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1.  Introduction: Aggregation of individual preferences into a social preference is a 

major issue in welfare economics. The least that any such aggregation procedure is 

required to guarantee is what is known in the literature as the Pareto principle. The Pareto 

principle says that if a social state is perceived as “no better than” a second social state by 

all individuals and strictly worse than the second by some individual then the second 

social state is socially preferred to the first. The Pareto principle gives rise to the Pareto 

relation in a natural manner: a social state is said to be “Pareto superior to” or “Pareto 

dominate” a second social state if and only if the first is at least as good as the second for 

all individuals and strictly better than the second for some. Had it not been that the Pareto 

relation is possibly incomplete (i.e. there may be social states which are not comparable 

via the Pareto relation) the problem of preference aggregation would have been 

practically non-existent. If the Pareto relation were always complete then we could 

identify social preferences with the Pareto relation. However, since the Pareto relation 

usually admits non-comparable pairs the problem of preference aggregation arises. Why 

do we insist on complete comparability of all pairs of social states for an aggregation 

rule? This is done simply to ensure that undominated choices from a set of social states 

are indeed the socially “best” choices from the same set of social states. This result 

appears in Sen [1970] 

Most of preference aggregation theory is concerned with individual preferences which 

are extremely well-behaved, i.e. reflexive, transitive and connected. Such individual 

preferences are known as orderings. A consequence of individual preferences being 

orderings is that the Pareto relation becomes transitive. However there is little 

justification in economics for individuals to exhibit the kind of consistency that 

aggregation theory demands. It is important that a decision maker is capable of taking 

decisions when confronted with a choice problem. For decision making to be possible it 

is not necessary that preferences be transitive. It is well known that a necessary and 

sufficient condition for decision making from finite sets of alternatives to be possible is 

that the preference of the decision maker is acyclic. Further if all individuals have acyclic 

preferences then the Pareto relation (interpreted in the “strong” sense and discussed later) 

is acyclic and not necessarily transitive.      

Conventional aggregation theory also requires that the social preference that is derived 

from individual preferences is an ordering over social states. Once again for social 

decision making acyclicity rather than transitivity is the required feature. Unlike the 

problems that social choice theory has to contend with when individual and social 
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preferences are assumed to be orderings, there are fewer problems and meaningful 

aggregation procedures when social preferences are required to be merely acyclic. A 

good exposition of the aggregation theory when social welfare is assumed to be acyclic 

can be found in Moulin (1988). More up-to-date results can be found in Banks (1995). 

There are two very important questions that arise in the context of Pareto relations and 

social welfare relations. The first question is the following: Is the set of all Pareto optimal 

social states the same as the set of social states chosen by some Pareto consistent social 

welfare relation? The second question in the same context is: How well do Pareto 

consistent approximations of a social welfare relation perform in choosing the social 

states that a given Pareto consistent social welfare relation would?  

Before we proceed to answer these two questions it is important to point out that the set 

of all Pareto relations when individual preferences are assumed to be reflexive and 

acyclic is identical to the set of all reflexive and acyclic binary relations. To see this note 

that if all individual preferences are reflexive then the Pareto relation is clearly reflexive. 

Further if we interpret Pareto superiority in the strong sense (i.e. a social state is 

(strongly) Pareto superior to a second only if all individuals prefer the first to the second) 

then the existence of a Pareto preference cycle would have to coincide with the same 

preference cycle arising for each individual separately, the latter being ruled out if 

individual preferences are acyclic. Thus acyclicity of individual preferences implies 

acyclicity of the Pareto relation. On the other hand given any reflexive and acyclic binary 

relation, we can interpret that as the Pareto relation of a society where every individual’s 

preference coincides with the given relation. 

Of the two questions mentioned above, the first question has been dealt with by Banerjee 

and Pattanaik (1996) in the case when the Pareto relation is assumed to be reflexive and 

transitive and social welfare is an ordering. In such an environment they show that the set 

of all Pareto optimal social states does indeed coincide with the set of all social states 

chosen by Pareto consistent social welfare orderings. In this paper we show that such an 

identity prevails if the Pareto relation, as well as all Pareto consistent social welfare 

relations is acyclic. The proof of this result is much simpler than the corresponding proof 

in Banerjee and Pattanaik (1996). This is largely because it is easy to show that given any 

reflexive and acyclic binary relation it is possible to extend it to a connected, reflexive 

and acyclic binary relation by simply including all non-comparable pairs along with the 

given relation. A consequence of our result and that of Banerjee and Pattanaik (1996) is 

that if the Pareto relation is transitive then the set of all social states chosen by social 

welfare orderings is the same as the set of all social states chosen by acyclic social 

welfare relations.  

The second question that we posed has been discussed by Suzumura (1999) in a setting 

similar to the one in Banerjee and Pattanaik (1996). In Suzumura (1999) it is shown that 

the social states chosen by a Pareto consistent social welfare relation coincides with the 

set of all social states that are chosen by every binary relation that strictly includes the 

Pareto relation and is strictly included in the social welfare relation. The requirement that 

the “approximate” relations are strictly included in the given social welfare relation is to 

ensure that the result is non-trivial. The requirement that the “approximate” relations 

strictly include the Pareto relation is to ensure the veracity of the assertion. However, 

these strict inclusions require the assumption that the set of such approximations is non-

empty. Our corresponding result tells a similar story when the Pareto relation and the 
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Pareto consistent social welfare relation is acyclic. We need to make the same non-

emptiness(“non-triviality”) assumption that appears in Suzumura (1999). Further our 

proof is almost identical to the proof of the corresponding result (called “Recoverabilty 

Theorem”) in Suzumura (1999). Since transitive binary relations are always acyclic, the 

Recoverability theorem follows from our second theorem. 

It is hoped that the extensions of existing results for social welfare orderings to the 

situation where we merely require acyclicity of social welfare relations will be a small 

but fruitful step towards broadening the horizons of “applicable” welfare economics.    

 

2.  The Model: Let X be a non-empty finite set of social states and <X> the set of all 

non-empty subsets of X.  

A binary relation Q on X is a subset of X×X; if (x,y)∈Q, we often represent it as xQy.  

A binary relation Q is said to be reflexive if for all x∈X it is the case that xQx; it is said to 

be connected if for all x,y∈X with x ≠ y it is the case that either xQy or yQx. 

Given a binary relation Q, its asymmetric part denoted P(Q) is the binary relation 

{(x,y)∈Q: (y,x)∉Q}; its symmetric part denoted I(Q) is the binary relation {(x,y)∈Q: 

(y,x)∈Q}. 

Given a binary relation Q a P(Q)-cycle is a non-empty finite subset set {x1, x2,…, xK}of 

X for some positive integer K > 1 such that: (i) xi P(Q)xi+1 for i = 1,…, K-1; (ii) 

xKP(Q)x1.  

A binary relation Q is said to be acyclic if it does not have a P(Q)-cycle. 

Given a binary relation Q and S∈<X>, let M(S,Q) = {x∈S: for all y∈S it is the case that 

(y,x)∉P(Q)}. M(S,Q) is said to be the set of  Q-undominated social states in S. 

It is well known that the set of Q- undominated social states in S is non-empty for all 

S∈<X> if and only if Q is acyclic. 

If Q is reflexive and connected then for all S∈<X>: M(S,Q) = {x∈S: for all y∈S it is the 

case that xQy}, where the latter set is called the set of Q-best alternatives (social states) in 

S. This result can be found in Sen [1970] for instance. 

A binary relation Q' is said to extend (or be an extension of) a binary relation Q if Q ⊂ Q' 

and P(Q) ⊂ P(Q'). In such a situation Q is said to be a sub-relation of Q'. 

Given a binary relation Q let E (Q) denote the set of all reflexive, connected and acyclic 

binary relations that extend Q. 

For the purpose of this paper a reflexive and acyclic binary relation will be called a 

Pareto relation.  

In what follows we will assume that we are given a Pareto relation R
0
. 

Further, for the purpose of this paper any reflexive, connected and acyclic binary relation 

that extends R
0
 will be referred to as a Paretian Social Welfare Relation. 

Let ∆(X) = {(x,x): x∈X}. ∆(X) is called the diagonal of X. A binary relation is reflexive 

if and only if it contains ∆(X). 

 

3.  Reflexive, connected and acyclic extensions: The following proposition is 

significant for the purposes of this paper. 

 

Proposition 1: Given a binary relation Q, E (Q) is nonempty if and only if Q is acyclic. 
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Proof: First suppose E (Q) is nonempty. Then since for all Q'∈ E (Q) it is the case that 

P(Q) ⊂ P(Q') it follows that any P(Q)-cycle is a P(Q')-cycle for all such Q'. If Q'∈ E (Q) 

then there are no P(Q')-cycles. Hence the non-emptiness of E (Q) implies the absence of 

P(Q)-cycles. Thus Q must be acyclic. 

Now suppose Q is acyclic. If Q∈ E (Q) we are done. If not then the set N(Q) ≡ 

{(x,y)∈X×X: (x,y)∉Q & (y,x)∉Q} is non-empty. Note if (x,y)∈N(Q) then so does (y,x). 

Further if (x,x)∉Q for some x∈X, then (x,x)∈N(Q). 

Let Q
0
 = Q∪N(Q). Clearly xI(Q

0
)y for all (x,y)∈N(Q) and Q

0
 is reflexive as well as 

connected. 

Towards a contradiction suppose there is a P(Q
0
)-cycle. Then for some positive integer K 

> 1 there exists a non-empty finite subset {x1,…,xK}of X such that: (i) xi P(Q
0
)xi+1 for i = 

1,…, K-1; (ii) xKP(Q
0
)x1. 

But this implies (i) xi P(Q)xi+1 for i = 1,…, K-1; (ii) xKP(Q)x1, giving rise to a P(Q)-cycle 

and contradicting the acyclicity of Q. 

Thus Q
0
∈ E (Q), i.e. E (Q) is non-empty. Q.E.D. 

 

We can use proposition 1 to prove the following result which has interesting 

consequences for Paretian social welfare relations. 

 

Proposition 2: Let Q be a binary relation. Then for all S∈<X> it is the case that M(S,Q) 

= �
)(

),(
QER

RSM
∈

if and only if Q is acyclic. 

 

Proof: First suppose that for all S∈<X> it is the case that M(S,Q) = �
)(

),(
QER

RSM
∈

. 

Towards a contradiction suppose that Q is not acyclic. Then by proposition 1, E (Q) is 

empty. 

Thus �
)(

),(
QER

RSM
∈

 is empty for all S∈<X> although for all x∈X, it is the case that M({x, 

Q) = {x}≠ φ, leading to a violation of the assumed equality. Thus Q is acyclic. 

Now suppose Q is acyclic. By proposition 1, E (Q) is non-empty.      

Let S∈<X>. Suppose x∈ �
)(

),(
QER

RSM
∈

. Towards a contradiction suppose there exists 

y∈S such that yP(Q)x. Thus yP(R)x for all R∈ E (Q) contradicting x∈ �
)(

),(
QER

RSM
∈

. 

Thus x∈M(S,Q). Thus �
)(

),(
QER

RSM
∈

⊂ M(S,Q). 

Now suppose x∈M(S,Q).  

As in the proof of proposition 1, let N(Q) ≡ {(w,z)∈X×X: (w,z)∉Q & (z,w)∉Q}. 

Let Q' = Q∪N(Q). Clearly Q'∈ E (Q) and P(Q') = P(Q). 

Thus x∈M(S,Q'), i.e. x∈ �
)(

),(
QER

RSM
∈

. 
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Thus M(S,Q) ⊂ �
)(

),(
QER

RSM
∈

. 

Combining the two inclusions we get M(S, Q) = �
)(

),(
QER

RSM
∈

. Q.E.D. 

Let E
0
 denote E (R

0
). By proposition 1, E

0
 is non-empty, i.e. the set of Paretian social 

welfare relations is non-empty. By proposition 2 we obtain the following theorem which 

is similar to a corresponding result available in Banerjee and Patttanaik [1996].  

 

Theorem 1: For all S∈<X>: M(S, R
0
) = �

0

),(

ER

RSM

∈

. 

Theorem 1 says that that the set of Pareto optimal social states coincides with the set of 

social states that are chosen by some Paretian social welfare relation. 

 

4.  Approximating a Paretian social welfare relation: Now suppose as in Suzumura 

[1999] that R is a given Paretian social welfare relation. Unlike Suzumura [1999] 

transitivity or even consistency of binary relations plays no role in our analysis. Given a 

set of social states, it is easy to see that the R-undominated social states (or the social 

choice set) from S will be Pareto optimal for S(i.e. undominated by the Pareto relation in 

S). The question that we are interested in is the following: what is the precise structure of 

the social choice set from S in terms of reflexive and acyclic binary relations that satisfies 

the Pareto principle and approximates R, i.e. is an extension of R
0
 and a sub-relation of 

R? 

Let Θ(R
0
, R) = {Q⊂X×X: R

0
⊂⊂ Q ⊂⊂ R and P(R

0
)⊂ P(Q) ⊂ P(R)}. 

Thus if Q∈Θ(R
0
, R) then Q is reflexive (since R

0
 is) and acyclic (since R is).  

Neither R
0
 nor R belongs to Θ(R

0
, R) since we require each binary relation in Θ(R

0
, R) to 

be a strict superset of R
0
 and a strict subset of R. 

The remarkable fact is that the following result similar to the “Recoverability” theorem in 

Suzumura [1999] holds in this acyclic scenario. 

 

Theorem 2: Suppose Θ(R
0
, R) is non-empty. Then for all S∈<X>: M(S,R) = 

�
),( 0

),(
RRQ

QSM
Θ∈

. 

Proof: Let S∈<X>. 

First suppose x∈M(S,R). Thus for all y∈S it is the case that (y,x)∉P(R). 

Towards a contradiction suppose there exists Q'∈Θ(R
0
, R) such that x∉M(S,Q').  

Thus there exists y∈S such that yP(Q')x. 

Since P(Q') ⊂ P(R) we get that yP(R)x contradicting x∈M(S,R). 

Thus x∈ �
),( 0

),(
RRQ

QSM
Θ∈

. 

Hence M(S,R) ⊂ �
),( 0

),(
RRQ

QSM
Θ∈

. 

Now suppose x∈ �
),( 0

),(
RRQ

QSM
Θ∈

.  

Towards a contradiction suppose x∉M(S,R). 

Thus there exists y∈S such that yP(R)x. However for all Q∈Θ(R
0
, R) it is the case that 
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(y,x)∉P(Q). 

Consider Q∪{(y,x)} for Q∈Θ(R
0
, R). 

Suppose for some Q
0
 there exists a positive integer K>1 and a non-empty subset 

{x1,…,xK} such that: (i) x1 = x, xK = y; (ii) xiP(Q
0
)xi+1 for i = 1,…,K-1. 

Then xiP(R)xi+1 for i = 1,…,K-1. This combined with yP(R)x contradicts the acyclicity of 

R. 

Hence since Q
0
 is acyclic Q

0
∪{(y,x)} is acyclic. 

If xQ
0
y, then it must be the case that xRy contradicting yP(R)x. 

Thus for no Q
0
∈Θ(R

0
, R) is it the case that xQ

0
y. 

Thus yP(Q
0
∪{(y,x)})x. 

Since Q
0
 ⊂ R, P(Q

0
) ⊂ P(R) and yP(R)x, we get that R extends Q

0
∪{(y,x)}. 

Further R
0
⊂ Q

0
∪{(y,x)} and P(R

0
) ⊂ P(Q

0
) ⊂P(Q

0
∪{(y,x)}). 

If Q
0
∪{(y,x)}⊂⊂R, then Q

0
∪{(y,x)}∈Θ(R

0
, R). 

But x∉M(S, Q
0
∪{(y,x)}) contradicting x∈ �

),( 0

),(
RRQ

QSM
Θ∈

. 

Hence it must be the case that Q∪{(y,x)}= R for all Q∈Θ(R
0
, R). 

Thus there exists a unique Q* such that Θ(R
0
, R) = {Q*}. 

Since R
0
 ⊂⊂Q*, there exists (w,z)∈Q*\R

0
. 

For reasons identical to those that lead to Q
0
∪{(y,x)}∈Θ(R

0
, R) we get that both 

R
0
∪{(y,x)} and R

0
∪{(w,z)} belong to Θ(R

0
, R) contradicting that Θ(R

0
, R) is a 

singleton. 

Thus x∈M(S,R). 

Thus �
),( 0

),(
RRQ

QSM
Θ∈

⊂ M(S,R). 

Combining the two inclusions we get that �
),( 0

),(
RRQ

QSM
Θ∈

= M(S,R). Q.E.D.   
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