conditions (14) and (15) are checked to imply.
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It is easily seen that k4 = k2, if

1 − α+
α

d′
< δ < 1 − α+

α

d′
+

(α+ d′)ε

(1 − α)d′
,

while k4 < k2, if

1 − α+
α

d
< δ < 1 − α+

α

d′
.

In the latter case, when k∗ crosses k4, one real negative eigenvalue becomes posi-

tive, passing through ∞, and S has a bi-dimensional stable and a one-dimensional

unstable manifold as k∗ ∈ (k4, k2).

Furthermore it may happen that k3 > km, where km = k0 or km = k1, in

Cases 1 and 2, respectively.

If this occurs, then, generically, a Hopf bifurcation takes place when k∗

crosses k3, as S becomes an attractor from a saddle with a one-dimensional stable

manifold.

Case 3. Consider the case

δ > 1 − α+
α

d′
+

(α+ d′)ε

(1 − α)d′
. (20)

Then no bifurcation occurs in the possible interval J⊆(k1, k2), where ψ′(k∗)<0.

In such an interval S has a one-dimensional stable and a bi-dimensional

unstable manifold.

If, furthermore, γ < σ < abβ + γ, then, passing through k0 (recall

ψ′(k0) = 0), one real eigenvalue changes sign: it may turn either from positive

into negative or vice versa.

Case 4. Finally a generic Hopf bifurcation can take place in the possible interval

H ⊆ (k1, k2), where ψ′(k∗) > 0.

Example. In the following numerical example (12) and (20) hold and (k1, k2) is

divided into three sub-intervals: (k1, kh), (kh, k0), (k0, k2). As k∗ ∈ (k1, kh), S

is a repellor. Then at kh a Hopf bifurcation occurs and S has a bi-dimensional

stable and a one-dimensional unstable manifold for k∗ ∈ (kh, k0).

Finally, when k∗ crosses k0, a real negative eigenvalue becomes positive and

S has a one-dimensional stable and a bi-dimensional unstable manifold as k∗ ∈
(k0, k2).
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The example is

α =
1

2
, a = b = β = 1, d = 4, δ = 2, r =

1

2
√

65
,

α− ε sufficiently small,

γ = (α− ε)2.

In this section we have shown all the Hopf bifurcations which can occur in

our model. In Fig. 6, a locally attractive periodic orbit and one orbit approaching

it are plotted . In such a case, given the initial values of k and E [near enough to

the projection of the orbit on the (k,E) plane], there exists a continuum of initial

values of λ (or, alternatively, of c1 or c2) by which the economy can reach the

periodic orbit. Consequently, an indeterminacy problem occurs.
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Fig. 6. Attracting limit cycle in case α = 0.8, β = 0.05, γ = 0.1, δ = 0.2,

ε = 0.75, a = 2.5, b = 1, d = 0.05, r = 0.1.

9 Behavior of orbits for high values of Ē

Theorem 6. When Ē is sufficiently high, orbits starting in the region c2 > 0 enter

and remain, after a finite time, in the regime c2 = 0.
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Proof. To this end, let us replace, first, the variables (k, λ,E) in system (7)–(9)

by (l, c1, E), where l ∈ (0, 1) is defined by (4) and c1 = 1
λ

. It follows from (4)

that k =
(

dl1−α−δ

α(1−l) c1

) 1

1−α+ε

.

Hence we get, after simple steps,

ċ1 = c1

[
(1 − α)

(α
d

) α−ε

1−α+ε l
ε+δ

1−α+ε (1 − l)
α−ε

1−α+ε

c
α−ε

1−α+ε

1

− r

]
. (21)

This implies ċ1 < 0, if

c1 > cM1 :=
(1 − α

r

) 1−α+ε

α−ε

max
l∈(0,1)

l
ε+δ

α−ε (1 − l)

=
α(α− ε)

d(α+ δ)

(1 − α

r

) 1−α+ε

α−ε

( ε+ δ

α+ δ

) ε+δ

α−ε

.

(22)

Now assume

Ē > b(a+ 1)cM1 , if bβ > γ, (23)

Ē >
γ

β
(a+ 1)cM1 , if bβ ≤ γ. (24)

It follows, in particular, as is easily checked, that no equilibrium exists in the

c2 > 0 regime.

Furthermore, consider an orbit starting in the region c2 > 0, i.e., such that

ac1(0) > E(0)
b

.

Due to (21) and (22), and since no equilibrium exists when c2 > 0, there is a

time t1 such that either

c2(t1) = 0 (25)

or

c1(t) ≤ cM1 when t ≥ t1. (26)

If c2(t1) > 0, then Ė(t1) > 0, because of assumptions (23) and (24). Hence E

increases, by a speed bounded away from zero, whereas c1 ≤ cM1 . Consequently

there exists a time t2 > t1 such that

c2(t2) = 0.
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Finally, we can choose t̄, t̄ ≥ ti, i = 1, 2, in such a way that c1(t) ≤ cM1 for

t ≥ t̄ and c2(t) = 0 for t being in some right neighborhood of t̄ (in the particular

case α
α+d

= ε+δ
α+δ

, the (22) value of cM1 can be replaced by any slightly larger

value). Otherwise, effectively, E would continue to increase, in line with our

assumptions, in the region c2 > 0, until we would obtain

E > abcM1 ≥ abc1,

thus contradicting the condition c2 > 0.

Now it is easily checked that assumptions (23) and (24) imply that, in the

c2 = 0 regime, Ė(t) ≤ 0, t ≥ t̄, requiresE(t) to be larger than abcM1 . However, in

this case, the orbit would never cross back the plane ac1 = E
b

. Therefore, should

the orbit keep crossing such a plane forwards and back , i.e., moving indefinitely

from the regime c2 > 0 to the regime c2 = 0 and vice versa, Ė(t) would be

positive and bounded away from zero as t ≥ t̄, until at some time, in the c2 > 0

regime,

E > abcM1 ≥ abc1,

yielding a contradiction.

Hence we can choose the previous t̄ as the time at which the orbit enters into

and then remains in the c2 = 0 regime.

10 Conclusions

In order to better evaluate the relevance of the results obtained by our work, it may

be useful to bear in mind what the dynamics of economic growth would be if the

private good produced in the economy could not be consumed by the economic

agents as a self-protection device against the deterioration of the environmental

resource. In this case, whatever the values of E and k, the dynamics of the

economy would only be described by the dynamics with c2 = 0, that is there

would be at most one fixed point with E > 0 (the fixed point A in Figs. 4 and

5). The possibility of consuming the private good to alleviate the negative effects

deriving from environmental degradation generates considerably more complex

dynamics. More specifically, the analysis performed shows that, as well as the
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fixed point with c2 = 0, we can also have another three fixed points at which

we have c2 > 0; in these the levels of capital accumulation and consumption are

higher than in the fixed point with c2 = 0.

We have showed that the fixed point with c2 = 0 exists only if, coeteris

paribus, the endowment of the environmental good Ē is sufficiently high and

the negative impact γ of average consumption on the environmental good is suf-

ficiently low; however, the values of Ē and γ play no role in its stability pro-

perties. Furthermore, we have showed that when Ē is sufficiently high, orbits

starting in the region c2 > 0 enter and remain, after a finite time, in the regime

c2 = 0. Consequently, for high values of Ē, the dynamics of the economy rule

out definitively substitutive consumptions.

When Ē is lower, dynamics become more interesting; in particular, bi-stable

regimes can occur where the economy may reach the fixed point (or a periodic

orbit) where c2 = 0 or a fixed point (or a periodic orbit) where c2 > 0 depending

on the initial values of E and k. Furthermore, when α + δ > 1, there is the

possibility of three reachable fixed points (see remark concerning Subcase 1 in

Section 6); for example, it can happen that the fixed point with c2 = 0 is attractive,

the one with E > 0, c2 > 0 and ψ′(k∗) > 0 is a saddle with a bi-dimensional

stable manifold and the fixed point satisfying E > 0, c2 > 0 and ψ′(k∗) < 0 is

attractive.

The complexity of the scenario described above is enhanced if we consider

that indeterminacy can occur; in this case, even economies characterized by iden-

tical technologies, preferences and endowments of environmental goods, starting

from the same initial values of E and k, may follow different growth dynamics

choosing different initial values of λ (the multiplier associated with the state

variable k). Note that the dynamics we have analyzed can have an attracting fixed

point in the regime c2 > 0 and a (reachable) saddle point in c2 = 0; this implies

that self-protection choices can cause indeterminacy.

The basic prediction of the model is that if there exist private goods that can

be consumed as substitutes for environmental goods, then environmental deterio-

ration may play the role of engine of economic growth. As regards economic

agents’ welfare, the analysis of the model has demonstrated that there is not

necessarily a positive correlation between the level of accumulation of capital
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(and, consequently, the level of consumption of the private good) and economic

agents’ welfare. In particular, at the fixed point where capital accumulation is

relatively low and c2 = 0, welfare may be greater than in the other fixed points.

Section 7 gives a numerical example where economic growth is undesirable and

shows, by another example, that increasing (coeteris paribus) the value of the

parameter δ (the exponent of average labour input), desirable economic growth

can be obtained. These results are due to the fact that the productive activity of

each agent also generates positive externalities on the productive activity of the

others; consequently, the level of welfare obtained is the result of the interplay

between positive and negative effects deriving from the choices of each agent. In

the former example, negative externalities overcome positive externalities; vice

versa in the latter.

The basic lesson emerging from the analysis of the model is that the aggregate

level of consumption of the private goods is a distorted index of individuals’

welfare. This paper suggests that economic growth policies which are capable

of achieving their goals, but at high environmental costs, should be treated with

great caution. Economic policies ought to guarantee the growth of the values of

appropriate welfare indices, which take into consideration not only the level of

aggregate consumption but also that of environmental degradation and of self-

protection consumption.

The question which all the public administrators ought to ask themselves is

the following: how many opportunities do individuals have at their disposal for

enjoying their leisure at no cost? This question acquires particular significance

if we consider the problem of the management of the cities. The negative effects

caused by the interaction between individuals are in fact particularly evident in

densely populated environments, such as the urban areas, which consequently

prove to be the places in which most of the self-protective choices are imple-

mented. The cities feature the advantage of offering a wide variety of oppor-

tunities for spending leisure; at the same time they also often feature the dis-

advantage that almost nothing which is on offer can be used without spending

money. From this point of view, the measures for reducing urban pollution by

blocking traffic during the weekend constitute an example of public intervention

that is extremely efficacious, providing an incentive for the citizens to change
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their models of consumption. By reducing the acoustic and atmospheric pollution,

such measures contribute greatly to extending the offer of free access sites where

the citizens can enjoy their free time, and therefore contribute to reducing self-

protective consumption. In general, on the basis of the results of our model, it

would appear desirable for the public administration to identify and classify all

the activities which may generate self-protective consumption, with reference to

the types of entity involved (individuals, firms, public sector), the sites in which

such activities are carried out and, finally, the possible solutions which can be

offered by the public sector. The public administrators are the only entities which

can implement efficacious intervention in that, as the model shows, even perfectly

rational individuals may select inefficient models of consumption.

Appendix A

From ċ1 = 0 and
Ė

E
− γk̇ = 0 it follows

E∗ = Ē − γr

(1 − α)β
k∗. (A.1)

Then, from Ė = 0,

c∗1 = c∗1 =
Ē

(a+ 1)b
+

(bβ − γ)r

(a+ 1)(1 − α)bβ
k∗. (A.2)

Since E∗, c∗2 > 0, (A.1) and (A.2) imply

(1 − α)β

(abβ + γ)r
Ē < k∗ <

(1 − α)β

γr
Ē.

Furthermore ċ1 = 0 and
∂H

∂l
= 0 imply

dl∗

1 − l∗
=

αr

1 − α

k∗

c∗1
(A.3)

and, putting A = lδkǫ in ċ1 = 0,

(l∗)α+δ =
r

1 − α
(k∗)α−ǫ. (A.4)
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From (A.3) and (A.4) it follows

(1 − α)d

αr
c∗1 + k∗ =

(1 − α

r

) 1

α+δ

(k∗)
ε+δ

α+δ

and, finally, from (A.2) we get (11).

Appendix B

It is easily computed that

A =
(1 − α+ ε)(α+ δ) dr

α(1−α)
c∗
1

k∗

r
1−α

− (α+ δ − 1) d
α

c∗
1

k∗

+ (1 − α+ ε)
r

1 − α
,

B =
−(α+ δ) dr

α(1−α)

r
1−α

− (α+ δ − 1) d
α

c∗
1

k∗

.

Recalling the form of ψ(k∗) in (11), one obtains

det
(
J(S)

)
=

−(α+ δ)βdrc∗1E
∗ψ′(k∗)

αβk∗
(

r
1−α

− (α+ δ − 1) d
α

c∗
1

k∗

) . (B.1)

Appendix C

Letting α+ δ ≤ 1, (B.1) implies

det
(
J(S)

)
ψ′(k∗) < 0, when ψ′(k∗) 6= 0.

Hence, if ψ′(k∗) < 0, detJ(S) > 0 and the proposition follows. Then, let

ψ′(k∗) > 0 and consequently det J(S) < 0.

Denote by gik, i, k = 1, 2, 3, the entries of J(S). Observe, firstly, that

g11 + g22 =
ε(α+ δ) dr

α(1−α)
c∗
1

k∗

r
1−α

+ (1 − α− δ) d
α

c∗
1

k∗

+ (1 − α+ ε)
r

1 − α
> 0. (C.1)

The characteristic polynomial of J(S) is

P (λ) = λ3 −
(
tr (J)

)
λ2 +Hλ− det J, (C.2)
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where

H = g11g22 + g33(g11 + g22) − g12g21. (C.3)

From elementary algebra a cubic polynomial

λ3 + aλ2 + bλ+ c (C.4)

has all non-positive real part roots, if and only if

a, b, c, ab− c ≥ 0. (C.5)

It follows from (C.1) that

tr (J) = g11 + g22 + g33 ≤ 0 implies g33 < 0,

while H ≥ 0, being g11g22, g33(g11 + g22), g12 < 0, requires g21 > 0. Finally

the condition ab− c ≥ 0 means |det J | ≤ H| trJ |. Through simple calculations,

though,

|detJ | = |g33|(g11g22 − g12g21)

>
(
|g33| − (g11 + g22)

)(
g11g22 + g33(g11 + g22) − g12g21

)
= | trJ |H.

Hence we arrive at a contradiction.

We can conclude that, when ψ′(k∗) > 0, J(S) has only one eigenvalue with

negative real part, and therefore negative.

Appendix D

Let us show that for any value α+ δ ≤ 1 it is possible to have a repellor S, in the

c2 > 0 regime, with E∗ > 0 and ψ′(k∗) < 0.

Let γ < σ < abβ+γ, so that there exist k0 ∈ (k1, k2) satisfying ψ′(k0) = 0.

Call S0 the corresponding equilibrium.

In order that S be a repelling equilibrium for k∗ lying in a suitable right

neighborhood of k0, it suffices that the two non-zero eigenvalues of J(S0) have

positive real part.

Posit J0 = J(S0) and denote with P0(λ) its characteristic polynomial, i.e.,

P0(λ) = λ3 − (trJ0)λ
2 +H0λ.
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The non-zero roots of P0(λ) have positive real part, if and only if

trJ0, H0 > 0. (D.1)

It is easy to check that (D.1) is verified, when α− ε > 0 is sufficiently small and,

furtherly,

γ = 2(α− ε), β = d = α− ε, b = 1,

a > 2
(ǫ+ δ)

α
,

(1 − α)(ε+ δ)

r(α+ δ)
> 1.
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