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ABSTRACT 
  

             This paper studies the sequential sampling scheme as a solution to 

the problem of aliasing, where the sampling interval is restricted to a 

minimum allowable value T. In sequential sampling, the signal is sampled 

at intervals of T, T+, T+2, T+3, ...; where   T and  
may be selected as desirable. Sequential sampling is, however, analyzed and 

it is proved that when the ratio T/ is an integral number, the associated 

spectral estimates give a Nyquist frequency
1

2
. This sampling scheme 

can, therefore, be employed to yield a required cut- off frequency.  
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                                    INTRODUCTION 

 Some data acquisition systems have a minimum allowable sampling 

interval and do not provide a desired sampling period less than a minimum 

allowable value. This may be due to some restrictions set by the measuring 

instrument that has to be used [1-7]. 

 Let the minimum allowable sampling time be T; if the uniform 
sampling scheme is employed then, the Nyquist or cut-off frequency is 

known [8] to be given as: 

 f
T

c 
1

2
       (1) 

 This would mean that if frequencies higher than fc are present, 
aliasing will occur. Otherwise, the signal would have to be filtered so that 

only frequencies below fc are passed and, therefore, the spectral analysis 

will be restricted [8]. 

 The sequential sampling scheme can, however, be employed to 

obtain an autocorrelation function with estimates  apart, where  T, 

with the exception of coefficients lying inside the range R(0)R(T). In 
this sampling scheme, the signal would be sampled at intervals of: 

  T, T+, T+2, T+3, ... 
From the sampled signal, an autocorrelation function can be obtained with 

the coefficients: 

 R(0), R(T), R(T+), R(T+2), ... 
 While T is restricted, the value of  may be chosen as desirable. It 

will be proved, in this paper, that the sequential sampling can give an 
increased cut-off frequency as: 

 fcs 
1

2
      (2) 

The sequential sampling can, therefore, be employed to overcome aliasing  

and the restrictions of spectral analysis, by selecting a sufficiently small 

value for . 
  

 

 

THE CUT OFF FREQUENCY IN THE SEQUENTIAL 

SAMPLING 
 The cut- off frequency provided by the sequential sampling scheme 

is considered in this section. The analysis employs the impulse 

representation of a continuous signal as an approach to discretization [9-14]. 

 In the sequential sampling, the signal is sampled at intervals of: 

 T, T+, T+2, T+3, ... 
The sampling instants are, therefore, given by: 

 ti= 0,  T, 2T+, 3T+3, 4T+6, ... (3) 
This can be written as: 
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2
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 When a continuous signal x(t) is sampled, the sample values x(ti) are 

acquired. A discrete autocorrelation function, with coefficients R(j), may 

be obtained from the discrete signal, by contributions of the products 

x(ti)x(ti+j). Equation (5) can be used to give the time delay j  as: 

  j i j it t T
j

j ij j         [ ( ) ( ) ]
2

1 1   (6) 

        i= o, 1, 2, ... 

        j= o, 1, 2, ... 

where  is a constant given by: 

 T/       (7) 

 It is seen from equation (6) that for j=0, the time delay is zero and 

for j=1, the time delay is T+i (where i=0, 1, 2,3, ...). An autocorrelation 
function is, therefore, obtainable at discrete values of the time delay given 

as: 

 n =o, T+n n= 0, 1, 2, 3, ...   (8) 

 If the ratio  is an integral number, then higher values of j would 

also provide more contributions to the autocorrelation estimates at the above 

time delays n. This is because j(j-1)/2 is always even, and any value of j 

would hence add a multiple of  to T. 

 The discrete autocorrelation function may be represented as: 

 R R b
* ( ) . ( ) ( )          (9) 

where R() is the continuous autocorrelation function and b() is the 

following form of the delta comb: 

         b T T T( ) ( ) ( ) ( ) ( )             2 L    (10) 



 4  

It is established [9-10] that the Fourier transform of equation (10) can be 

written as: 

  
b

j T j ne e( )     

1
0

     (11) 

which by manipulation [9-10] can be re-written as: 

  b

j j

j

e e

e
( )

 




 



 


1

1
    (12) 

where substitution has also been made for T from equation (7). 

 The Fourier transformation of R*() gives the spectral density S*() 

corresponding to the sampled signal and that of R() would yield the 

spectral density S() of the original continuous signal. The approach 
adopted for the Fourier transformation of equation (9) is based on the 

convolution and residue theorems [9]. By evaluating the residue terms [9] 
and using the convolution property [9], for substitution into equation (9), the 

Fourier transform of this equation ca be obtained as: 

 S e S nj n
cs cs*( ) ( ) , /       




 2 2    (13) 

 However, if the ratio =(T/) is an integral number then, 

  e j n2 1    
noting that n is also an integer. Substituting this into equation (13) gives: 

 S S n cs cs* ( ) ( ) , /      



 2     (14) 

 Now, consider the periodicity of S*(); this can also be examined by 

applying the corresponding methods [9-14]. Using equations (9), (10), (11) 

and the rules established for discrete Fourier transformation [9-10], it can be 
written: 

      [ ( ) ( ) ] [ ( ) ( ) ]R e R T n e R e R n ej T j n j j n0 0
00

       

     (15) 

and then for an integer m: 
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since m and n are integers. If  is also an integral number, this would reduce 

to: 

    [ ( ) ( ) ]R e R T n ej j n0
0

  

     

from which it follows that: 

 S m Scs
* *( ) ( )   2      (17) 

This is the mathematical statement for S*() to be periodic with period 

2cs. Otherwise, if  is not an integral number, 

 S m Scs
* *( ) ( )   2      (18) 

and the requirement for periodicity is not met. 

 It is, therefore, seen that when the ratio  is an integral 

number, the periodic pattern, conforming with the Nyquist theorem,[9-14] is 
obtained. That is, the sequential sampling gives a cut-off frequency 

 cs  /  or fcs 
1

2
.  On the contrary, when  is not a whole number, 

S * ( )  is related to the true spectral density by equation (13); it includes a 

complex term and is not periodic. 
 

 

  

CONCLUSIONS 
 This paper has considered the sequential sampling scheme, as a 

solution to the problem of aliasing, where the sampling interval is restricted 

to a minimum allowable valueT . In the sequential sampling, the signal is 

sampled at intervals of      T, , , ,...  2 3 ; where 

 p and may be selected as desirable. 

 The sequential sampling was considered analytically and it was 

proved that, when the ratio  / is an integral number, the corresponding 

spectral estimates give a cut- off frequency of 
1

2
. On the contrary, when 

the ratio is not a whole number, the associated spectrum of the sequentially 

(16) 
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sampled data was found to comprise a complex term in its relation to the 

true spectrum and would not be periodic in terms of the cut-off frequency. 

 . 
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