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Estimating Regression and
Seemingly Unrelated Regressions

with Error Component disturbances

Paolo Foschi ∗

September 7, 2006

The estimation of regressions models with two-way error component disur-

bances, is considered for the case where both the random effects are non-spherically

distributed. The usual approach that first transforms the effects into uncorrelated

ones and then applies within and between transformations, cannot be conveniently

applied. Here, it is proposed to revert this scheme by firstly applying the within

and between transformations. This results in simple General Linear Model which

can be partitioned into three smaller GLMs. Then, by exploiting the structure of

the models and using the Generalized QR decomposition as a tool, a computa-

tionally efficient and numerically reliable method for estimating the regression

parameters is derived. This estimation method is generalized to the case of a

system of seemingly unrelated regressions.

1. Introduction

One of the most used model in analysis of panel data is given by the two-way error component

regression model [1, 5, 8, 31, 35]. In its basic formulation that model assumes that the time

and individual random effects are spherically distributed. In [27] and [29] the authors relaxed

that assumption by considering a one-way model with autoregressive (AR) idiosyncratic er-

rors and heteroschedastic individual effects, respectively. Further generalizations followed,

specifically, in [2, 10] Moving Average (MA) errors are considered and in [17, 26, 30] an

ARMA model for them is assumed. Dynamics for the two-way model has been considered

in [12, 13, 19, 28, 33, 34] where autocorrelation is assumed in the time effects and/or the

idiosyncratic errors. Here, the two-way error component model with autocorrelations in both

the time- and individual-effects is considered. It will be shown that the trasformations used
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for the basic two-way model can still be used for this extension keeping the model simple and

tractable.

The linear regression model with two-way error component disturbances is given by

yti = α +
K

∑
k=1

xtikβk + uti, i = 1, . . . ,N, t = 1, . . . ,T, (1a)

with

uti = λt + µi +νti, i = 1, . . . ,N, t = 1, . . . ,T, (1b)

where µi and λt denote the unobservable individual and time effect, respectively and νti is the

idiosyncratic disturbance term. The errors λt , µi, and νti are assumed to have zero mean and

to be indipendent each other, even across different observations, that is E[λtµi] = E[λtνs j] =
E[µiνs j] = 0, for i, j = 1, . . . ,N and s,t = 1, . . . ,T [8]. Furthremore, the idiosyncratic errors

are assumed to be spherically distributed, that is E[ν2
it ] = σ2

ν and E[νitν js] = 0 for i 6= j, s 6= t,

i, j = 1, . . . ,N, and s,t = 1, . . . ,T .

The two-way model in (1) can be written in a more compact form as

y = ιNT α + Xβ+ u, (2a)

with

u = (ιN ⊗ IT )λ +(IN ⊗ ιT )µ +ν, (2b)

where ιn ∈ R
n denotes a vector with all ones, β ∈ R

K , λ ∈ R
T and µ ∈ R

N are the vectors

with elements βk, λt and µi, respectively (t = 1,2, . . . ,T , i = 1,2, . . . ,N and k = 1,2, . . . ,K).

Furthermore, X =
(

x1 x2 · · · xK

)

and xk,y,u,v ∈ R
NT are the vectors with elements xtik, yti, uti

and vti, respectively, lexicographically sorted for t = 1,2, . . . ,T and i = 1,2, . . . ,N.

The random vectors λ, µ and ν have zero mean and their covariances are given by

Cov(







λ
µ

ν






) =







Ψλ 0 0

0 Ψµ 0

0 0 σ2
νINT






, (3)

where Ψλ ∈ R
T×T and Ψµ ∈ R

N×N are positive semi-definite. It follows that, u has zero mean

and covariance matrix given by

Ω ≡ Cov(u) = JN ⊗Ψλ +Ψµ ⊗ JT +σ2
νINT , (4)

where Jn ≡ ιnιT
n is a n× n matrix of all ones. Thus, the two-way random effects regression

model (2) can be considered as a General Linear Model (GLM).

The structure of the paper is the following. The next section reviews some results about

the basic case of spherically distributed disturbances, that is when Ψλ = σ2
λIN and Ψµ = σ2

µIN .
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Then, a compact reformulation of the within and between regressions is introduced and con-

sidered. The third section extends this concepts to tackle the estimation in the case of autocor-

related random effects.

Differently to other estimation methods, the approach here proposed can be easily gen-

eralized to sets of equations like Seemingly Unrelated Regressions (SUR) or Simultaneous

Equations models. The generalization to the SUR case is considered in the forth section.

Computationally efficient techniques to estimate the resulting formulations are suggested for

each model considered.

Final remarks and directions for future research are reported in the last section.

2. Spherically distributed random effects

In the case of spherically distributed effects the two-way random effects model has already

been studied in depth [8]. In that case Ψλ = σ2
λIT and Ψµ = σ2

µIN . Indeed, the variance

covariance matrix Ω has only four distinct eigenvalues, λ1 = σ2
ν, λ2 = Tσ2

µ +σ2
ν, λ3 = Nσ2

λ +

σ2
ν and λ4 = σ2

ν +Nσ2
λ +Tσ2

µ, with multiplicity n1 = (N−1)(T −1), n2 = N−1, n3 = (T −1)
and n4 = 1, respectively. It follows that the eigen-decomposition of Ω is given by

Ω = λ1Q1 +λ2Q2 +λ3Q3 +λ4Q4, (5)

where Q1 = (EN ⊗ET ), Q2 = (EN ⊗ J̄T ) Q3 = (J̄N ⊗ET ) and Q4 = (J̄N ⊗ J̄T ) are the projects

on the four eigenspaces and J̄n = Jn/n and En = In − J̄n are idempotent matrices [37, 36, 31].

Notice that, by the eigen-decomposition (5), the powers of Ω are given by

Ωp =
4

∑
i=1

λ p
i Qi, (6)

for p ∈ R. Thus, simple explicit expressions for inverse and the square root of Ω exist and

can be used for the estimation of the regression parameters. For example, the GLM (2a) is

equivalent to the OLM

σνΩ− 1
2 y = σνΩ− 1

2 ιNT α +σνΩ− 1
2 Xβ+ v, v ∼ (0,σ2

νINT ), (7)

and thus the Best Linear Unbiased Estimator (BLUE) for the parameters α and β is computed

by Ordinary Least Squares (OLS) [15, 16].

Alternatively, premultiplying (2a) by
(

Q1 Q2 Q3 Q4

)

T gives the GLM











Q1y

Q2y

Q3y

Q4y











=











0 Q1X

0 Q2X

0 Q3X

iNT Q4X











(

α
β

)

+











ū1

ū2

ū3

ū4











, (8)

where ūi ∼ (0,λiQi) and E[ūiū
T
j ] = 0 for i 6= j and i, j = 1,2,3,4. The first three blocks corre-

spond, respectively, to the Within, Between-individuals and Between-time periods regressions.
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It is easy to show that the last block of observations in (8) is un-influential for the GLS and

OLS estimators of β and thus it can be dropped when estimating β. Then, given an estimator

β̂ for β, α is estimated by as α̂ = ιT
NT (y−X β̂) and the residual vector corresponding to ū4 is

null.

Notice that, the ith block of (8) contains NT observations, while its covariance matrix has

rank ni (i = 1,2,3,4). Thus, this approach is not optimal and the computational complexity

and memory requirements grow by a factor of four. A more parsimonious approach consists

on projecting the observations on the R
ni (i = 1,2,3,4) eigen-spaces and reformulate the GLM

(2a) on these spaces, rather than in the original R
NT space. This can be done by considering

the orthonormal matrices Pi ∈ R
NT×ni , i = 1,2,3,4 defined by

P1 = WN ⊗WT , P2 = WN ⊗wT , P3 = wN ⊗WT and P4 = wN ⊗wT

where
(

wn Wn

)

∈ R
n×n is the orthogonal matrix such that J̄n = wnwT

n and En = WnW T
n . It

follows that

Qi = PiP
T
i , PT

i Pi = I and PT
i Pj = 0, (9)

Notice that, wn = ιn/
√

n is uniqely defined while Wn can be choosen with some freedom.

Convenient choices for Wn are discussed in a more general setting in appendix A.

Now, by premultiplying the GLM (2a) by the orthogonal matrix PT = (P1 P2 P3 P4)
T gives

the equivalent GLM











PT
1 y

PT
2 y

PT
3 y

PT
4 y











=











0 PT
1 X

0 PT
2 X

0 PT
3 X√

NT PT
4 X











(

α
β

)

+











PT
1 u

PT
2 u

PT
3 u

PT
4 u











,

or, with the appropriate substitutions,











y1

y2

y3

y4











=











0 X1

0 X2

0 X3√
NT X4











(

α
β

)

+











u1

u2

u3

u4











, (10)

where ui ∼ (0,λiIni
) are uncorrelated. Here, the covariance matrix of the disturbances of (10)

is diagonal and, thus, the BLUE for the parameters can be computed by a Weighted Least

Squares (WLS) procedure. Again, the last observation can be dropped when computing the

estimator for β.

3. Autocorrelated random effects

Let now consider the general case of autocorrelated random effects. Since, the individual- and

time-effects, λ and µ, are not assumed to be spherically distributed, the variance-covariance
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matrix of the disturbances Ω is given by (4) and, in general, the eigendecomposition (5) does

not hold anymore. However, it is still convenient to consider how the structure of the GLM

(10) becomes.

Observing that W T
n Jn = 0, wT

n Jnwn = 1 and recalling that Pi, i = 1,2,3,4 are mutually or-

thogonal, it can be verified that the variance-covariance matrix of
(

uT
1 uT

2 uT
3 u4

)

is given

by

Ω̄ =











σ2
νIn1

0 0 0

0 Ω2 0 ω42

0 0 Ω3 ω43

0 ωT
42 ωT

43 ω4











, (11)

where Ωi = PT
i ΩPi and ω4i = PT

i ΩP4, for i = 1,2,3,4. More specifically,

Ω1 = σ2
νIn1

, (12a)

Ω2 = TW T
N ΨµWN +σ2

νIn2
, ω42 = TW T

N ΨµwN , (12b)

Ω3 = NW T
T ΨλWT +σ2

νIn3
, ω43 = NW T

T ΨλwT (12c)

and

ω4 = NwT
T ΨλwT + TwT

NΨµwN +σ2
ν. (12d)

Notice that, by setting Hµ ≡ W̄ T
N ΨµW̄N , Hλ ≡ W̄ T

T ΨλW̄T with W̄n =
(

wn Wn

)

T , and parti-

tioning

Hµ =

(

h
µ
1 (h

µ
12)

T

h
µ
12 H

µ
2

)

, and Hλ =

(

hλ
1 (hλ

12)
T

hλ
12 Hλ

2

)

,

from (11) and (12) it follows that

Ω̄ =











0 0 0 0

0 TH
µ
2 0 T h

µ
12

0 0 NHλ
2 Nhλ

12

0 T (h
µ
12)

T N(hλ
12)

T Th
µ
1 + Nhλ

1











+σ2
νINT . (13)

Now, let consider the Cholesky factorizations

T Hµ +σ2
νIn1+1 = CµCT

µ and NHλ +σ2
νIn2+1 = CλCT

λ , (14)

where Cµ and Cλ are upper triangular1.Then, partitioning the Cholesky factors as

Cµ =

(

cµ cT
24

0 C2

)

and Cλ =

(

cλ cT
34

0 C3

)

,

1From the positive semi-definiteness of Ψµ and Ψλ , it follows that THµ + σ2
νIn1+1 and NHλ + σ2

νIn2+1 are positive

definite and, thus, these Cholesky factorizations always exists.
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allows to derive the Cholesky factor of Ω̄ = C̄C̄T as

C̄ =











σνIn1
0 0 0

0 C2 0 0

0 0 C3 0

0 cT
24 cT

34 c4











, (15)

where c2
4 = c2

µ + c2
λ −σ2

ν.

Notice that when µ is spherically distributed, that is when Ψµ = σ2
µIN , the Cholesky factor

C2 becomes a diagonal matrix and c24 vanish. In fact, in that case Hµ = σ2
µIN and, by (14),

Cµ =
√

Tσ2
µ +σ2

ν IN . Analogously, when λ is spherically distributed, C3 =
√

Tσ2
λ +σ2

ν In2
and

c34 vanishes. The zero elements that arises under these cases should be taken into account for

a computationally efficient implementation of the estimation algorithms.

The GLS estimator for the GLM (10) with Ω̄, the disturbances covariance matrix, given by

(11) derives from the solution of the Generalized Least Squares problem (GLLSP)

argmin
α,β

‖v1‖2 +‖v2‖2 +‖v3‖2 +‖v4‖2, subject to











y1

y2

y3

y4











=











0 X1

0 X2

0 X3√
NT X4











(

α
β

)

+











σνIn1
0 0 0

0 C2 0 0

0 0 C3 0

0 cT
42 cT

43 c4





















v1

v2

v3

v4











, (16)

where vi ∼ (0, Ini
) are uncorrelated [21, 24, 32]. It follows that β̂, the GLS estimator for β,

comes from the solution the GLLSP

argmin
β

‖v1‖2 +‖v2‖2 +‖v3‖2, subject to







y1

y2

y3






=







X1

X2

X3






β+







σνIn1
0 0

0 C2 0

0 0 C3













v1

v2

v3






, (17)

and that the GLS estimator for α is given by

α̂ = (y4 −X4β̂− cT
42v̂2 − cT

43v̂3)/
√

NT

where v̂2, v̂3 and the GLS estimator β̂ come from the solution of the GLLSP (17). Notice

that, only Cholesky and orthogonal factorizations, and no matrix inversions, have been used

to formulate the GLLSP (17). Thus, this approach results numerically stable even in the case

of nearly singular covariance matrices.

The GLLSP (17) is naturally solved by using the Generalized QR decomposition (GQRD)
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of the matrices






X1

X2

X3






and







C1 0 0

0 C2 0

0 0 C3






,

where C1 = σνIn1
. Alternatively, given the block structure of the Cholesky factor, a convenient

strategy consists on computing the GQRDs of Xi and Ci indipendetly, for i = 1,2,3 and then

use an updating GQRD techniques to retrieve the whole GQRDs. Specifically, let consider the

GQRDs
(

Q̂T
i

Q̄T
i

)

Xi =

(

Ri

0

)

, and

(

Q̂T
i

Q̄T
i

)

Ci

(

P̂i P̄i

)

=

(

Ĉi
ˆ̄Ci

0 C̄i

)

, (18)

for i = 1,2,3 and let
(

ŷi

ȳi

)

=

(

Q̂T
i

Q̄T
i

)

yi.

Notice that, C1 = σνIn1
and thus the first GQRD is actually a simple QR decomposition, that

is P̂1 = Q̂1, P̄1 = Q̄1, Ĉ1 = σνIK , C̄1 = σνIn1−K and ˆ̄C1 = 0.

Next, premultiplying the ith block of the constraints (17) by
(

Q̂i Q̄i

)

T and rearranging it

gives the equivalent GLLSP

argmin
β

∑
i=1,2,3

‖v̂i‖2 +‖v̄i‖2, subject to





















ŷ1

ŷ2

ŷ3

ȳ1

ȳ2

ȳ3





















=





















R1

R2

R3

0

0

0





















β+





















σνIK 0 0 0 0 0

0 Ĉ2 0 0 ˆ̄C2 0

0 0 Ĉ3 0 0 ˆ̄C3

0 0 0 σνIn1−K 0 0

0 0 0 0 C̄2 0

0 0 0 0 0 C̄3









































v̂1

v̂2

v̂3

v̄1

v̄2

v̄3





















, (19)

where v̂i = P̂T
i vi and v̄i = P̄T

i vi. It follows that, when Ĉ2 and Ĉ3 are non-singular, v̄i = C̄−1
i ȳi,

i = 1,2,3 and thus the GLLSP (19) is equivalent to the smaller in size 3K ×3K GLLSP

argmin
β

∑
i=1,2,3

‖v̂i‖2, subject to







y̌1

y̌2

y̌3






=







R1

R2

R3






β+







σνIK 0 0

0 Ĉ2 0

0 0 Ĉ3













v̂1

v̂2

v̂3






, (20)

where y̌i = ŷi − ˆ̄CiC̄
−1
i ȳi, for i = 1,2,3. Finally this GLLSP can be solved by means of the

GQRD of the regressor and Cholesky factor matrices. Algorithm 1 resumes the steps needed

for the estimation of the parameters.
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Algorithm 1 Estimation of the two-way non-spherically distributed error component model.

1: Compute Xi = PT
i X and yi = PT

i y.

2: Compute the Cholesky factorizations in (14).

3: Compute the GQRDs (18) and compute y̌i = ŷi − ˆ̄CiC̄
−1
i ȳi

4: Obtain the estimator β̂ by solving (20) with a GQRD approach

In order to derive the computational complexity of this approach, let firstly recall that the

cost of computing the QRD of an M×K matrix is O(K2M) flops, that of computing the GQRD

of two matrices of dimension M ×K and M ×M is O(M3) flops, while the computation of

the Choleky factor of an M ×M matrix require O(M3) flops [18]. Let consider Now, the

most expensive steps. The computation of the Cholesky factor C2 and C3, in step 2, needs

O(n3
2 +n3

3) flops, step 3 require O(K2n1 +n3
2 +n3

3) flops, (since one of the GQRDs is a simple

QRD). Finally, the last step need O(K3) flops for the computation of the corresponding GQRD.

Thus, the overall cost is given by

O(K2n1 + n3
2 + n3

3) = O(NT K2 + K3 + N3 + T 3) (21)

flops, which is remarkably smaller than the cost, O(N3T 3) flops, required for computing the

GQRD corresponding to the original model (2). A more computationally efficient algorithm

can be designed by using updating GQRD techniques to exploit the upper-triangular structure

of the blocks of the matrices in the GLLSP (20) [38].

Notice that, when the parameters are reestimated for different covariance parameters, the

QRDs in the GQRDs of step 3 are already available. Most notably, only the second and third

RQDs in (18) need to be computed and thus, the cost of re-estimate the parameters reduces to

O(K3 + N3 + T 3).

4. SUR Model with two-way error component
disturbances

Let generalize the linear regression model (2) to the set of Seemingly Unrelated Regressions

(SUR) with Error Component disturbances (SUR-EC)

y j = ιNT α j + X jβ j + u j, j = 1, . . . ,G (22a)

with

u j = (ιN ⊗ IT )λ j +(IN ⊗ ιT )µ j +ν j, j = 1, . . . ,G (22b)

where y j,u,ν j ∈ R
NT , X j ∈ R

NT×K j , α j ∈ R, β j ∈ R
K j , λ j ∈ R

T and µ j ∈ R
N . Furthermore,

the random effects λ j,µ j and ν j have zero mean and covariances given by

Cov(







λi

µi

νi






,







λ j

µ j

ν j






) =







Ψλ
i j 0 0

0 Ψµ
i j 0

0 0 σν
i jINT






(23)
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for i, j = 1, . . . ,G.

The estimation of the SUR model (22) is approached by following the method proposed in

the previous section for the single equation case. That is, each equation in (22a) is premulti-

plyied by PT and that results in the set of regressions











y1,i

y2,i

y3,i

y4,i











=











0 X1,i

0 X2,i

0 X3,i√
NT X4,i











(

αi

βi

)

+











u1,i

u2,i

u3,i

u4,i











, i = 1, . . . ,G (24)

where yl,i = PT
l yi, Xl,i = PT

l Xi and ul,i = PT
l ui for l = 1, . . . ,4 and i = 1, . . . ,G.

The covariance matrix of
(

uT
1,i uT

2,i uT
3,i uT

4,i

)

and
(

uT
1, j uT

2, j uT
3, j uT

4, j

)

has the

same structure of Ω̄ in (11) and is given by

Ω̄i j =











σν
i jIn1

0 0 0

0 Ω2,i j 0 ω42,i j

0 0 Ω3,i j ω43,i j

0 ωT
42,i j ωT

43,i j ω4,i j











(25)

where

Ω2,i j = TW T
N Ψµ

i jWN +σν
i jIn2

, ω42,i j = TW T
N Ψµ

i jwN

Ω3,i j = NW T
T Ψλ

i jWT +σν
i jIn3

, ω43,i j = NW T
T Ψλ

i jwT

and

w4,i j = TwT
NΨµ

i jwN + NwT
T Ψλ

i jwT +σν
i j,

for i, j = 1, . . . ,G.

Now, the system of regressions can be reassembled as the equivalent GLM











y̌1

y̌2

y̌3

y̌4











=











0 ⊕iX1,i

0 ⊕iX1,i

0 ⊕iX1,i√
NT IG ⊕iX1,i











(

Vec{αi}
Vec{βi}

)

+











ǔ1

ǔ2

ǔ3

ǔ4











where y̌l = Vec{yl,i}, ǔl = Vec{ul,i}, and the disturbances have dispersion matrix given by

Cov(











ǔ1

ǔ2

ǔ3

ǔ4











) = Ω̌ =











Σν ⊗ In1
0 0 0

0 Ω̄2 0 Ω̄42

0 0 Ω̄3 Ω̄43

0 Ω̄T
42 Ω̄T

43 Ω̄4











, (26)
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where

Ω̄x =









Ωx,11 · · · Ωx,1G

...
...

Ωx,G1 · · · Ωx,GG









, Ω̄4x =









ω4x,11 · · · ω4x,G1

...
...

ω4x,1G · · · ω4x,GG









for x = 2,3 and

Ω̄4 =









ω4,11 · · · ω4,1G

...
...

ω4,G1 · · · ω4,GG









.

Now, in parallel with (13) for the univariate case, Ω̌ can be written as

Ω̌ =











0 0 0 0

0 TH
µ
2 0 T H

µ
12

0 0 NHλ
2 NHλ

12

0 T (H
µ
12)

T N(Hλ
12)

T T H
µ
1 + NHλ

1











+











Σν ⊗ In1
0 0 0

0 Σν ⊗ In2
0 0

0 0 Σν ⊗ In3
0

0 0 0 Σν











(27)

where

H
µ
1 = (IG ⊗wN)T Ψ̄µ(IG ⊗wN), Hλ

1 = (IG ⊗wN)T Ψ̄λ(IG ⊗wN),

H
µ
12 = (IG ⊗wN)T Ψ̄µ(IG ⊗WN), Hλ

12 = (IG ⊗wT )T Ψ̄λ(IG ⊗WT ),

H
µ
2 = (IG ⊗WT )T Ψ̄µ(IG ⊗WT ), Hλ

2 = (IG ⊗WT )T Ψ̄λ(IG ⊗WT ).

Let

T Hµ +

(

Σν 0

0 Σν ⊗ In2

)

= CµCT
µ and NHλ +

(

Σν 0

0 Σν ⊗ In3

)

= CλCT
λ (28)

and let partition

Cµ =

(

Čµ Č42

0 Č2

)

G

Gn2

and Cλ =

(

Čλ Č43

0 Č3

)

G

Gn2

.

Then the Cholesky factor in Ω̌ = ČČT is given by











Cν ⊗ In1
0 0 0

0 Č2 0 0

0 0 Č3 0

0 Č42 Č43 Č4











Gn1

Gn2

Gn3

G

,

10



where Cν and C4 derive, respectively, from the Cholesky decompositions Σν = CνCT
ν and

ČµČT
µ + ČλČT

λ −Σν = Č4ČT
4 . (29)

In order to compute the GLS estimate of the parameters, let rewrite the estimation problem

of SUR model as the GLLSP

argmin
αi,βi,i=1,...,G

4

∑
i=1

‖ν̌i‖2











y̌1

y̌2

y̌3

y̌4











=











0 ⊕iX1,i

0 ⊕iX2,i

0 ⊕iX3,i√
NT IG ⊕iX4,i











(

Vec{αi}
Vec{βi}

)

+











Cν ⊗ In1
0 0 0

0 Č2 0 0

0 0 Č3 0

0 Č42 Č43 Č4





















ν̌1

ν̌2

ν̌3

ν̌4











. (30)

Like the GLLSP (16), also the GLLSP (30) can be exactly solved in two stages. In the first

stage the GLS esimator β̂i are computed as the solution of the GLLSP

argmin
βi,i=1,...,G

3

∑
i=1

‖ν̌i‖2 s.t.







y̌1

y̌2

y̌3






=







⊕iX1,i

⊕iX2,i

⊕iX3,i






Vec{βi}+







Cν ⊗ In1
0 0

0 Č2 0

0 0 Č3













ν̌1

ν̌2

ν̌3






. (31)

Then, in the second stage the estimator for α are computed as

α̂ =
1√
NT

(y̌4 −Vec{X4,iβ̂i}− Č42v̂2 − Č43v̂3)

where v̂2, v̂3 and the GLS estimator β̂i come from the optimum of the GLLSP (31).

It is clear that the computation of the solution of the GLLSP (31), which as G(NT − 1)
constraints, represents the most demanding task in the estimation of the SUR-EC model (22)

and requires the computation of the GQRD of the matrices






⊕iX1,i

⊕iX2,i

⊕iX3,i






and







Cν ⊗ In1
0 0

0 Č2 0

0 0 Č3






. (32)

Alternatively, the solution can be derived, following the same approach illustrated in section 3,

by using updating GQRDs. An efficient implementation of those factorization should exploit

the structure of the matrices involved. Algorithms for computing the GQRD of the first block

of the two matrices have already been considered in the context of the estimation of the stan-

dard SUR model [14, 20, 21, 23]. Next, when updating this GQRD the algorithm can exploit

the upper triangular structure of Č2 and Č3 [22, 38].

Notice that, if Ψµ
i j = σµ

i jIN or Ψλ
i j = σλ

i jIT for i, j = 1, . . . ,G, then Ω̄2 = (TΣµ +Σν)⊗ In2
or

Ω̄3 = (NΣλ +Σν)⊗ In3
and Ω̄42 = 0 or Ω̄43 = 0, respectively. The model is simpler also when

the effects do not have correlations across equations, for example when Ψµ
i j = 0 for i 6= j, then

Ω̄2 = ⊕iTW T
N Ψµ

iiWN +Σν ⊗ In1
and Ω̄42 = ⊕iTW T

N Ψµ
iiwN .
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4.1. Special Cases

In the following some special cases of the SUR-EC model are considered. In particular various

assumptions are imposed on the covariance matrices of individual effects Ψµ
i j, i, j = 1, . . . ,G.

The resulting simplifications on the matrices involved in the estimation and the design of the

procedure is discussed. Similar considerations hold for the time-effects λi.

4.1.1. Spherically distributed individual effects: Ψµ
i j = σµ

i jIN

Let assume that Ψµ
i j = σµ

i jIN , for i, j = 1, . . . ,G and let denote Σµ ∈ R
G×G the matrix with

elements σµ
i j. Under that assumption Ω̄42,i j vanishes and the expressions for Ω̄2,i j simplifies

to

Ω̄2,i j = (Tσµ
i j +σν

i j)In2
.

Thus, Ω̄i j becomes

Ω̄i j =











σν
i jIn1

0 0 0

0 (Tσµ
i j +σν

i j)In2
0 0

0 0 Ω3,i j ω43,i j

0 0 ωT
43,i j ω4,i j











Similarly, because Ψ̄µ = Σµ ⊗ IT , H
µ
12 will become zero, H

µ
1 = Σµ and H

µ
2 = Σµ ⊗ In2

. Thus,

by (28), Čµ is the Cholesky factor of NΣµ +Σν, that is ČµĈT
µ = NΣµ +Σν, and Č2 = Čµ ⊗ In2

.

It follows that the computation of the estimators for βi, i = 1, . . . ,G, requires now the GQRD

of the matrices






⊕iX1,i

⊕iX2,i

⊕iX3,i






and







Cν ⊗ In1
0 0

0 Čµ ⊗ In2
0

0 0 Č3






,

which can be computed as follows. The GQRD of ⊕iX1,i and Cν ⊗ In1
is computed, next

the result is updated with the observations in the matrices ⊕iX2,i and Čµ ⊗ In2
and finally

the observation in the last blocks of the matrices are added. The first step is identical to the

GQRD of a standard SUR model and the second step is the same of that used in the problem of

updating a SUR model. Algorithms to tackle these two problems have already been proposed

[14, 22].

4.1.2. Individual effects without correlation between equations: Ψµ
i j = 0 for i 6= j

In the following it will be assumed that Ψµ
i j = 0 for i 6= j and i, j = 1, . . . ,G. Thus, H

µ
1 , H

µ
12

and H
µ
2 in (27) are given by

H
µ
1 = diag(wT

NΨµ
iiwN) H

µ
12 =

G
M

i=1

wT
NΨµ

iiWN and H
µ
1 =

G
M

i=1

W T
N Ψµ

iiWN

12



and to compute Cµ in (28) it is necessary to compute the Cholesky decomposition of the

GN ×GN matrix
(

Σν + TH
µ
1 T (⊕iw

T
NΨµ

iiWN)

T (⊕iW
T
N Ψµ

iiwN) T (⊕iW
T
N Ψµ

iiWN)+ (Σν ⊗ In2
)

)

which has the sparse structure illustrated in figure 1.

Figure 1: Structure of the matrix in (27), where parts of the matrix which come from elements

of Σν and Ψµ
i j are represented in green and blue, respectively.

5. Conclusions

The estimation of Panel Data models, regressions with two-way error component disurbances,

is considered for the case when both the random effects are non-spherically distributed. The

usual approach that firstly transforms the effects into uncorrelated errors, for example by ap-

plying a Prais-Winsten transformation, and then applies within and between transformations,

cannot be conveniently applied when both the effetcs are autocorrelated [8, 9]. The proposed

approach reverts this scheme by firstly applying the within and between transformations. The

covariance matrix of the resulting General Linear Model (GLM) has a simple structure that

allows its partitioning into three smaller GLMs. Furthermore, the within and between trans-

formations considered produce a model which is smaller than those usually derived, allowing

for a more computationally efficient estimation. A further reduction in the computations arises

when the model is re-estimated for different covariance parameters.

In order to show the advantages of the proposed approach, the same technique is applied

to the case of Seemingly Unrelated Regressions with non-spherically distributed error com-

ponents disturbances [3, 6]. In a similar way the Simultaneous Equation model with error

component disturbances can be approached [4, 7, 25, 28].

Future research is needed on the inference side, especially the estimation of the covariance

matrices in the present context should be considered. However, it should be noticed that, here

13



the models have been transformed and partitioned into blocks which depend on the single

covariance matrices and the residuals can be used to compute, or update, an estimator for

them. Another direction of research consists into applying this approach to more specific

models of the correlations, like autoregressive or moving average random effects.

Further research is also required for the development of computationally efficient and/or

parallel implementation of the estimation algorithms. This is more important in the SUR case

where the dimension of the resulting model to be solved can become immediately large as it

is given by the product of the number of individuals (N), the number of samples (T ) and the

number of equations (G).
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A. Derivation of the eigenvectors

Here, a couple of choices for Wn, and thus Pi, are presented. In the first, the correlations of µ

and λ are not taken into account and provide a simple approach for a closed form expression

for Wn. Beside its simplicity, its main advantage is the easy updating when new observations or

individuals are added. In the second approach, the correlation structure of the random effects

are taken into account in order to reduce the non-zero elements of the covariance matrix in

(11).

The first choice for Wn is given by

Wn =















1 1/2 1/3 ··· 1/(n−2) 1/(n−1)
−1 1/2 1/3 ··· 1/(n−2) 1/(n−1)
0 −1 1/3 ··· 1/(n−2) 1/(n−1)
0 0 −1 ··· 1/(n−2) 1/(n−1)

...
...

...
. . .

...
...

0 0 0 ··· −1 1/(n−1)
0 0 0 ··· 0 −1















Dn, (33)

where Dn = diag(
√

i/(i+ 1), i = 1,2, . . . ,N − 1). The interpretation is the following. The

eigenvector wn corresponds to the Within transformation and applying wT
n is equivalent to
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compute the mean scaled by a factor of
√

n. The matrix Wn corresponds to the Between

transformation and applying W T
n corresponds to compute, for the i-th element of the vector, the

deviation from the mean of the previous i−1 elements, weighted by
√

i/(i+ 1) (i = 2, . . . ,n).

Thus, appplying Pi (i = 1,2,3,4) consists on either taking the mean or the “deviations from

the mean” along time and across individuals. Thus, an advantage of this choice is the easy of

updating when new observations are added.

The second choice derives by chosing W̄n ≡
(

wn Wn

)

as the orthogonal factor in the QRD

of the Krylov matrix Kr(wn,A) ≡
(

wn Awn · · · An−1wn

)

, where A = Ψµ,Ψλ . Specifically,

this can be efficiently computed by using a Lanczos/Arnoldi algorithm [11, 18]. Since A is

symmteric, this algorithm allows to compute the orthogonal matrix W̄n such that H = W̄ T
n AW̄n

is tridiagonal.

Thus, using A = Ψµ and A = Ψλ for the computation of WN and WT , respectively, provides

Hµ and Hλ being tridiagonal. Furthermore, their Cholesky factors Cλ and Cµ become upper-

bidiagonal, this results in an upper-bidiagonal structure for the Cholesky factor in the GLLSP

(16) which can be exploited to derive computationally efficient algorithms for the computation

of the GQRDs in (18).
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