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Abstract

We propose two variations of the non-cooperative bargaining model for games

in coalitional form, introduced by Hart and Mas-Colell (1996a). These strategic

games implement, in the limit, two new NTU-values: The random marginal and

the random removal values. The main characteristic of these proposals is that they

always select a unique payo¤ allocation in NTU-games. The random marginal value

coincides with the Consistent NTU-value (Maschler and Owen, 1989) for hyperplane

games, and with the Shapley value for TU games (Shapley, 1953). The random re-

moval coincides with the solidarity value (Novak and Radzik, 1994) in TU-games.

In large games it is showed that, in the special class of market games, the ran-

dom marginal coincides with the Shapley NTU-value (Shapley,1969), and that the

random removal coincides with the equal split solution.
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1 Introduction

In this paper n-person cooperative games in coalitional form are considered.

When utility is transferable across players (TU-games) the most prominent solution

concept is the Shapley (1953) value. It yields a unique payo¤ allocation for the players in

the game. Shapley�s original support for the value was axiomatic. Other relevant axioma-

tizations of the value are in Myerson (1980), and Hart and Mas-Colell (1989). Bargaining

models that yield the value in the TU-case have also been proposed. Among these one

should mention Gul (1989), Hart and Moore (1990), Hart and Mas-Colell (1996a), Winter

(1994), and Pérez-Castrillo and Wettstein (2001).

When utility is not transferable (NTU-games), di¤erent ways to extend the value

have been considered. The most relevant are by Harsanyi (1963), Shapley (1969)1, and

Maschler and Owen (1992)2. These three solutions were constructed in such a way that

they coincide with the Nash (1950) solution for pure bargaining games and with the

Shapley value for TU-games. Axiomatic support for these solutions have been carried out

by Aumann (1985) for the Shapley NTU-solution, by Hart (1985) for the Harsanyi NTU-

solution, and by de Clippel, Peters and Zank (2004) and by Hart (2005) for the Consistent

NTU-solution. Bargaining games that support these solutions have been proposed for

the Consistent NTU-solution in Hart and Mas-Colell (1996), and for the Shapley NTU-

1The Shapley NTU-value is also known as �-transfer value.
2First introduced for hyperplane games in Maschler and Owen (1989), and also called the Consistent

NTU-value.
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solution in Vidal-Puga (2006)3.

This paper starts o¤ with two aspects that should be taken into account in this value

extension program: Single-valuedness and symmetry. Recall that both, the Shapley value

and the Nash bargaining solution, satisfy symmetry and select single payo¤s in TU-

games, and pure bargaining games, respectively. Nevertheless, the Harsanyi, Shapley,

and Consistent NTU-solutions do not guarantee uniqueness in the solution set.

Multiplicity of the outcomes is not a real problem if we interpret a solution from a

predictive point of view. When a set is selected, that only means that the �nal outcome

must belong to this solution set. This phenomenon happens in many other contexts, as

in the Walrasian equilibria in competitive economic models, or in the Nash equilibria

and many of its re�nements for non-cooperative games. But from a normative point

of view, this multiplicity in the solution set yields an inconsistency with respect to the

symmetry axiom which belongs to the set of axioms that supports both the Shapley

TU-value, and the Nash bargaining solution: It is easy to build examples4 of symmetric

games for which asymmetric payo¤s are selected by these three solutions. Where do these

asymmetries come from? Perhaps a more detailed and explicit model of the bargaining

rules that support each solution should be needed in order to understand the origin of

these asymmetric payo¤s.

From this strategic approach, the only relevant proposal is the bargaining procedure

proposed by Hart and Mas-Colell (1996a). This model is an elegant and simple variation

of the alternating o¤ers method. It has the merit that it supports the Nash bargaining

solution for pure bargaining games, the Shapley value for TU-games, and the Consistent

solution for NTU-games. In brief, the model goes as follows:

3Only for the particular case in which the boundary of the grand coalition is a hyperplane.
4See Section 3 wherea two-person example is used extensively.
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Among the players5 still in the bargaining, a proposer is chosen randomly (with uni-

form distribution). The proposer makes a feasible o¤er. If the rest of the players agree, this

o¤er is the �nal payo¤. If any player rejects, with a prespeci�ed probability � (0 � � < 1),

a new proposer is chosen (among all of them) and the process is repeated again, and with

probability (1 � �) the proposer drops out of the game (receiving zero) and we restart

the bargaining process with the remaining players, and so on. The process starts initially

with all players.

This bargaining procedure is a sequential, perfect information game, and it has a

stationary subgame perfect equilibria. Moreover, when the probability � goes to one, the

solution payo¤s associated to the equilibria converge to the consistent values. Moreover,

in the same paper, some variations of this bargaining game are considered. And they

obtain, in the authors� words, �...in particular, we allow for the possibility that players

other than the proposer may be the victims of bargaining breakdown. However, we show

that if the bargaining procedure yields the Shapley value in the TU-case, then necessarily

the consistent value obtains in the NTU-case. Thus the consistent NTU-value is, according

to our noncooperative approach, the appropriate generalization of the Shapley TU-value.�

End of story?

First of all, note that this bargaining model does not yield a full support of the set

of consistent payo¤ allocations, i.e. there are examples with consistent payo¤ allocations

that cannot be approached (when � ! 1) with the payo¤s associated to the stationary

subgame perfect equilibria. This fact will be shown by the example discussed in Section

3: In this symmetric game there are three consistent payo¤s, two of them asymmetric and

only one symmetric. The asymmetric points are the only ones that can be approached

5From now on, we interpret players in a game as agents with neutral gender. They can be interpreted

as automata, institutions or so on. Therefore we will avoid choosing their gender every time.
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by the equilibrium payo¤s, with just the symmetric payo¤ being excluded.

There is a crucial step in the design of the negotiation model that is responsible for

this asymmetry, and we can enunciate it by using the same authors� words:

�The key modeling issue is the speci�cation of what happens if there is no agreement

and, as a consequence, the game moves to the next stage. It is at this point that subgroups

are made to matter by allowing for the possibility of partial breakdown of negotiations.

Clearly, there are many ways to model such a partial breakdown. In the body of this paper

we concentrate on a particular and simple class: disagreement puts only the proposer in

jeopardy. That is, after his proposal is rejected, the proposer may cease to be an active

participant.�

Note that the cause of a rejection is due to the fact that the proposer o¤ers less

than what the responder expect to obtain. But who is the player responsible for such a

breakdown? The proposer, o¤ering too little, or the responder rejecting the o¤er because

he wish for too much? An anonymous rule should not specify who is to blame for this

breakdown, except if the rule itself computes what the right o¤er must be; but in that

case the rule determines directly the right outcome without the help of the players. The

HM-model identi�es the proposer as being the only player responsible for the lack of

agreement, giving him a chance (1� �) to live the game after a rejected proposal.

In this paper we show that it is possible to yield strategic support for single-valued

NTU-solutions, by changing the breakdown procedure, in such a way that, after rejec-

tion, the probability of leaving the game will be the same for all players (proposer and

responders), making all of them responsible for the lack of agreement. There are several

ways in which this can be done. We show two of them, which di¤er from the HM-model

only in the rules of breakdown.

The simplest way to make this type of modi�cation was already mentioned in Hart and
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Mas-Colell (1996a), Section 6. There, they propose several modi�cations of the bargaining

procedure, and this is the case (d) from their list:

- Random removal. All players (proposer and responders) drop out with equal proba-

bility. The player that leaves the game receives a payo¤ of zero, and the rest restart the

bargaining process.

The authors mention that in the TU-case �The resulting solution is di¤erent from the

previous ones (thus, it is neither the Shapley value nor the equal split solution6). However,

for a large n, it is easy to see that it is close to the equal split solution�.

Nevertheless, the interest of this modi�cation relapses into the solution obtained in

the NTU-case. It satis�es both requirements mentioned above: Single-valuedness and

symmetry. Moreover, it yields the Nash bargaining solution in pure bargaining games,

and the solidarity value of Nowak and Radzik (1994) in TU-games.

The second modi�cation proposed is a bit more elaborate, but has the advantage that

the solution obtained �ts into the Shapley value generalization program.

- Random marginal. A new proposer is chosen (among all of them) with equal proba-

bility. The proposer makes an ultimatum o¤er. If the rest of the players agree, this o¤er

is the �nal payo¤. If any player rejects, the proposer drops out of the game (receiving

zero) and we restart the bargaining process with the remaining players.

Thus, in the ultimatum o¤er, the proposer knows for sure that they will leave the game

in case of rejection. The di¤erence between the random removal and random dictator is

that, in random removal the player selected leaves the game directly, and in the random

dictator, the player selected makes an o¤er, and it is only under rejection that the player

leaves the game.

Now, the resulting solution supported by this bargaining procedure yields a new so-

6That is, the payo¤s are shared equally beween the players of the coalition.
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lution in the NTU-case that it is again single-valued, and satis�es symmetry. When we

deal with TU-games the Shapley value is selected, and in Hyperplane games it is the Con-

sistent NTU-value. The price to pay relies on the fact that in pure bargaining problems

the solution obtained is di¤erent from the Nash bargaining solution. The point selected

is the maximization of utility gains from a breakdown point, so it is similar to the Nash

solution (maximization of utility gains from the disagreement point), and the breakdown

point is an average of the ideal points, from which the Kalai-Smorodinsky (1975) solution

is based. So it has elements of both solutions in its de�nition.

Following this Introduction, Section 2 is devoted to preliminary de�nitions and nota-

tions. Section 3 presents the bargaining model of Hart and Mas-Colell and the modi�ca-

tions that yield the random marginal and the random removal bargaining models. The

proposals corresponding to an equilibrum, for both bargaining models, are characterized

in NTU-games. In Section 4 some two-person games are used to see the similarities and

di¤erences of the limit points associated to these models. Sections 5 and 6 are devoted

to the characterization of the random marginal and random removal values in TU-games

an NTU-games respectively. Finally, Section 7 explores in large games the connections

between the random marginal value and the Shapley NTU-value, and between the random

removal value and the equal split value.

2 De�nitions

Let N = f1; :::; ng be a �nite set of players. A coalition is a subset of N . let P (N) be the

set of all coalitions of N . The cardinality of a coalition S is denoted by s. If x; y 2 RN ,

we write x � y if xi � yi for all i 2 N , and x > y if xi > yi for all i 2 N . Given two

vectors x; y 2 RN , we use the notation x � y :=
P

i2N xiyi, and x � y := (xiyi)i2N . If
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x 2 RN and ; 6= S � N , we write xS as the restriction of x to S, i.e., xS = (xi)i2S 2 R
S.

Let RN+ := fx 2 R
N j x � 0g and RN++ := fx 2 R

N j x > 0g. Let A � RN , A is called

comprehensive if A � RN+ � A. The boundary of A is denoted by @A. We say that the

boundary is non level if for all x 2 @A it holds that fxg � RN+ \ @A = fxg.

A non-transferable utility game (NTU-game for short), is a map V assigning to each

coalition S, ; 6= S � N , a subset V (S) � RS of attainable payo¤ vectors for players in S.

several regularity conditions are imposed such as:

(A.1) V (S) is non-empty, closed, convex and comprehensive.

(A.2) @V (S) is non level.

(A.3) 0 2 V (S) and V0(S) := V (S) \ RS+ is bounded.

(A.4) Monotonicity: V0(S)� f0
TnSg � V0(T ) whenever S � T:

(A.5) Positively smoothness: For each S � N , at each x of @V (S) there exists a unique

supporting hyperplane to V (S) (i.e. V (S) � fy 2 RS : � � y � � � xg) such that � 2 RS++:

The assumption A.4 is just the extension on NTU-games of the classical Monotonicity

assumption for TU-games. The class of all games that satisfy A.1, A.2, A.3, and A.4, is

denoted by G:

For each i 2 N , let ri := maxfx : x 2 V (i)g, and let r = (ri)i2N 2 R
N . Some relevant

classes of NTU-games are:

1. Transferable utility games (TU-games), when for each coalition S there is a number

v(S) such that V (S) = fx 2 RS :
P

i2S x
i � v(S)g for all S � N . Risk neutral players

who use a totally divisible good to make the coalitional payo¤s is an example of this type

of games. If V is a TU-game, it will be denoted also by v.

2. Hyperplane games (H-games), when @V (S) is a hyperplane for all S � N . That

is, for each coalition S there exists a number v(S) and a vector �S 2 R
S
++ such that

V (S) = fy 2 RS : �S � y � v(S)g: For example, prize games can be modeled in this way:
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Each coalition S � N has a prize �S. The prize �S is indivisible, and only one member

of S can receive it. The feasible set of each coalition S consists of all lotteries over which

players in S get the prize �S (for more details see Hart, 1994).

3. Pure Bargaining games (PB-games), when 0 2 @V (S), for all S 6= N . Pure

Bargaining games are usually described by a pair (0; V (N)), where V (N) is the utility

feasible set attainable by unanimity agreements of all members of N , and 0 is the utility

feasible payo¤s vector obtained in case of disagreement. The fact that no other than the

grand coalition can make agreements is precisely re�ected by 0 2 @V (S), for all S 6= N .

Remark. In the normalization assumption A.3, it is worth noting that we have been

making the implicit assumption that the utilities are previously normalized in such a way

that when any player leaves the game, the payo¤ that it obtains is zero. The payo¤ ri is

what player i obtains in the game if the remaining Nni players have left the game. Hence

a two-person NTU-game will be a pure bargaining game only when r = 0.

A payo¤ con�guration is a family x =(xS)S�N where xS 2 R
S for all S � N . A value

on G is a function � that assigns a unique payo¤ con�guration to each game belonging

to G. Given V 2 G, and S � N , the vector �S(V ) is called the value of V for S: A

solution on G is a mapping 	 that assigns a set of payo¤ con�gurations to each game

belonging to G. For notational simplicity, we use Sni and S [ i instead of Snfig and

S [ fig respectively.

3 The bargaining model

We describe here the multilateral bargaining procedures, based on the random removal

and random marginal approach, within the general setting of NTU-games. These two

approaches are based on the HM-model, and hence have a similar structure. For this
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reason, in order to see more clearly the di¤erences and similarities between them, we

describe the three models at the same time.

We specify now the sequential noncooperative games which specify the rules of bar-

gaining. The three models only di¤er in what happens if breakdown occurs7.

Let an NTU-game V 2 G and 0 � � < 1 be a �xed parameter:

In each round there is a set S � N of active players, and a proposer i 2 S. In

the �rst round, the active set is S = N . The proposer is chosen at random out

of S, with all players in S being equally likely to be selected. The proposer

makes a feasible o¤er aS;i 2 V (S). If all members of S accept it -they are

asked in some prespeci�ed order- then the game ends with these payo¤s. If

it is rejected by even one member of S, then, with probability �, we move to

a next round where the set of active players is again S and, with probability

1� �, breakdown occurs.

HM-breakdown: The proposer i drops out -leaves the game, receiving a payo¤

of zero- and we move to a next round where the set of active players becomes

Sni8.

RR-breakdown (random removal): A player j is chosen at random from S to

drop out, being equally likely to be selected, and we move to a next round

where the set of active players becomes Snj.

RM-breakdown (random marginal): A player j is chosen at random from S

to make an ultimatum o¤er, being equally likely to be selected: Proposer j

7We call HM-model of bargaining ( RR-model, RM-model, respec.) when the breakdown follows the

HM-breakdown (RR-breakdown, RM-breakdown, respec.) rule.
8In what follows we write Sni and S [ i for Snfig and S [ fig respectively.
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makes a feasible o¤er uS;j 2 V (S). If all members of S accept it -they are

asked in some prespeci�ed order- then the game ends with these payo¤s. If it

is rejected by even one member of S, then j drops out and we move to a next

round where the set of active players becomes Snj.

The negotiation games have potentially in�nitely many periods, and with more than

two active players, it is well known that many subgame perfect equilibria strategies appear.

Hence, as usual, we restrict ourselves to considering only stationary strategies. Therefore,

the choice at each stage only depends on the set of active players S and on the current

proposer i. Given a pro�le of stationary strategies, denoted by aS;i(�), for i 2 S � N , the

proposal when the set of active players is S and the proposer is i. The average of these

proposals is de�ned by aS(�) := (1=s)
P

i2S aS;i(�)
9.

We recall �rst the equations that characterize the stationary subgame perfect equilib-

rium (SP) of the HM-model (Proposition 1, Hart and Mas-Colell, 1996a).

Proposition 1 The proposals corresponding to an SP equilibrium are always accepted,

and they are characterized by:

(HM.1) aS;i(�) 2 @V (S) for all i 2 S � N ,

(HM.2) ajS;i(�) = �ajS(�) + (1� �)aj
Sni(�) for all i; j 2 S � N with i 6= j.

Moreover, these proposals are nonnegative.

The proposition says that i makes o¤ers such that they will obtain their maximum

payo¤ compatible by giving to the rest of players what they would expect to obtain in the

continuation of the game if the o¤er were rejected, i.e., for every responder j 6= i, they

will get their expected payo¤ ajS(�) when the active player set is S again, with probability

9We denote the cardinality of a �nite set Sby s:
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�, and aj
Sni(�) when the active player set is Sni, with probability (1 � �) of i dropping

out.

In the next two propositions we characterize the conditions of an SP equilibrium in

the RR and RM-breakdown models. They only di¤er in what players can expect to get

in the continuation of the game in case of breakdown.

For any S � N , de�ne

djS(�) :=
1

s

X

k2Snj

aj
Snk(�); j 2 S:

Therefore dS(�) = (1=s)
P

j2S(0; aSnj(�)), where (0; aSnj(�)) 2 R
S is the payo¤ vector in

which player j drops out receiving 0, and players k 6= j receive akSnj(�).

Proposition 2 The proposals corresponding to an SP equilibrium in the RR-breakdown

model are always accepted, and are characterized by:

(RR.1) aS;i(�) 2 @V (S) for all i 2 S � N ,

(RR.2) ajS;i(�) = �ajS(�) + (1� �)djS(�) for all i; j 2 S � N with i 6= j.

Moreover, these proposals are nonnegative.

For the RM-breakdown model the proposition is very similar. For any S � N , we

de�ne uS(�) := (1=s)
P

j2S uS;j(�), where uS;j(�) 2 R
S is the ultimatum o¤er when player

j 2 S is selected as proposer in the RM-breakdown.

Proposition 3 The proposals corresponding to an SP equilibrium in the RM-breakdown

model are always accepted, and are characterized by:

(RM.1) aS;i(�) 2 @V (S) for all i 2 S � N ,

(RM.2) ajS;i(�) = �ajS(�) + (1� �)ujS(�) for all i; j 2 S � N with i 6= j,

(RM.3) uS;i(�) 2 @V (S) for all i 2 S � N ,
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(RM.4) ujS;i(�) = aj
Sni(�) for all i; j 2 S � N with i 6= j.

Moreover, aS(�) � uS(�), and a
i
S;i(�) � uiS(�) � 0, for all i 2 S � N .

The proof of Propositions (RR) and (RM) are rather similar of the HM-model (see

Proposition 1, in Hart and Mas-Colell, 1996a). In particular, Proposition (RR) is just

case (d) of proposition 9, of Hart and Mas-Colell (1996a). So we will pay attention only

to the RM-model.

Proof. It is proceeded by induction. It can be easily checked for the 1-player case.

Let (aS;i(�); uS;i(�)), for i 2 S � N , be the proposals of a given SP equilibrium. Assume

by induction hypothesis that RM.1-RM.4 are satis�ed for S 6= N . We see �rstly that,

in case of breakdown, uS;i(�) satis�es RM.3 and RM.4 for any i 2 N . Because it is

assumed that aS;i(�) 2 @V (S) and aS;i(�) � 0 for i 2 S 6= N , monotonicity and convexity

imply that aS(�) 2 V0(S) for all S 6= N . Let i 2 N be the proposer of an ultimatum

o¤er in case of breakdown. Because players j in Nni can guarantee aj
Nni(�) by rejection,

they only accept o¤ers such that ujN;i(�) � aj
Nni(�). Hence the best player i can do is to

o¤er ujN;i(�) = aj
Nni(�) for all j 2 Nni. Let uiN;i(�) be such that uN;i(�) 2 @V (N). by

Monotonicity it holds that uiN;i(�) � 0. if u
i
N;i(�) > 0, the best player i can do is to o¤er

uN;i(�), which will be accepted by all j 2 Nni. If u
i
N;i(�) = 0, player i is indi¤erent between

o¤ering uN;i(�), which will be accepted, and o¤ering a di¤erent proposal bN;i(�) 6= uN;i(�)

such that biN;i(�) > 0. In this latter case, some player j 6= i must necessarily have

bjN;i(�) < aj
Nni(�), because A.1 and A.2 imply that @V (N) coincides with the Pareto

frontier of V (N), therefore bN;i(�) will be rejected by player j. In both cases i will obtain

0 and the rest of the players j 2 Sni obtain aj
Nni(�), which again coincides with uN;i(�)

10.

Let uN(�) := (1=n)
P

i2N uN;i(�), by construction uN;i(�) 2 @V0(N) for all i 2 N , then

uN(�) 2 V0(N) by convexity.

10In this indi¤erent case, mixed strategies also yield the same outcome.
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Denote by cN the expected payo¤ vector for the members of N: By convexity it must

be cN 2 V (N), and also �cN(�) + (1 � �)uN(�) 2 V (N). De�ne the vector dN;i(�) such

that dN;i(�) 2 @V (N) and djN;i(�) = �cjN(�) + (1 � �)ujN(�) for all j 2 Nni. Thus,

diN;i(�) � �ciN(�) + (1 � �)uiN(�). For j 6= i, djN;i(�) is the expected payo¤ of j following

a rejection of i�s proposal. therefore dN;i(�) is the best proposal that will be accepted

if i is the proposer. Moreover, any proposal of i which is rejected yields to i at most

�ciN(�) + (1 � �)uiN(�) � diN;i(�). Hence, player i will propose aN;i(�) = dN;i(�) and the

proposal will be accepted, and therefore cN(�) = aN(�). To see that aN(�) � uN(�)

note that the following strategy will guarantee to any i a payo¤ of at least uiN(�): accept

only if o¤ered at least uiN(�), and, when proposing, propose uN(�). This implies that

aiN(�) � uiN(�), and then a
i
N;i(�) � �aiN(�) + (1� �)uiN(�) � uiN(�). Given the strategies

of the other players, i can not increase their payo¤ from proposals that are accepted, and

making proposals that were systematically rejected they could only yield the chance to go

to the breakdown stage, which gives uN(�) as expected payo¤s. Whereas the suggested

strategies yields aN(�) which is a better outcome (aN(�) � uN(�)).

4 A two-person example

In the �rst example we illustrate the problem in which players can be involved when they

follow a solution concept that does not satisfy the uniqueness requirement.

Let us suppose there are two players who both claim an indivisible good. In addition,

assume that this good can be owned either by only one player or shared by both simul-

taneously. The players have the same preferences and they are risk neutral. The set of

pure feasible outcomes is A = fO1; O2; S; Eg, where Oi (i = 1; 2) means that the good is

only for player i, S means that the good is shared by both players, and E means that the
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good is for nobody. We normalize the utilities as follows:

u1(O1) = u2(O2) = 75;

u1 (S) = u2(S) = 50;

u1(E) = u2(E) = u1(O2) = u2(O1) = 0:

Here the set of players is N = f1; 2g and the characteristic function V is built as

follows: If a player renounces their claim, they �leave� the game, and then the good is for

the other, hence

V (fig) = fx : x � rig where ri = 75; i 2 N:

When both players claim for the good, they can either agree on any pure outcome in

A, or on any lottery in A (for example, tossing a coin to decide if the good is only for

player i or j:
�
O1; p1 =

1
2
;O2; p2 =

1
2

�
). Therefore the feasible expected payo¤s that both

claimants can guarantee by cooperation are established by the convex hull of u(A) =

f(50; 50); (75; 0); (0; 75); (0; 0)g. Therefore,

V (N) = conv(u(A))� R2+;

(�conv� denotes �convex hull�). The sets V (�) are also comprehensive (utility is freely

disposable). V (N) is represented in Figure 1.
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75

a

b

r

c

Three solution points.

Now applying the Consistent NTU-solution to this example, the solution selects three

possible outcomes: a = (56:25; 37:5), b = (37:5; 56:25), and c = (50; 50)11.

Apply now the Hart and Mas-Colell (1996a) bargaining procedure to our example.

The equilibrium equations which determine the proposals in N are xN;i(�) 2 @V (N), for

all i 2 N , and xjN;i(�) = �xjN(�) + (1� �)r
j, for j 6= i, where xN(�) is the expected vector

payo¤s for coalition N , i.e., xN(�) =
1
2
xN;1(�) +

1
2
xN;2(�):

That is, player i o¤ers to player j just what they will get in the case of rejecting the

proposal: xN(�) in case the game repeats, and r
j in case breakdown happens, being player

i the only claimant that remains in the game.

11It can easily be checked that these three points also belong to the set of Shapley and Harsanyi

NTU-solutions of this game.
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It can be checked that equations both equations imply that

�
x1N;1(�)� r1

� �
x2N;1(�)� r2

�
=
�
x1N;2(�)� r1

� �
x2N;2(�)� r2

�
,

which, in our example, yield two di¤erent solutions: faN;1(�); aN;2(�)g and fbN;1(�); bN;2(�)g

that, when �! 1, they converge to a and b respectively (see Figure 2).

0

50

50 75

75

a

b

aN,1(ρ)

aN,2(ρ)

bN,1(ρ)

bN,2(ρ)

Limit points when �! 1.

First, note that this bargaining procedure does not always allow an approximation

to all payo¤ solutions: In our example, point c = (50; 50) is excluded. Secondly, we

have multiplicity: we can approximate either a or b. If we have no previous reasons to

discriminate between claimants 1 and 2, a way to solve this impasse is to choose with a

fair lottery between a and b by tossing a coin. But therefore, the expected payo¤s are

(46:875; 46:875) that are Pareto dominated by (50; 50).

Consider now the two alternative breakdown rules proposed.
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Random removal (RR): Both players have the same probability of living the game. If

player i leaves the game, their payo¤ is zero, and player j receives their claim rj . Therefore

the expected payo¤s vector d is

d =
1

2
(0; r2) +

1

2
(r1; 0) =

1

2
(0; 75) +

1

2
(75; 0) = (37:5; 37:5) :

Random marginal (RM): Both players have the same probability of being the proposer

of an ultimatum payo¤ vector . If player i proposes ui 2 V (N), player j is asked if they

agree or dissent. If agrees, ui is the �nal payo¤. If dissents, player i leaves the game,

receiving a payo¤ of zero, and player j receives their claim rj . The equilibrium proposals

ui are characterized by ui 2 @V (N), for all i 2 N; and uji = rj , for j 6= i: Therefore, it

follows that, the expected payo¤s vector u is u = 1
2
u1+ 1

2
u2. In our example, if a proposer

i is compelled to make an ultimatum o¤er to j, they must o¤er rj = 75 units, because

this is what the other claimant would obtain if the proposer is forced to leave the game

in case of rejection. Hence the expectations are

u =
1

2
(0; 75) +

1

2
(75; 0) = (37:5; 37:5) :

Therefore, in this particular example, the breakdown expected payo¤s d and u coincide,

and we denote this point (37:5; 37:5) by h. It follows that in both bargaining models, the

equilibrium equations which determine the proposals in N are xi (�) 2 @V (N), for all

i 2 N , and xji (�) = �xjN(�) + (1� �)hj, for j 6= i, where xN(�) =
1
2
xN;1(�) +

1
2
xN;2(�). It

can be easily checked that

�
x1N;1(�)� h1

� �
x2N;1(�)� h2

�
=
�
x1N;2(�)� h1

� �
x2N;2(�)� h2

�
= (2��)�

�
x1N(�)� h1

� �
x2N(�)� h2

�
.

Therefore, when �! 1, we have ci (�)! c (�) for i = 1; 2, and c (�)! c = (50; 50) Hence,

we fall into the classical approach to the Nash Bargaining solution from the disagreement
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point h, which, in our example, is the point that maximizes the product of the utility

gains from the reference point h (see Figure 3).

(0,0) (75,0)

(0,75)

c

h

a2(ρ)

a1(ρ)a (ρ)

Limit point in the random marginal and random removal models.

Although in this example our procedure yields, in the limit, a point that belongs to

the set of Consistent NTU-value allocations, i.e. the point c = (50; 50), this fact is not

true in general, as can be seen in the following two examples.

In the pure bargaining game of Figure 4, the random marginal model yields at the

limit the point � = (60; 40) that maximizes the product of utility gains taken from the

breakdown point u = (50; 30). The random removal model yields in the limit the Nash

solution (which coincides with the Shapley, Harsanyi and Consistent NTU-value), i.e.,

point N = (50; 50) that maximizes the product of utility gains from disagreement point

d = (0; 0).
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ζ
50

100

60

r=0 50

Di¤erences between the random marginal and the random removal payo¤s.

The following two-person TU-game is an additive game, i.e., v(N) = r1 + r2. The

ultimatum o¤ers of the breakdown random marginal are uN;1 = uN;2 = (r
1; r2) = u, and

because u 2 @V (N) it holds that � = u. Within the random removal model, the expected

payo¤s vector in case of breakdown is

d =
1

2
(0; r2) +

1

2
(r1; 0) =

1

2
r;

which yields, in the limit, the bargaining payo¤s

 i =
1

2
ri +

1

2

��
ri + rj

�
�
1

2
ri �

1

2
rj
�
=
3

4
ri +

1

4
rj; i; j 2 N = f1; 2g:

This shows that the solution associated to the random removal model does not satisfy

Additivity in TU-games.
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5 TU-games

In this section we analyze the behavior of the RM and RR breakdown models in the

case of transferable utility games. The results of this section are particular cases of the

results obtained in the next section for NTU-games. Here we �nd the main di¤erence of

both models: The RM-model supports the Shapley value, and the RR-model supports the

solidarity value.

Random marginal

Let v be a TU-game. For each coalition S � N and player i 2 S, let

@i(v; S) := v(S)� v(Sni)

be the marginal contribution of player i to coalition S in the TU-game v. The Shapley

value in the game v is the payo¤ con�guration ' = ('S(v))s�N de�ned by

'iS(v) =
X

T�S
T3i

(s� t)! (t� 1)!

s!
@i(v; T ); (i 2 S � N) :

Alternatively, this value can be obtained recursively12 by

'iS(v) =
1

s
@i(v; S) +

X

j2Sni

1

s
'iSnj(v); (i 2 S � N) ; (1)

starting with

'ifig(v) = ri, for all i 2 N:

In the Proposition (RM) we have seen that the rules of the bargaining guarantee that

the equilibrium payo¤s aS of the negotiation stages will always be greater than or equal

to the breakdown payo¤s uS, for all S � N . This fact implies the next straightforward

Theorem.

12See in Hart and Mas-Colell (1996a), the Remark of Section 4..
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Theorem 4 Let (aS(�); uS(�))S�N be the equilibrium payo¤s con�guration associated to

the RM-breakdown model. Then a(�) = (aS(�))S�N coincides with the Shapley value for

TU-games, for any �.

Proof. Let V be a TU-game. By (RM.3)
P

j2S u
j
S;i(�) = v(S), for all i 2 S, hence

P
j2S u

j
S(�) = v(S), for all S � N . Moreover, aS;i(�) � uS(�), and

P
j2S a

j
S;i(�) = v(S),

for all i 2 S; then aS;i(�) = aS(�) = uS(�) and
P

j2S a
j
S(�) = v(S). Therefore

aiS(�) =
1

s
uiS;i(�) +

X

j2Sni

1

s
aiSnj(�); (i 2 S):

By (RM.3), (RM.4), and
P

j2Sni a
j

Sni(�) = v(Sni), we have that

uiS;i(�) = @i(v; S):

The payo¤s of the single coalitions f�{g, are aifig;i(�) = ri, for all i 2 N . Thus they are

independent of �. This implies that the ultimatum payo¤s for two-player coalitions are

also independent of �, and equal to

aiS =
1

2
@i(v; S) +

1

2
ri; (i 2 S = fi; jg) :

By increasing the size of the coalitions, this recursive argument shows that the equi-

librium payo¤s are independent of �, and equal to

aiS =
1

s
@i(v; S) +

X

j2Sni

1

s
aiSnj; (i 2 S � N):

Therefore aiS = 'iS(v) for all i 2 S � N .

Remark. It is interesting to note the di¤erences with the results for the HM-model in

the TU-case. In the HM-model, we have that aS(�) = 'S(v), and aS;i(�) ! 'S(v) when

�! 1, for all i 2 S � N . It means that in the RM-model there is no di¤erence between
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being the proposer or the responder, whereas in the HM-model this is not the case. So, in

the TU-case, in the RM-model the bargaining part (in which players make proposals and

counterproposals) is irrelevant, because they are strongly determined by the breakdown

part. For this reason, if one wishes to support the Shapley value, the bargaining can

be simpli�ed with only two moves, for each round of active players set S: First choose

randomly a proposer out of S (equally likely). If the proposal is rejected, then randomly

choose again another proposer out of S (equally likely) to make an ultimatum proposal.

If it is rejected, then the proposer drops out of the game and proceed to a new round with

the remaining players as the new active set.

Random removal

Let v be a TU-game. For each coalition S � N , let

@av(v; S) :=
1

s

X

i2S

@i(v; S)

be the average marginal contribution of a player to coalition S in the TU-game v. The

solidarity value in the game v is the payo¤ con�guration  = ( S(v))s�N de�ned by

 iS(v) =
X

T�S
T3i

(s� t)! (t� 1)!

s!
@av(v; T ); (i 2 S � N) :

This value was introduced in Nowak and Radzik (1994). Similarly to the Shapley

value, it can be easily checked that this value can be obtained recursively by

 iS(v) =
1

s
@av(v; S) +

X

j2Sni

1

s
 iSnj(v); (i 2 S � N) ;

starting with

 ifig(v) = ri, for all i 2 N:
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Theorem 5 Let (aS(�))S�N be the equilibrium payo¤s con�guration associated to the

RR-breakdown model. Then a(�) = (aS(�))S�N coincides with the solidarity value for

TU-games, for any �.

Proof. Let V be a TU-game. By (RR.1), for any i 2 S � N , we have

aiS;i(�) =

0

@v(S)�
X

j2Sni

ajS;i(�)

1

A ;

then

aiS(�) =
1

s
aiS;i +

1

s

X

j2Sni

aiS;j(�);

which yields

saiS(�) =

0

@v(S)�
X

j2Sni

ajS;i(�)

1

A+
X

j2Sni

aiS;j(�):

Applying (RR.2),

saiS(�) = v(S)�
X

j2Sni

0

@�ajS(�) + (1� �)
1

s

X

k2Snj

aj
Snk(�)

1

A+
X

j2Sni

0

@�aiS(�) + (1� �)
1

s

X

k2Sni

aiSnk(�)

1

A

= v(S)�
X

j2Sni

�ajS(�)� �aiS(�)�
1� �

s

X

j2Sni

X

k2Snj

aj
Snk(�)

+
X

j2Sni

�aiS(�) + �aiS(�) +
1� �

s

X

j2Sni

X

k2Sni

aiSnk(�);

which, applying (RR.1) again, yields

saiS(�) = v(S)�
1

s

X

j2Sni

X

k2Snj

aj
Snk(�) +

s� 1

s

X

k2Sni

aiSnk(�):

Note that

X

j2Sni

X

k2Snj

aj
Snk(�) =

X

k2Sni

akSni(�) +
X

k2Sni

X

j2Sni;

aj
Snk(�) = v(Sni) +

X

k2Sni

�
v(Snk)� aiSnk(�)

�
:
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Then we obtain

saiS(�) = v(S)�
1

s

X

k2S

v(Snk) +
X

k2Sni

aiSnk(�) =
1

s
@av(v; S) +

1

s

X

k2Sni

aiSnk(�):

The payo¤s of the single coalitions f�{g, are aifig;i(�) = v(i), for all i 2 N . So they are

independent of �. A recursive argument shows that the average equilibrium payo¤s aiS

are independent of �, and equal to

aiS =
1

s
@av(v; S) +

X

k2Sni

1

s
aiSnk; (i 2 S � N):

Therefore aiS =  iS(v) for all i 2 S � N .

Remark: Note that as;i (�) 6= aS, for all i 2 S � N . But, given the assumption (A.3),

condition (RR.2) implies that as;i (�)! aS whenever �! 1.

6 NTU-games

In this section we see that the Random marginal and the Random Removal models each

support a single-valued solution in the class of NTU-games.

Random marginal. To characterize the value associated to the RM-model we need

to de�ne the concept of marginal contributions associated to a payo¤ con�guration. Let

V be an NTU-game and let x =(xS)S�N be an e¢cient payo¤ con�guration. For each

coalition S containing player i let

@i
x
(V; S) := max

�
�i 2 R :

�
xSni; �

i
�
2 V (S)

	
:

Note that if V 2 G and xS 2 V0(S) for all S � N , @i
x
(V; S) is well de�ned and

@i
x
(V; S) � 0. One can interpret this marginal contribution as the maximum that player

i can get in coalition S under the restriction that the others players in S have at their
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disposal the outside option given by xSni. If V is a TU-game, given by the characteristic

function v, for any e¢cient payo¤ con�guration x it holds that @i
x
(V; S) = @i(v; S) for all

i 2 S � N .

Remark. The value of the Consistent NTU-solution in Hyperplane games can also

be de�ned recursively13 by

'iS(V ) =
1

s
@i
x
(V; S) +

X

j2Sni

1

s
'iSnj(V ); (i 2 S � N) ; (2)

where x =('S(V ))S�N , starting with '
i
fig(V ) = ri, for all i 2 N:

Because @V (S) is a hyperplane, in the RM-model it occurs that uS(�) 2 @V (S), so

again we have that aS;i(�) = aS(�) = uS(�) as in Theorem (4). Applying the same

arguments as there, we can reproduce for the Consistent NTU-solution in Hyperplane

games the same result that as Theorem (4) yields for the Shapley value in TU-games.

We now proceed to de�ne the NTU-value supported by the RM-model.

De�nition 6 Let V 2 G and a=(aS)S�N be a payo¤ con�guration. Then a is the RM-

value � of V (i.e., a = �(V )) if and only if for each S � N there exists a vector �S 2 R
S
++

such that:

(a) aS 2 @V (S);

(b) �S � aS = v(S; �S) := maxf �S � c : c 2 V (S)g; and

(c) �iS (a
i
S � uiS) = �jS

�
ajS � ujS

�
for all i; j 2 S,

where uiS :=
1
s

�
@i
a
(V; S) +

P
k2Sni a

i
Snk

�
for all i 2 S.

Condition (a) states that the payo¤ vector aS is e¢cient for coalition S. Condition

(b) ensures that aS is also �S-utilitarian, i.e., that it maximizes the sum of the �S-

rescaled payo¤s. Condition (c) is a �S-egalitarian condition: The gains of the players

13See formula (3) in Hart and Mas-Colell (1996a).
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in aS with respect to the vector uS are equal relative to the units given by �S. The

payo¤ vector uS has the following interpretation: The payo¤ allocation
�
aSni; @

i
a
(V; S)

�

speci�es the choice of player i 2 S if this player has the dictatorial power to choose for

S, under the restriction that the others players in S have at their disposal aSni. Vector

uS =
1
s

P
i2S

�
aSni; @

i
a
(V; S)

�
gives the expected payo¤ allocation for players in S if each

member has an equal chance of obtaining this dictatorial power14. Note that condition

(c) can be rewritten as

(c�) �iS

h
(aiS � @i

a
(V; S)) +

P
k2Sni �

i
S

�
aiS � aiSnk

�i
=

�jS

h�
ajS � @j

a
(V; S)

�
+
P

k2Sni �
j
S

�
ajS � aj

Snk

�i
, for all i; j 2 S.

Proposition 7 If V 2 G, then the RM-value � of V exists and it is unique. Moreover, if

V is an H-game, then �(V ) coincides with the Consistent NTU-value of V , and, if V is a

TU-game, then �(V ) coincides with the Shapley value of V .

Proof. First we prove existence and uniqueness. Let a game V 2 G. The payo¤

con�guration a = �(V ) is built recursively as follows: We start with single coalitions fig,

for all i 2 N , making �ifig > 0, and a
i
fig = ri. Then conditions (a), (b), and (c), trivially

hold. Assume by induction hypothesis that the Proposition holds for every T  S. By

convexity of V (S) and monotonicity, it holds that uS 2 V0(S), and the unicity of aSni,

for all i 2 S, determine uS uniquely. If uS 2 @V0(S), making aS = uS, and taking as �S

one of the support vectors of V (S) at point aS, the Proposition holds. If uS =2 @V0(S), A

vector aS satis�es (a), (b), and (c), if and only if

aS := argmax
Y

i2S
x�uS
x2V0(S)

�
xi � uiS

�
;

14See the interpretation of the Conditional Random Dictatorship axiom used in de Clippel, Peters and

Zank (2004) for the characterization of the Consistent NTU-solution.
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where in that case �S must be collineal to the vector
�

1
ai
S
�ui

S

�

i2S
, and point aS is unique.

When V is an H-game, or a TU-game, it holds that all uS 2 @V0(S), for all S � N , and

therefore aS = uS. Hence, formulas (2) and (1) apply to yield the Consistent and the

Shapley values respectively.

We now establish the main result of this Section.

Theorem 8 Let V 2 G be an NTU-game. Then for each 0 � � < 1 there is an SP

equilibrium of the RM-model. Moreover, if V satis�es the additional assumption (A.5),

when �! 1, every SP equilibrium payo¤ con�guration a(�) converges to a = �(V ).

Proof. Existence.

Assume that V 2 G: We prove the existence following a recursive argument. Given

0 � � < 1, let aifig;i(�) = uifig;i(�) := ri 2 V0(fig), for all i 2 N . Therefore, for single

coalitions, (RM.1)-(RM.4) are satis�ed.

Assume that we have already determined (aS;i; uS;i) for all i 2 S ( N . Let uN;i(�)

be de�ned by uN;i(�) 2 @V (N) and ujN;i(�) := aj
Nni (�), for all j 6= i, where aNni (�) :=

1
n�1

P
k2Nni aNni;k (�). Because aNni (�) 2 V0(Nni), by Monotonicity it holds that uN;i(�) 2

V0(N), and then (RM.3) and (RM:4) are satis�ed. De�ne uN(�) :=
1
n

P
i2N uN;i (�), then,

by Convexity, uN(�) 2 V0(N).

If uN(�) 2 @V0(N), making aN;i (�) := uN(�), for all i 2 N , conditions (RM.1) and

(RM.2) are trivially satis�ed.

If uN(�) =2 @V0(N), de�ne V (uN(�); N) := V0(N) \
�
uN(�) + R

N
+

�
. Therefore, (A.1)

and (A.3) imply that V (uN(�); N) is a non-empty, compact and convex set. De�ne

n functions �i(b), i 2 N , from V (uN(�); N) into itself by letting �i(b) be de�ned by:

�i(b) 2 @V (uN(�); N) and �
j
i (b) := �bj+(1� �) ujN(�), for all j 6= i. By Non-levelness and

(A.1), �i is well-de�ned and continuous. By convexity of V (uN(�); N), function � (�) :=
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1
n

P
i2N �i(b) is a continuous function that maps V (uN(�); N) into itself. Therefore,

by the brower�s �xed point theorem, there is a vector a(�) 2 V (uN(�); N) satisfying

a(�) = � (a(�)). By construction, letting aN;i(�) := �i(a(�)), i 2 N , (RM.1) and (RM.2)

are satis�ed.

In this recursive way we prove the existence of payo¤ con�guration proposals (aS;i (�) ; uS;i (�))i2S�N

which satisfy (RM.1)-(RM.4) and, by Proposition (RM), they correspond to an SP equi-

librium.

Convergence.

Consider a convergence sequence f�rg ! 1 when r !1. Let
�
(aS;i(�r) ; (uS;i(�r)i2S�N

	
�

 
Y

S�N

V0(S)

!2
be their associated SP equilibrium proposals. Because

 
Y

S�N

V0(S)

!2
is

a compact set, it must be a subsequence f�0rg such that
�
(aS;i(�

0
r) ; (uS;i(�

0
r)i2S�N

	
!

�
(aS;i) ; (uS;i)i2S�N

	
. By the compactness assumption, let (M; :::;M) 2 RS+ be an upper

bound of V0(S); then
��ajS;i (�)� ajS (�)

�� � M(1 � �) for all i; j 2 S, and all S � N .

Therefore, in the limit, it holds that aS;i = aS, for all i 2 S � N .

Suppose now that V satis�es also the smoothness assumption (A.5). Let
�
(aS) ; (uS)S�N

	

be the limit payo¤ con�guration as before, where uS =
1
s

P
i2S uS;i, for all S � N .

First, note that aifig = ri, then it trivially holds that afig = �fig (V ), for all i 2 N .

Let a coalition S � N , with s � 2. Let �S(�) 2 R
S
++ be de�ned either by an outward

normal to @V (S) if uS(�) 2 @V (S), or by the vector
�

1
ai
S
(�)�ui

S
(�)

�

i2S
if uS(�) =2 @V (S)

(note that in this case aiS;i (�) > uiS (�) for all i 2 S, and then a
i
S (�) > uiS (�)). Therefore,

all aiS;i (�), i 2 S, belong to the hyperplane HS(�) de�ned by

HS(�) :=
�
c 2 RS : �S(�) � c = �S(�) � aS (�)

	
:

To check this, if uS(�) 2 @V (S), this holds by de�nition of �S(�). If uS(�) =2 @V (S), we
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have that

aiS;i (�) = saiS (�)�
X

j2Sni

aiS;j (�) = saiS (�)�
X

j2Sni

�
�aiS (�)� (1� �) uiS (�)

�

= (s� � (s� 1))
�
aiS (�)� uiS (�)

�
+ uiS (�) :

hence,

�S(�) � aS;i (�) =
aiS;i (�)

aiS (�)� uiS (�)
+
X

j2Sni

ajS;i

ajS (�)� ujS (�)

= (s� � (s� 1)) +
uiS (�)

aiS (�)� uiS (�)
+
X

j2Sni

�
�
ajS (�)� ujS (�)

�
+ ujS (�)

ajS (�)� ujS (�)

= s+
X

j2S

ujS (�)

ajS (�)� ujS (�)
= �S(�) � aS;j (�) , for all i; j 2 S:

Denote by ��S(�) = �S(�) �
1P

i2S �
i
S
(�)
. Since aS;i (�) ! aS, by smoothness of @V (S),

we have that ��S(�)! �S, where �S is the outward unit length normal to @V (S) at aS
15;

�S being collineal to the vector
�

1
ai
S
�ui

S

�

i2S
when uS =2 @V (S). Therefore, for �S, aS, and

uS, conditions (a), (b), and (c), of De�nition (6) are satis�ed.

The unicity of the limit payo¤ con�guration
�
(aS) ; (uS)S�N

	
follows by a straight-

forward induction argument. Because aifig = ri, for all i 2 N , the breakdown payo¤s uS

are uniquely determined for all S � N , such that s = 2. This implies the uniqueness of

limit points aS, for coalitions of size s = 2. This fact implies again the uniqueness of limit

points uS, and hence the uniqueness of limit points aS, for coalitions of size s = 3, and so

on and so forth up to the grand coalition N .

Remark. Asymmetric solutions can be easily de�ned. We need only assume that the

proposers are chosen to be the proposer with di¤erent probabilities. Let w 2 RN++ be a

15Note here that for jS � 3j the set of equilibrium o¤ers aS;i(�) is not necessarily a singleton; and

without smoothness on @V (S), the convergence to �S(V ) may fail too. See Prooposition 8.1, and Remark

3, in Section 8, of Thomson and Lensberg (1989).
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vector of weights, and assume that the proposers are chosen in proportion to these weights.

In particular, when V is an H-game, it holds that the asymmetric solution coincides with

the weighted Shapley (1953) value for TU-games (see Kalai and Samet, 1985; and Hart

and Mas-Colell, 1989), and with the weighted Consistent NTU-value for H-games (See

Maschler and Owen, 1989; and Calvo, García and Zarzuelo, 2001).

Random removal. The solidarity value in NTU-games can be de�ned as follows.

De�nition 9 Let V 2 G and a=(aS)S�N be a payo¤ con�guration. Then a is the Soli-

darity value  of V (i.e., a =  (V )) if and only if for each S � N there exists a vector

�S 2 R
S
++ such that:

(a) aS 2 @V (S);

(b) �S � aS = v(S; �S) := maxf �S � c : c 2 V (S)g; and

(d) �iS (a
i
S � diS) = �jS

�
ajS � djS

�
for all i; j 2 S,

where diS :=
1
s

P
k2Sni a

i
Snk for all i 2 S.

Condition (d) is also a �S-egalitarian type condition. The di¤erence with condition

(c) of the random marginal value lies in the de�nition of the breakdown point dS. The

vector dS =
1
s

P
i2S

�
aSni; 0

�
gives the expected payo¤ allocation for players in S if each

member has an equal chance of dropping out of the game, obtaining a zero payo¤.

Parallel results of the random marginal approach can be obtained for the solidarity

value.

De�nition 10 If V 2 G, then the solidarity value  of V exists and it is unique. More-

over, if V is a TU-game, then  (V ) coincides with the solidarity TU-value of V .

Theorem 11 Let V 2 G be an NTU-game. Then for each 0 � � < 1 there is an SP

equilibrium of the RR-model. Moreover, if V satis�es the additional assumption (A.5),
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when �! 1, every SP equilibrium payo¤ con�guration a(�) converges to a =  (V ).

The proofs are fully identical to the RM-model, interchanging the roles of uS by dS,

hence they are left to the reader.

Remark. The solidarity value has an interesting link with the equal split solution,

relative to (0; :::; 0). In Hart and Mas-Colell (1996a) this solution is obtained as one of

possible variations of the breakdown technology. In particular, as they point out in Case

(b): Only the responders (but not the proposer) drop out, all with equal probability. This

solution can be de�ned in NTU-games as follows.

De�nition 12 Let V 2 G and a=(aS)S�N be a payo¤ con�guration. Then a is the equal

split value � of V (i.e., a = �(V )) if and only if for each S � N there exists a vector

�S 2 R
S
++ such that:

(a) aS 2 @V (S);

(b) �S � aS = v(S; �S) := maxf �S � c : c 2 V (S)g; and

(e) �iSa
i
S = �jSa

j
S for all i; j 2 S.

Note that if V is a TU-game, then aiS =
v(S)
s
, for all i 2 S � N . Hart and Mas-Collel

mention that, in TU-games, the solidarity value approaches, for a large n, the equal split

value. We will con�rm this assertion for large NTU-games in the next Section.

Remark. The properties of Uniqueness and Symmetry are the main motivation

of the paper. By Uniqueness we mean that the payo¤ con�guration of the solution is

single-valued. This property is important if we consider a solution as a way to �nd an

agreement when an alternative must be chosen over a set that produces a di¤erent rank

of preferences. This lack of unanimity is not solved when a solution selects a subset

of alternatives, because we again have the same ranking problem among players, but

now over the subset selected. The example of Section 2 shows that neither the Shapley,
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Harsanyi and Consistent NTU-values satisfy this requirement16.

A TU-game (N; v) is said to be symmetric when the worth of a coalition is a function

of its size, i.e. v(s) = f(jSj). A Pure Bargaining game (d; V (N)) is symmetric if d1 =

d2 = ::: = dn, and for any bijection � : N ! N , and for each x 2 V (N) it holds that

�x 2 V (N), where �x =
�
x�(i)

�
i2N
. We extend the de�nition of Symmetry for NTU-

games as follows: (N; V ) is symmetric if (i) ri = rj for all i; j 2 N , and (ii) for any two

S; T � N , such that jSj = jT j � 2, for any bijection � : S ! T , and any x 2 V (S), it

holds that �x 2 V (T ) (note that the case S = T is included). We say that a solution

satis�es Symmetry if it selects symmetric payo¤s when the game V is symmetric, i.e.

for every x 2 	(V ), xiS = xjS for all i; j 2 S � N . Because the Nash solution satis�es

symmetry for Pure Bargaining games, and given the way in which the random marginal

and the solidarity NTU-values are built, it can be checked that they also satisfy Symmetry

in G.

A full axiomatic characterization of these new solutions is not yet accomplished, and

should be the object of further research.

7 Large games

The aim of this Section is a study of how the random marginal and the solidarity values

should behave in large games with non-transferable utility. More speci�cally, we will

consider only di¤erentiable market games for which the Value equivalence theorem holds

(Aumann, 1975); that is, the equivalence between the value allocations and the core

allocations. The basic references and results in this topic can be found in Hart (1994, and

2001).

16For the Consistent NTU-value a three-person example of non unicity can be found in Owen (1994).
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We restrict our analysis to the case of continuum games with �nitely many types of

players, where each coalition is characterized by its composition. Let N = f1; :::; ng be

the set of types. The pro�le of a coalition is a vector x 2 RN+ , where x
i is the mass

of players of type i in the coalition. The game form will specify the sets of feasible

payo¤ vectors for all coalitions. We consider only type-symmetric imputations, where

all players of the same type get the same payo¤17. For every x 2 RN+ , let V (x) �

RN be the set of feasible per-capita payo¤ vectors for a coalition with pro�le x. This

point-to-set map V is called the NTU-game form. Given V we de�ne also the set of

feasible total per-type payo¤s by V̂ (x) := fx � a : a 2 V (x)g, for all x 2 RN+ . De�ne

v̂(x; �) := sup f� � (a � x) : a 2 V (x)g � sup
n
� � b : b 2 V̂ (x)

o
. v̂(x; �) is the continuum

TU-game associated to V with utility comparison weights �. We will make the following

assumptions:

(C.1) Standard: For every x 2 RN+ , V (x) is a non-empty and strict subset of R
N , it

is closed , convex, comprehensive and non-level. V0(x) := V (x) \ RN+ is non-empty and

bounded.

(C.2) Super-additivity: V̂ (x) + V̂ (y) � V̂ (x+ y) for every x; y 2 RN+ .

(C.3) Homogeneity: V (tx) = V (x) for every x 2 RN+ and t > 0 (in terms of total

payo¤s, V̂ (tx) = tV̂ (x)).

(C.4) Di¤erentiability: For any � 2 RN++, the gradientrxv̂(�x; �) exists for all �x 2 R
N
++.

rxv̂(�x; �) is uniformly bounded and uniformly positive for every bounded subset of R
N
++.

Moreover v̂(x; �) is C2 on its domain.

Assumptions C.1, C.2, and C.3 are standard for market games. For example, a pure

exchange economy where each type i possesses a utility function ui concave and non-

17Because the random marginal value yields the same payo¤s to substitute players, this is not a real

restriction.

34



decreasing, with the slope everywhere bounded away from 0 and in�nity, and ui(!i) = 0

(where !i is the initial endowment), yields a market game satisfying C.1-C.3. Di¤eren-

tiability allows us to set the condition that characterizes the RM-value in terms of a �rst

order partial di¤erential equations system.

Remark. Note that the di¤erentiability of v̂(x; �) implies both the smoothness of

@V (x), and the strict convexity of V (x). Therefore there is a unique a 2 V (x) such

that � � (a � x) = v̂(x; �). Conversely, for any a 2 @V (x) there is a unique �, such that

� � (a � x) � � � (b � x), for all b 2 V (x). That is, there is a unique supporting hyperplane

to V̂ (x) at a � x, � being its corresponding outward normal vector.

Random marginal. We now see how the conditions to be a random marginal value will

look for large games. As in Hart and Mas-Colell (1996b), given a continuum game V and

the grand coalition x 2 RN++, we obtain a sequence of �nite games Vr, for r = 1; 2; :::; with

the set of players Nr := fi1; :::; irgi2N ; where there is a set of types N , having for each type

i 2 N , r symmetric players, each one being regarded as having a mass of �x
i

r
. There are in

total #Nr = rn players. For any coalition S � Nr, denote by m(S) := (m
i(S))i2N , where

mi(S) is the number of players of type i in S. Let Vr be the set of feasible per-capita type-

symmetric payo¤ vectors; then, for any S � Nr, Vr(S) := V
�
m(S) �

�
1
r
� x
��
. In terms of

total payo¤s, V̂r(S) := m(S) �
�
1
r
� x
�
�V

�
m(S) �

�
1
r
� x
��
. In particular, for all r, it holds

that Vr(Nr) = V (x), and V̂r(Nr) = x�V (x) = V̂ (x). We say that Vr is the r-approximation

to the continuum game V . For any S � Nr denote by I(S) := fi 2 N : mi(S) 6= 0g. A per-

capita type-symmetric payo¤ con�guration is a family ar =
�
air;S
�
i2I(S);S�Nr

, where each

of these mi(S) players of type i in coalition S, receives aikr;S = air;S, for all k = 1; :::;m
i(S).

Our assumptions imply that each �nite game V̂r has a unique per-capita random

marginal value ar = �(Vr), and for every S � Nr it holds that ar;S 2 @Vr(S)\R
S
+. Given

a continuum game V and coalition x 2 RN++ de�ne the per capita asymptotic random
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marginal value by a(x) := limr!1 ar;Nr , where ar;Nr is the per capita RM-value for the

grand coalitionNr of the �nite game Vr
18. Because @Vr(N)\R

S
+ = @V (x)\RS+ is a compact

set, the existence of such limit points is a guarantee (taken the appropriate subsequence).

Nevertheless, given the uniqueness of ar;Nr for every r, we have the plausible conjecture

that the set of limit points is single valued, and the family of continuum games in which

the value is well de�ned is still a conjecture.

A very relevant consequence of the uniqueness of the RM-value for each �nite approxi-

mation Vr is that if the continuum game V is homogeneous then the asymptotic RM-value,

if it does converge, must also be single-valued and homogeneous. On the contrary, de-

note by a(x) the asymptotic RM-value for the grand coalition x, and suppose that for two

di¤erent t; t0 > 0, it holds that a(tx) 6= a(t0x). By homogeneity, V (x) = V (tx) = V (t0x),

therefore a(tx) and a(t0x) must also be solutions for V at x. Then, for a large enough

�r, and for all r � �r, there must be ar;Nr close to a(tx), and a
0
r;Nr

close to a(t0x), with

ar;Nr 6= a0r;Nr , which contradicts the uniqueness of the RM-value for �nite games.

Let us see the conditions that the per capita RM-value should satisfy on continuum

games. Firstly, for each �nite r-approximation Vr and coalition S = Nr, there exists

�r;Nr 2 R
N
++ such that:

(a) ar;Nr 2 @Vr(Nr)

(b)
P

i2N �
i
r;Nx

iair;Nr = maxf
P

i2N �
i
r;Nx

ibi : b 2 Vr(Nr)g;

(c�) �ir;N

h�
air;Nr � @i

ar
(Vr; Nr) + (r � 1)

�
air;Nr � air;Nrnir

�
+
P

k2Nni r
�
air;Nr � air;Nrnkr

��i
=

�jr;N

h�
ajr;Nr � @j

ar
(Vr; Nr)

�
+ (r � 1)

�
ajr;Nr � aj

r;Nrnjr

�
+
P

k2Nnj r
�
ajr;Nr � aj

r;Nrnkr

�i
.

(i; j 2 N) :�i

18More general convergence sequences of r-approximations could be de�ned, for example, by allowing

di¤erent ri �s for di¤erent i�s. But even for this symmetric de�nition, the limit approach is hard enough.

36



Where

@i
ar
(Vr; Nr) := max

�
�i 2 R :

�
ar;Nrnir ; �

i
�
2 Vr(Nr)

	
; (i 2 N):

Taken limits, when r !1, the e¢cient condition ar;Nr 2 @Vr(Nr) turns into condition

(i) a(x) 2 @V (x).

The �-utilitarian condition (b) takes the form

(ii)
P

i2N �
i (x) xiai(x) = max

�P
i2N �

i (x) xibi : b 2 V (x)
	
= v̂ (x; � (x)) :

Note that, under the di¤erentiability assumption, the � (x) associated to a(x) is unique

(up to length normalization).

For the �-egalitarian condition (c�), the increments

(r � 1)
�
air;Nr � air;Nrnir

�
+
X

k2Nni

r
�
air;Nr � air;Nrnkr

�

are replaced by derivatives, so they take the form

xi
@ai(x)

@xi
+
X

k2Nni

xk
@ai(x)

@xk
:

De�ne �i;Nr :=
�
ar;Nrnkr ; @

k
ar
(Vr; Nr)

�
; then, by construction, �i;Nr 2 @Vr(Nr) = @V (x).

Let �
�
�i;Nr

�
be its unique associated outward normal vector. Then it holds that

�i
�
�i;Nr

�
xi@k

ar
(Vr; Nr) +

X

k2Nni

�k
�
�i;Nr

�
xkakr;Nrnir = v̂

�
x; �

�
�i;Nr

��
:

When r !1, �i;Nr ! a(x) and �
�
�i;Nr

�
! �(x). and hence

@k
ar
(Vr; Nr)!

1

�i (x)

@v̂ (x; � (x))

@xi
:

All together they suggest the following de�nition:
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De�nition 13 Let V be a continuum game with a �nite type of players N , satisfying

(C.1), (C.2), and (C.4). Let a(x) be a C1 per capita payo¤ con�guration, x 2 RN++. Then

a(x) is a continuum RM-value of V at x, if there exists �(x) 2 RN++ such that

(i) a(x) 2 @V (x);

(ii) �(x) � (x � a(x)) = v̂ (x; � (x)); and

(iii) �i(x)
�
ai(x)� 1

�i(x)

@v̂(x;�(x))
@xi

+
P

k2N x
k @a

i(x)
@xk

�
= �j(x)

�
aj(x)� 1

�j(x)

@v̂(x;�(x))
@xj

+
P

k2N x
k @a

j(x)
@xk

�
,

for all i; j 2 N:

Condition (iii) is a system of �rst order partial di¤erential equations, and if the as-

ymptotic RM-value does exist, then it must be a particular solution of (i)-(iii). We now

see the relationship between the asymptotic RM-value and the Shapley NTU-value in

continuum games. The construction of a Shapley NTU-value in continuum games is as

follows (see Shapley, 1969; and Shapley and Shubik, 1969).

Given a continuum game V , and a vector of weights � 2 RN++, build the continuum

TU-game v̂ (x; �). Under di¤erentiability, the Aumann-Shapley (1974) value of v̂ (x; �) is

de�ned by

'i (v̂ (x; �)) =

Z 1

0

@v̂ (tx; �)

@xi
dt; for all i 2 N:

De�nition 14 Let V be a continuum game with a �nite type of players N , satisfying

(C.1), (C.2), and (C.4). Let a(x) be a per capita payo¤ con�guration, x 2 RN++. Then

a(x) is a continuum Shapley NTU-value of V at x, if there exists �(x) 2 RN++ such that

(i) a(x) 2 @V (x); and

(iv) �(x) � a(x) = ' (v̂ (x; �(x))).

Assuming homogeneity we have the following result:

Theorem 15 Let V be a continuum game with a �nite type of players N , satisfying (C.1),

(C.2), (C.3), and (C.4). Let a(x) be an homogeneous C1 per-capita payo¤ con�guration,
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x 2 RN++. Then a(x) is a continuum RM-value if and only if it is a Shapley NTU-value

of V at x.

Proof. Let a(x) be a continuum MR-value of V at x, and assume that it is ho-

mogenous. Because V (x) is homogenous of degree 0, a(x) also has the same degree of

homogeneity. Therefore, by Euler�s formula,
P

k2N x
k @a

i(x)
@xk

= 0, and hence condition (iii)

is equivalent to

�i(x)ai(x)�
@v̂ (x; � (x))

@xi
= k; for all i 2 N ,

where k 2 R. By multiplying this expression by xi, and adding it over all i, we have

X

i2N

�i(x)xiai(x)�
X

i2N

xi
@v̂ (x; � (x))

@xi
=

 
X

i2N

xi

!

k:

By condition (ii),
P

i2N �
i(x)xiai(x) = v̂ (x; � (x)). And because v̂ (x; � (x)) is homo-

geneous of degree 1, by applying Euler�s formula again,
P

i2N x
i @v̂(x;�(x))

@xi
= v̂ (x; � (x)).

As
P

i2N x
i > 0, it follows that k = 0, which implies that

�i(x)ai(x) =
@v̂ (x; � (x))

@xi
, for all i 2 N .

On the other hand, under homogeneity,

' (v̂ (x; �(x))) =

Z 1

0

@v̂ (tx; �(x))

@xi
dt =

@v̂ (x; �(x))

@xi
, for all i 2 N ,

which �nally yields

�(x) � a(x) = rxv̂ (x; �(x)) = ' (v̂ (x; �(x))) .

Because in homogenous and di¤erentiable games the Shapley NTU-value is a homoge-

nous and di¤erentiable mapping, it turns out that it satis�es conditions (i)-(iii), hence

both values coincide.
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If the continuum game V is non-homogeneous, the RM-value and the Shapley NTU-

value will generally yield di¤erent payo¤s. An alternative way to compare both values is

to consider the equivalent of condition (iii) for the Shapley NTU-value. Recall for �nite

games its characterization:

De�nition 16 Let V 2 G and a=(aS)S�N be a payo¤ con�guration. Then aN is the

Shapley NTU-value ' of V if and only if for each S � N there exists a vector �S 2 R
S
++

such that:

(a�) aN 2 @V (N);

(b) �S � aS = v(S; �S); and

(f) �iS

�
aiS � aiSnj

�
= �jS

�
ajS � aj

Sni

�
for all i; j 2 S.

Note that, in the payo¤ con�guration a, e¢ciency (and hence, feasibility) is only re-

quired for the grand coalition N . Condition (f) is the �-Balanced Contributions property.

The main drawback of this de�nition is given by the possible non-feasibility of the threat

points aS, for all S 6= N (except in the TU-case).

By using similar arguments as above, in the continuum, conditions (a�) and (b) turn

into (i) and (ii); and condition (f) into

(iv) �i(x)@a
i(x)
@xj

= �j(x)@a
j(x)
@xi

, for all i; j 2 N .

Conditions (iii) and (iv) can also be compared with condition

(v)
P

j2N �
i(x)xj @a

i(x)
@xj

=
P

j2N �
j(x)xj @a

j(x)
@xi

, for all i 2 N .

This condition, jointly with (i) and (ii), characterizes the Consistent NTU-values in

continuum games (see Owen, 1996, and Leviatan, 2002).

Random removal. The condition (d) for the solidarity value is equivalent to

(d�) �iS

�
aiS +

P
k2Sni

�
aiS � aiSnk

��
= �jS

�
ajS +

P
k2Sni

�
ajS � aj

Snk

��
, for all i; j 2 S:
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Therefore, by using similar arguments as for the RM-value, we can de�ne the solidarity

value in continuum games as follows:

De�nition 17 Let V be a continuum game with a �nite type of players N , satisfying

(C.1), (C.2), and (C.4). Let a(x) be a C1 per capita payo¤ con�guration, x 2 RN++. Then

a(x) is a continuum solidarity value of V at x, if there exists �(x) 2 RN++ such that

(i) a(x) 2 @V (x);

(ii) �(x) � (x � a(x)) = v̂ (x; � (x)); and

(iii) �i(x)
�
ai(x) +

P
k2N x

k @a
i(x)
@xk

�
= �j(x)

�
aj(x) +

P
k2N x

k @a
j(x)
@xk

�
, for all i; j 2 N:

Given the uniqueness of the solidarity value for �nite games, we can also conjecture

that the asymptotic solidarity value exists and it is single valued. Moreover, in ho-

mogeneous games it must also be a homogeneous value. Hence it implies that, under

di¤erentiability,
P

k2N x
k @a

j(x)
@xk

= 0. For this reason, condition (iii) turns into condition

(vi) �i(x)ai(x) = �j(x)aj(x), for all i; j 2 N ,

which, jointly with conditions (i) and (ii), characterize the equal split solution for

continuum NTU-games. So, in homogeneous games, both values coincide.
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