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ABSTRACT 

In the paper, I simulate the social network games of a portfolio selection where agents consider VaR when 

managing their portfolios. Such agents behave quite differently from the agents considering only the expected 

returns of the alternatives that are available to them in time. The level of omniscience of agents and the presence 

of liquidity agents are demonstrated to be significant factors for the portfolio management. 
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1 Introduction 

 

A stochastic process is defined on the probability space ( ), , PΩ ℑ , with Ω  representing an 

outcome space of all possible outcomes of events ω∈Ω , ℑ  is a algebraσ − , the collection 

ob subsets of a sample space Ω  that occur with the probability P , with ( ) 0P ℑ ≥  and 

( ) 1P Ω = . Filtered probability space is a subspace of a probability space, whereas tℑ ⊆ ℑ . 

Prices on financial markets change in time stochastically, making it one such process with 

risk inherently being part of it. Namely, decisions create patterns and patterns create back the 

decisions, whereas in this intertwined process in time neither of the two develops in a 

predictable way nor can be foreseen. Portfolio theory provides a broad context of managing 

ones wealth, considering risks and returns (Markowitz 1952). 

 

In a number of papers (Steinbacher 2008a, b; 2009a, b), I simulated games of a portfolio 

decision-making under uncertainty and under different circumstances using models of social 

network with agents capable of cooperation and learning as defined by Watts and Strogatz 

(1998). The main features of the papers were that under the social network environment 

expected return and the level of omniscience of agents affect the portfolio decision-making, 

whereas the volatility of assets per se does not. In all the papers, the level of loss-aversion was 

only implicitly introduced into the decision-making processes, as agents were interested in 

gains and not losses. This article considers this, introducing the Value-at-Risk (VaR) a 

measure of risk. 

 

Unlike Markowitz’s portfolio theory and its variants, using VaR in managing portfolio means 

to consider for an expected loss of a given portfolio due to changes in market prices of assets 

in the portfolio over a specified holding period with the given confidence level (Jorion 2006). 

As such, VaR represents a quantified measure of the riskiness of a given portfolio or its parts. 

In the model, I assume that when they need to make decisions under uncertainty agents try to 

avoid losses, which has been extensively documented (Kahneman and Tversky 1979; Thaler 

1980; Tversky and Kahneman 1991; Hirshleifer 2001). I assume that agents do it by using the 

value of VaR as a reference, through which they minimize the probability of suffering the 

loss. 

 

The remainder of the paper is organized as follows. Section 2 defines the model and the data, 

and Section 3 simulation results. A final section provides some conclusions. 

 

 

2 The model 

 

 

2.1 Computation of VaR 

 

The value of VaR can be estimated in many ways, while the most commonly used are the 

following three. First is a historical simulation approach, which relies on the historical 

realizations of returns of securities under study and uses actual percentiles of the observation 



period to measure the value of VaR. The second method uses a variance-covariance matrix of 

the assets under study. I use this method in the sequel in two alternatives; first, I take the 

variance of an entire up-to-date data history, followed by a weighted approach with more 

distant the data the lesser the relevance. The third way to compute the value of VaR is to use 

Monte Carlo simulations from a given distribution of market changes. Detailed characteristics 

of different computational methods for the estimation the value of VaR are provided in Jorion 

(2006). In simulations below, I use 95% VaR and 99% VaR on a daily basis. 

 

Based on a historical data of the stocks of CreditSuisse and Citigroup, I compute variance of 

market changes of both stocks in time. This means that as daily prices of the stocks change, so 

do also the mean value and variance of both stocks change daily. The calculation of portfolio 

standard deviations using a variance approach is defined as  
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where tσ  denotes the estimated standard deviation of a portfolio in time t , tx  indicates 

realizations of market changes of a portfolio in time and tµ  represents the mean value of 

outcomes of portfolio realized to the point in time.  

 

 

2.2 The network 

 

As in the previous papers, there are 1000n =  infinitely lived agents, populated on the ring 

lattice to form a small world network, on average each connected with six others (Watts and 

Strogatz 1998).  

 

The network ( ),g V E=  is a set of vertices { }1 2 1000, , ,V v v v= … , representing agents, and 

edges { }1 2, , , nE e e e= … , representing their pairwise relations. If two agents are connected, we 

denote ij g∈ , whereas ij g∉  represents two unconnected vertices. Using adjacency matrix, 

1ij =  if ij g∈  and 0ij =  if ij g∉ . Games in the sequel are simulated on an undirected graph, 

with edges being unordered pairs of vertices, thus if 1 1ij ji= ⇔ = . In a small world network, 

people have many local and some global connections with others, which we get by rewiring 

some of the connections. In the model, agents are rewired with the probability 0.01p = . 

 

Agents are split in the two groups as per their initial preferences. Agents in the first group 

prefer stocks of CreditSuisse, their share is 0 1u≤ ≤ , whereas the portion of ( )1 u−  agents in 

the second group prefer stocks of Citigroup. Again, agents in both groups are allowed either 

to opt for a pure strategy, making a portfolio of only the stocks that one prefer, or make a 

portfolio out of the two stocks available. Agents who prefer stocks of CreditSuisse and make 

a portfolio only of the CreditSuisse stocks are denoted CS , and CSp  if they opt for a 

portfolio of the two. Contrary, with C  are denoted agents that prefer stocks of Citigroup and 



opt for a pure Citigroup portfolio, whereas they are denoted Cp  if they opt for the portfolio of 

the two. In either case, portfolio is selected from the part of stocks one prefers, 0 1pi≤ ≤ , and 

the remainder, ( )1 pi− , that represents the part of stocks in a portfolio of a non-preferred 

company. Agents accumulate their wealth in time, but they decide upon the VaR of an 

alternative in time. 

 

As in Steinbacher (2009b), so also do I here introduce liquidity agents, who never change 

their initial strategies, and assume that their portion in the network is 0.1l = . In the model, 

liquidity agents are numbered from 901 1000n≤ ≤  of 1000n =  agents that are present in the 

game. In the games, liquidity agents pursue all four alternatives, for each individual randomly 

defined in the beginning of the games. Agents accumulate their wealth in time according to 

the strategy they choose. 
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( )1tW + •  and ( )tW •  represent wealth of an individual in time t  and 1t + , whereas ( )•  denotes 

the strategy played by an individual in time. Returns of stocks, denoted Cr  and CSr , are 

exogenous to the individuals and they cannot foresee them, neither do they know the system 

how prices change in time. Despite agents accumulate the wealth in time that is increasing 

due the returns of their portfolios, they make decisions upon the value of VaR of the four 

alternatives in time as defined in (1). From the set of alternatives, they choose the strategy 

with the highest value of VaR, which corresponds to the lowest expected loss of the portfolio. 

 

Finally, the level of omniscience of agents is introduced into the model through the 

probability function and the coefficient κ  as (Szabó and Tőke 1998) 

 

( ) ( )( )
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In every time period t  an agent iA  chooses one of the individuals to which he is directly 

connected, jA , and compares his own value of VaR, ( )iVaR A , to the value of VaR of a 

selected individual, ( )jVaR A . This means that higher the value of κ , more non-omniscient 

the agents. In simulations, I use 1.0κ =  to define non-omniscient agents and 0.001κ =  for 

omniscient agents. 

 

 

 



2.3 Data 

 

Data is used from finance.yahoo.com portal. Data refer to adjusted closed prices of both 

stocks from 21.1.1999 until 19.11.2008. An adjusted closed price is a price adjusted for splits 

and dividends. In order to use the same time-period for both stocks, I omit adjusted closed 

prices for the stock for a time units if the other stock was inactive on that day.  

 

Figures 1a and 1b below plot the returns ob both stocks in time, as well as the values of 95% 

and 99% VaRs of both stocks in time. 

 

Figure 1a: Returns and VaRs of Citigroup stock 

 
 

Figure 1b: Returns and VaRs of CreditSuisse stock 

 
 



3 Simulation results 

 

3.1 Omniscient agents 

 

95% VaR 

 

First are simulations of the games with omniscient agents with 0.001κ =  under different 

circumstances. I first take a 95% VaR rule and set 0.5u = , which means that 

[ ] [ ] [ ] [ ]0 0 0 0 0.25C Cp CSp CS= = = = , and 0.3pi = . C , Cp , CSp  and CS  represent the 

portions of agents pursuing each alternative and is changing in time and pi  is constant. I do 

two independent realizations of the game. Simulation results of the first realization are plotted 

in Figure 2a and of the second in Figure 2b. Colored lines in figures represent portions of 

agents that pursue each of the alternatives as defined in (2).  

 

Figure 2a: Portions of agents playing each alternative in time 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2b: Portions of agents playing each alternative in time 

 
 

Both figures demonstrate that under VaR rule there is no clear unanimous decision as in 

Steinbacher (2009b) where herding induced a Citigroup stock to outperform other alternatives 

quite soon. Despite both simulations are simulated on equal data and other circumstances, 

Figure 2a and Figure 2b indicate of a strong butterfly-effect, meaning that the development of 

the game is determined on whom among friends one takes as a reference. Namely, before 

making the decision, an agent first picks one of his friends and compares both values of VaR. 

As expected, agents often opt for a portfolio of the two stocks, by which they reduce the 

variance and the risk. As in Steinbacher (2009b), so is the role of liquidity agents also very 

significant within the VaR rule. 

 

 

99% VaR 

 

I now switch to a 99% VaR rule and keep other conditions unchanged; thus 0.5u =  and 

[ ] [ ] [ ] [ ]0 0 0 0 0.25C Cp CSp CS= = = = , which are changing in time, whereas 0.3pi =  and 

0.001κ =  are constant in time. Figure 3a and Figure 3b represent the results of the two 

independent realizations of the game. 

 

 

 

 

 

 

 

 

 

 



Figure 3a: Portions of agents playing each alternative in time 

 
 

Figure 3b: Portions of agents playing each alternative in time 

 
 

When switching to a 99% VaR rule, there is again no dominant strategy, whereas the figures 

pretty much resemble that of the 95% VaR rule. This means the strong butterfly-effect is 

present and the role of liquidity agents very significant. 

 

 

 

 

 

 

 



3.2 Non-omniscient agents 

 

95% VaR 

 

I now move to non-omniscient agents with 1.0κ =  and again simulate games under different 

circumstances. Again, I first use a 95% VaR rule, set the initial value 0.5u = , which means 

that [ ] [ ] [ ] [ ]0 0 0 0 0.25C Cp CSp CS= = = = , and set 0.3pi = . The shares of agents pursuing 

each alternative are changing in time, whereas pi  is constant. I do two independent 

realizations of the game and plot the results of the first in Figure 4a and of the second in 

Figure 4b. 

 

Figure 4a: Portions of agents playing each alternative in time 

 
 

Figure 4b: Portions of agents playing each alternative in time 

 



Figures demonstrate that the decisions of non-omniscient agents are quite different from the 

ones of omniscient agents. Figures also reveal that the decision-making of non-omniscient 

agents is much more constant in time than it is under omniscient agents and the presence of 

liquidity agents. This was also the case in Steinbacher (2008a, b; 2009a, b). The role of 

liquidity agents is again very significant. 

 

 

99% VaR 

 

Finally, I turn to non-omniscient agents who pursue a 99% VaR rule. Again, in the start of the 

game 0.5u = , meaning that [ ] [ ] [ ] [ ]0 0 0 0 0.25C Cp CSp CS= = = = , and 0.3pi = . The shares 

of agents pursuing each alternative are changing in time, whereas pi  is constant. I do two 

independent realizations of the game and plot the results of the first in Figure 5a and of the 

second in Figure 5b. 

 

Figure 5a: Portions of agents playing each alternative in time 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5b: Portions of agents playing each alternative in time 

 
 

Figures again demonstrate that non-omniscient agents make decisions in a different way from 

omniscient agents, and that decisions of non-omniscient agents are much more constant in 

time, despite still variable. Again, the role of liquidity agents is much emphasized. 

 

 

4 Concluding remarks 

 

The article somehow supplements some of my previous simulation games in which agents 

managed their portfolios by comparing efficiencies of the alternatives in time and considering 

riskiness only implicitly. This is done by introducing VaR into the model as an explicit 

measure of risk, which agents pursue in their decision-making. 

 

As in the previous simulations, the level of omniscience of agents and the presence of 

liquidity agents proved to be very significant for the developments of the games. These 

conclusions are in line with Simon (1997) who argued that new knowledge how to obtain data 

about beliefs, attitudes and expectations of people is needed in order to make better decisions. 
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