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Abstract

Action-Set games are transferable utility games where the set of players is �nite, every

player has a �nite set of actions, and the worth of the game is a function of the actions

taken by the players. In this setting a rule has to determine individual payoffs at each

combinations of actions. Following an axiomatic approach, we de�ne the set of Consistent

Bargaining Equilibria.

Keywords: Action-set games, Shapley value, Prekernel, Consistent Bargaining Equi-

libria.

1 Action-set games

One of the features common to most economic situations is that the interaction among agents

through activities like production, exchange, etc. generates bene�ts shared among the partic-

ipating agents. Moreover, the productivity gains of the specialization of cooperative labor in

different task and roles (labor division) are important within any type of production process,

ranging from pin manufacture to legal practice and medical care. Labor division refers to a

cooperative situation where two agents have to choose tasks or actions to achieve the outcome.

Ef�cient choices are those implying that agents master different tasks, i.e., an agent choosing

"action a", and the other choosing "action b".

For instance, suppose that two friends, say A and B, go to deer hunting. Each of them can

either line driving (action li, i = 1;2), i.e., �ushing deers toward the hunter, or shooting deers

(action si, i = 1;2). Obviously, the ef�cient outcomes entail that one friend line drives and the
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other shoots; if both line drive, then no deer will be shooted, and, �nally, if both shoot deers,

then less deers will be shooted, because nobody will �ush them to the hunters. Payoffs could

be represented by the following matrix.

v s2 l2

s1 4 10

l1 10 0

Hunters' choice of actions will depend on the expected payoff redistributions of the outcome

between them, under all the possible choices. Therefore, a redistribution rule has to specify a

payoff vector for any pair of actions.

The three main features characterizing our setting are:

1.- Unanimity. The �nal agreements must be unanimous; hence partial cooperation is not

allowed and strict subcoalitions of agents play no role in this setting.

2.- No disagreement point. The agents cannot take any particular action to guarantee them-

selves a minimum payoff. Whatever the actions taken by the players, they must agree with the

redistribution of the outcome.

3.- Transferable utility. The outcome is a totally divisible good which can be redistributed

among agents.

Formally, an action-set game is any Γ =
�
N;
�
Ai
�
i2N
;v
�
, where N is a �nite set of players,

with jNj= n, and for any player i in N, Ai is a �nite non empty set of actions available for player

i. An action pro�le is a combination of actions that the players in N might choose. We let A

denote the set of all possible action pro�les, so that ψ

A= �
i2N
Ai:

For any action pro�le x = (xi)i2N in A, the real number v(x) represents the total worth that

players would get if x where the combination of the actions taken by the players. Therefore, v

is a mapping v : A! R+.

Given an action-set game Γ = (N;A;v), a value solution ψ is a mapping that speci�es a

payoff vector for every action pro�le, that is

ψ : A! R
N ;

The number ψ i(x;v) represents the payoff that player i 2 N receives when action pro�le

x 2 A is taken in Γ. When no confusion arises, we denote such a number by ψ i(x). As utility is

totally transferable, a payoff vector ψ(x) is feasible if ∑i2Nψ i(x)� v(x).
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We wish to propose a rule to determine individual payoffs in this setting. For that purpose

we will follow an axiomatic approach, that is, we will impose some appealing properties which

the agents involved in the bargaining are ready to follow.

2 Axiomatics

The �rst minimum requirement that a rule ψ must satisfy is the budget restriction:

De�nition 1 Ef�ciency: ∑i2Nψ i(x) = v(x), for all x 2 A

To illustrate the next property suppose that players are involved in bargaining at some x, and

some agent i disagree with the proposal at hand. She can reject that proposal by threatening to

change her action to a different yi 2 A
i, where v(x�i;yi) < v(x). In this way, she can impose a

loss to the rest of players as far they do not take into account her claim. But, if players are in

a location x̄ where it is impossible to lower their payoffs by changing their action, then nobody

will make this kind of threat. Assuming that players have equal bargaining skills, payoffs must

be the same for all of them at the worst situation.

De�nition 2 Equal Minimum Rights: Let x̄ 2 A such that v(x̄) =Minx2Afv(x)g, then ψ i(x̄) =

ψ j(x̄), for all i; j 2 N.

In this way, individual payoffs at the worst possible outcome of the game will act as a

reference point for the remaining possible agreements.

Moreover, since unanimity of any agreement is a desiderable property, then it will be re-

quired that every player will obtain at least as much she will obtain at the reference point.

De�nition 3 Individual Rationality: Let x̄ 2 A such that v(x̄) = Minx2Afv(x)g, then for all

x 2 A, ψ i(x)� ψ i(x̄), for all i 2 N.

An example of a rule that satis�es the above properties and that, a priori, could be appealing

is the equal payoff division, which in principle is a nice candidate for a fair rule. Let us consider

the following matrix [v] = [v(x)]x2A, where Ai = fai;big, i= 1;2, are agent i' actions.

v a2 b2

a1 4 8

b1 6 2
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For the above example such a rule yields the payoff matrix [ψ] = [(ψ1(x);ψ2(x))]x2A:

ψ a2 b2

a1 (2;2) (4;4)

b1 (3;3) (1;1)

A natural way to measure the bargaining position of agent i at each action pro�le is by com-

paring the variation of agent j's payoffs, under i's action changes. Suppose that agents choose

the pair of actions (a1;b2), where the equal payoff division rule yields (ψ1(a1;b2) = 4;ψ2(a1;b2) = 4).

Here, agent 1 could argue that if she changed her action to b1, then she could in�ict a loss to

agent 2 of :

ψ2(a1;b2)�ψ2(b1;b2) = 4�1= 3

On the contrary, the loss on agent 1's payoffs that agent 2 could in�ict by changing his

action from b2 to a2 is:

ψ1(a1;b2)�ψ1(a1;a2) = 4�2= 2

Clearly the bargaining position of agent 2 is weaker than that of agent 1, and therefore the

equal payoff division does not take into account the agents' different bargaining power.

We wish to design a rule with the property that at any action pro�le, agent i's threat to

agent j is balanced by agents j's counterthreat to agent i. This property will be called Equal

Punishments.

De�ne the concept of "punishment" in the general setting as follows:

De�nition 4 Given a value ψ , for all x 2 A, we de�ne the punishment of player i to player j as

Pi j [ψ(x)] := ψ j(x)�Minyi2A ψ j(x�i;yi):

The amount Pi j [ψ(x)]measures the maximum payoff losses that player i can in�ict to player

j. Note that since Minyi2Aψ j(x�i;yi) � ψ j(x), then Pi j [ψ(x)] � 0, for all x 2 A, i, j 2 N. The

difference Pi j [ψ(x)]�Pji [ψ(x)] can also interpreted as the adjustment that player i could claim

at ψ(x) against player j based on a comparison of their punishments.

Because the two-person case does not present any ambiguity, we state �rstly the equilibrium

concept when N = f1;2g:

De�nition 5 Equal Punishments: P12 [ψ(x)] = P21 [ψ(x)], for all x 2 A.
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De�nition 6 Given a two-person game, a value ψ(x) is a Bargaining Equilibrium if it satis�es

Ef�ciency, Equal Minimum Rights, Individual Rationality and Equal Punishments.

Given Γ = (f1;2g;A;v), denote by E (f1;2g;A;v) the set of all Bargaining Equilibrium

values. In the two-person case this set is always nonempty.

Theorem 1 When Γ = (f1;2g;A;v), E (f1;2g;A;v) 6=?:

The proof of this Theorem is a corollary of Theorem 2.

For instance, in the above example, the following payoff matrix:

ψ a2 b2

a1 (2;2) (4:5;3:5)

b1 (2:5;3:5) (1;1)

corresponds to an equilibrium. In particular:

P12(a1;b2) = P21(a1;b2) = 2:5;

P12(b1;a2) = P21(b1;a2) = 1:5;

P12(a1;a2) = P21(a1;a2) = P12(b1;b2) = P21(b1;b2) = 0:

In general, this equilibrium concept gives rise to a set of equilibria, for example the next

payoff division is also an equilibrium:

ψ a2 b2

a1 (1;3) (4;4)

b1 (2;4) (1;1)

Discussion It is important to notice that ex-ante symmetric environments, where players have

the same skills to undertake different jobs, may give rise to ex-post individuals payoffs, with

players being differently rewarded as a function of the different roles that they perform in labor

division.

To illustrate this aspect, consider again the hunters' game of the introduction. The following
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surplus division is an equilibrium:

ψ s2 l2

s1 (2;2) (6;4)

l1 (4;6) (0;0)

Individual payoffs are symmetric at action-pairs (l1; l2) and (s1;s2), but asymmetric at

action-pairs (l1;s2) and (s1; l2). It is important to point out that to justify individual asym-

metric payoffs there is no need to assume ex-ante different skills, distinct discount rate at their

bargaining position, etc. In our ex-ante symmetric setting, the ex-post asymmetries are gener-

ated by the players' different locations inside the whole matrix. Thus, in the action-pair (l1;s2)

the bargaining position of A is worse than that of B, while hunter A enjoys of a better position

than that of B in the matrix cell (s1; l2). This is so because the hunter with the shooter's role can

always threaten the line driver with doing the same activity and then getting no deer while the

line driver hunter's thread of becoming a shooter is less dramatic, since it only means hunting

less deers. Thus, once ex-ante symmetric players are at a particular cell in the outcome matrix,

ex-ante symmetries need not be such and asymmetries in the players' bargaining power play a

key role in the ex-post equilibrium.

3 More than two players

How to extend the equilibrium notion for three or more players? A straightforward option is by

imposing that all pairs of players have balanced mutual punishments. Under this approach we

have the following de�nitions:

De�nition 7 Bilateral Equal Punishments: Pi j [ψ(x)] = Pji [ψ(x)], for all i; j 2 N, and x 2 A.

De�nition 8 A value ψ(x) is a Bilateral Bargaining Equilibrium if it satis�es Ef�ciency, Equal

Minimum Rights, Individual Rationality and Bilateral Equal Punishments.

This concept' appeal is that of associating the very natural property of Bilateral Consistency:

payoff division under the rule is the same when considering all the players together than when

only taking two players into account while letting �xed both the actions and payoffs of the

remaining players. More formally, consider the game (N;A;v) and a value ψ . For all x̄ 2 A,

de�ne for each pair of players i; j 2 N and a �xed combination of actions of the remaining
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players x̄�i j 2 �k2Nnfi; jgA
k, the subgame (f1;2g;Ai�A j;v

ψ
x̄�i j
), where

v
ψ
x̄�i j
(xi;x j) := v

�
x̄�i j;xi;x j

�
� ∑
k2Nfi; jg

ψk
�
x̄�i j;xi;x j

�
, for all (xi;x j) 2 A

i�A j.

Then, the valueψ satis�es bilateral consistency wheneverψr

�
(xi;x j);v

ψ
x̄�i j

�
=ψr

��
x̄�i j;xi;x j

�
;v
�
,

for r = i; j an all
�
x̄�i j;xi;x j

�
2 A. It is immediate to see that if a value is a bilateral bargaining

equilibrium then it will satisfy bilateral consistency.

Unfortunately, the condition of bilateral equal punishments is too stringent: it yields an

empty set most of the times. The next example illustrates this fact.

Let us consider a three player game, where N = fi; j;kg. The set of actions are: Player i

chooses between two matrices ti and bi, Ai = fti;big. Player j, chooses between rows u j and d j,

A j = fu j;d jg. And Player k, chooses between columns lk and rk, Ak = flk;rkg. The matrix [v]

is as displayed in Figure 1.

v l k r k

u j 0 3

d j 4 8

l k r k

u j 0 0

d j 3 8

t i

b i

One is tempted to extend the Equal Punishments property to any pair of players, i.e. Pi j [ψ(x)]=

Pji [ψ(x)], for any i, j in N. Doing so, the closest payoffs satisfying this property are given in

Figure 2.
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0,000 0,000 0,000 1,222 0,278 1,500

0,000 0,000 0,000 0,556 0,278 0,000

0,000 0,000 0,000 1,222 0,278 1,500

0,000 0,000 0,000 0,167 1,167 2,667

0,500 3,500 0,000 0,000 4,667 1,167

0,500 0,500 0,000 0,667 0,000 0,167

0,000 0,000 0,000 0,000 0,000 0,000

0,000 0,000 0,000 0,000 0,000 0,000

0,000 0,000 0,000 0,000 0,000 0,000

0,000 0,000 0,000 0,278 2,222 2,500

0,000 3,000 0,000 0,278 5,222 2,500

0,000 0,000 0,000 0,278 0,556 0,000

u j

d j

u j

d j

b i

l k r
k

l k r k

t i

Each cell in this matrix displays both the individual payoffs and punishments of players.

For example, at (ti;d j;rk), the information from the table of Figure 2 is:

Pki(ti;d j;rk) = 0:16�6 Pk j(ti;d j;rk) = 1:6�6 ψk(ti;d j;rk) = 2:6�6

Pji(ti;d j;rk) = 0 ψ j(ti;d j;rk) = 4:6�6 Pjk(ti;d j;rk) = 1:16�6

ψ i(ti;d j;rk) = 0:6�6 Pi j(ti;d j;rk) = 0 Pik(ti;d j;rk) = 0:16�6

and hence: Pki = Pik = 0:16�6, Pk j = Pjk = 1:6�6, and Pji = Pii = 0. Therefore all bilateral threats

are balanced. However, at (bi;d j;rk), we have that:

Pki(bi;d j;rk) = 0:27�7 Pk j(bi;d j;rk) = 2:2�2 ψk(bi;d j;rk) = 2:5

Pji(bi;d j;rk) = 0:27�7 ψ j(bi;d j;rk) = 5:2�2 Pjk(bi;d j;rk) = 2:5

ψ i(bi;d j;rk) = 0:27�7 Pi j(bi;d j;rk) = 0:5�5 Pik(bi;d j;rk) = 0

and then players' punishments follow the inequalities Pki = 0:27�7 > 0 = Pik, Pi j = 0:5�5 >

0:27�7= Pji, and Pjk = 2:5> 2:2�2= Pk j. Adjusting the corresponding payoffs in order to reduce

these inequalities, means rising ψk with respect ψ i according to Pki > Pik, also rising ψ i with

respectψ j, following the inequality Pi j >Pji, and �nally risingψ j with respectψk by Pjk >Pk j.

Obviously, it is impossible to make these three changes simultaneously.
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Nevertheless, the same example shows that it is possible to modify the equal punishment

property by balancing instead the total sum of he punishments that a player can in�ict to the rest

of the players with respect the total punishments that the others can in�ict to her. In particular,

in our example it holds that

Pi j+Pik = 0:5�5+0= Pji(bi;d j;rk)+Pki(bi;d j;rk) = 0:27�7+0:27�7;

Pji(bi;d j;rk)+Pjk(bi;d j;rk) = 0:27�7+2:5= Pi j(bi;d j;rk)+Pk j(bi;d j;rk) = 0:5�5+2:2�2;

Pki(bi;d j;rk)+Pk j(bi;d j;rk) = 0:27�7+2:2�2= Pik(bi;d j;rk)+Pjk(bi;d j;rk) = 0+2:5:

We consider then, the much less restrictive punishment property:

De�nition 9 Total Equal Punishments: ∑
j2Nni

Pi j [ψ(x)] = ∑
j2Nni

Pji [ψ(x)], for all i; j 2 N and

x 2 A.

Notice that when n= 2, the above property translates to Equal Punishments, i.e. P12 = P21.

The corresponding Equilibrium concept is then:

De�nition 10 A value ψ is a Consistent Bargaining Equilibrium if it satis�es Ef�ciency, Equal

Minimum Rights, Individual Rationality and Total Equal Punishments.

Given Γ = (N;A;v), denote by E (N;A;v) the set of all Consistent Bargaining Equilibrium

values. It is clear that if a bilateral bargaining equilibrium exists it must be also a consistent

bargaining equilibrium.

Remark: Let Γ = (N;A;v) and Γ0 = (N;A;w), where for all x 2 A;w(x) = v(x)+a; a 2 R.

De�nition 11 A rule ψ veri�es strategic equivalence if ψ i(x;w) = ψ i(x;v)+
a
n

To illustrate this property, suppose that the worth of the game is raised in the same amount,

i.e., w(x) = v(x)+ a for any x 2 A. In this case, the increase in the �productivity� cannot be

attributed to any player in particular, so that it should be equally redistributed among all the

players. It is not dif�cult to show that any ψ 2 E (N;A;v) satis�es strategic equivalence. This

property will be useful in the proof of Theorem 2 below.

Theorem 2 E (N;A;v) 6=?

Proof. Consider a game Γ = (N;A;v). By strategic equivalence, we can assume without

loss of generality that Minx2Afv(x)g= 0:
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Let ∆ [v] be the set:

∆ [v] :=

(

g� [g(x)]x2A : ∑
i2N

gi(x) = v(x) and gi(x)� 0, i 2 N

)

:

By construction ∆ [v] is a compact and convex set.

De�ne the following adjusting map f :

fi(g(x)) = gi(x)+
1

n�1

"

∑
j2Nni

Pi j [g(x)]� ∑
j2Nni

Pji [g(x)]

#

,

for all x 2 A and for all i; j 2 N:

By the de�nition of punishments Pi j it follows that f is a continuous map.

Now, note that by construction:

0� Pi j [g(x)]� g j(x); for all g 2 ∆ [v] ; and x 2 A:

Therefore,

0 � ∑
j2Nni

Pi j [g(x)]� ∑
j2Nni

g j(x), and

0 � ∑
j2Nni

Pji [g(x)]� (n�1)gi(x):

and then fi(g(x)) can be at most:

fi(g(x))� gi(x)+
1

n�1 ∑
j2Nni

g j(x)� gi(x)+ ∑
j2Nni

g j(x) = v(x);

and at least:

fi(g(x))� gi(x)�
1

n�1
[(n�1)gi(x)] = 0

Moreover, ∑i2N fi(g(x)) = v(x), since:

∑
i2N

 

∑
j2Nni

Pi j [g(x)]� ∑
j2Nni

Pji [g(x)]

!

= 0

Hence, the mapping f goes from ∆ [v] into ∆ [v]. Then, by Brower's �xed point Theorem,

there exists a g�, such that f (g�) = g�.

We show now that g� 2 E (N;A;v).
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Firstly, ef�ciency follows by construction of f (g). Secondly, for all x2 A such that v(x) = 0,

it holds that g�i (x) = 0, for all i and then Equal Minimum Rights is veri�ed.

Moreover, by construction g�i (x) � 0, for all x 2 A and then Individual Rationality holds.

Finally, f (g�) = g� if and only if:

∑
j2Nni

Pi j [g(x)]� ∑
j2Nni

Pji [g(x)] = 0;

and then the Equal Punishments property is satis�ed.

4 Related Literature

The Prekernel.

The prekernel was introduced for the class of transferable utility (TU) games in Davis

and Maschler (1965), and extended to the class of non-transferable utility (NTU) games in

Moldovanu (1990) and Serrano (1997). The prekernel consists of those ef�cient payoffs x

in which each player is in a "bilateral equilibrium" with any other player. This balanced

condition is expressed in terms of the individual excess of player i against player j, ei j(x)
1,

that is ei j(x) = e ji(x) for all i; j 2 N. When considering NTU-games, these excesses must be

weighted by the normal vector components at x, λ (x), so that the balanced condition translates

to λ i(x)ei j(x) = λ j(x)e ji(x), for all i; j 2 N. For two-person problems, this solution coincides

with the Nash bargaining solution. For three or more players, as pointed out in Moldovanu

(1990) and Serrano (1997), the prekernel is often an empty set. It should be stressed both

the similarity of the bilateral equilibrium condition for the prekernel with respect to the bilat-

eral punishments condition of the bilateral bargaining equilibrium, and the same non existence

problem of both concepts in their corresponding settings.

Moreover, the total equal punishments property that we have imposed to overcome the ex-

istence problem is similar to the property used by Orshan and Zarzuelo (2000). They de�ne the

average prekernel, by imposing the equilibrium condition that the average (aggregate) excesses

of a player against all the others must be equal to that of all of the others against her:

∑
j2Nni

λ i(x)ei j(x) = ∑
j2Nni

λ j(x)e ji(x); for all i 2 N:

1The reader is referred to the cited bibliography for the formal de�nitions.
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Orshan and Zarzuelo prove that the average prekernel is non-empty over a large signi�cant

class of NTU-games. They also show that if an allocation x of the average prekernel veri�es that

λ i(x)ei j(x)> λ j(x)e ji(x) for some i; j, then it will exist a set of players fh1; :::;hkg � Nnf�́; jg

for which the following chain of inequalities holds:

λ i(x)ei j(x)> λ j(x)e ji(x); λ j(x)e jh1(x)> λ h1(x)eh1h2(x); :::

:::λ hk(x)ehki(x)> λ i(x)eihk(x):

That is, if a player has a claim against any other player, then this will cause a sequence of

claims that will end in a claim toward herself. We reproduce a parallel result with respect to the

total equal punishment condition of our consistent bargaining equilibrium.

Denote by i �ψ(x) j iff Pi j [ψ(x)] > Pji [ψ(x)], and i �ψ(x) j iff Pi j [ψ(x)] � Pji [ψ(x)], and

say that m players form a chain at ψ(x) if i1 �ψ(x) i2 �ψ(x) � � � �ψ(x) im.

Theorem 3 Let ψ 2 E (N;A;v) and suppose that k�ψ(x) l for some k; l 2 N, jNj � 3 and x 2 A.

Then there exists a chain from l to k.

Proof. Let ψ(x) be a payoff equilibrium and suppose that k�ψ(x) l. Assume on the contrary

that there does not exist a chain from l back to k and let S= flg[fi 2 Nnk : 9 a chain from l to

ig. By the total equal punishment condition

∑
i2S

∑
j2Nni

�
Pi j [ψ(x)]�Pji [ψ(x)]

�
=∑
i2S

∑
j=2S

�
Pi j [ψ(x)]�Pji [ψ(x)]

�
= 0

For every i 2 S and j =2 S, Pi j [ψ(x)] � Pji [ψ(x)], otherwise j will be in S. Moreover by

assumption, Plk [ψ(x)]< Pkl [ψ(x)]. Therefore:

∑
i2S

∑
j=2S

�
Pi j [ψ(x)]�Pji [ψ(x)]

�
< 0

which is a contradiction.

The Shapley value.

The Shapley value was introduced for the class of TU-games in Shapley (1953). Given

a TU-game v with player set N, the value φ i(N;v) is the expectation of what player i will

obtain in v if, for any possible order in which players arrive to the game, all equally likely,

she is paid according to her marginal contribution to her predecessors. Myerson (1980) gives

a characterization of the Shapley value by imposing the property of balanced contributions,

which is very close in spirit to our equal punishment property. Suppose that player i leaves
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the game and then compute the value in the subgame (Nni;v) for the remaining players. The

difference φ j(N;v)�φ j(Nni;v) is just the variation in j's payoffs due to player i' decision of

leaving the game. The balanced contribution axiom says that a value ψ satis�es this property if

these differences are balanced for every pair of players, i.e.

ψ i(N;v)�ψ i(Nn j;v) = ψ j(N;v)�ψ j(Nni;v), for all i; j 2 N:

Myerson proves that the Shapley value is the unique value satisfying ef�ciency and balanced

contributions. Trying to impose the balanced contributions property to NTU-games, means

running into the same existence problem than that of the prekernel. For two-person NTU-

games (fi; jg;V ), it suf�ces to look at both a payoff vector ψ(fi; jg;V ) = a and vector of

weights (λ i;λ j) satisfying

Ef�ciency: λ iai+λ ja j � λ ibi+λ jb j, for all feasible (bi;b j);

and

Balanced contributions: λ i (ai�di) = λ j
�
a j�d j

�
,

where di = ψ i(fig;V ) � ψ i(fi; jgn j;V ). As it is well known, the Nash bargaining solution

(Nash, 1950) is the only one satisfying these two properties (Harsanyi, 1963). Unfortunately

again, in coalitional games with three or more players the condition

λ i (ψ i(N;V )�ψ i(Nn j;V )) = λ j

�
ψ j(N;V )�ψ j(Nni;V )

�
, for all i; j 2 N;

cannot be imposed, because the existence of such payoff vectors is not guaranteed. Remarkably,

replacing the above property by the average (aggregate) balanced contributions:

∑
j2Nni

λ j

�
ψ j(N;V )�ψ j(Nni;V )

�
= ∑
j2Nni

λ i (ψ i(N;V )�ψ i(Nn j;V )) , for all i 2 N;

as in Hart and Mas-Colell (1996) makes it possible to show the existence of payoffs allocations

satisfying this property jointly with ef�ciency; this is the set of Consistent allocations. This

concept was previously (and independently) introduced by Maschler and Owen (1989) for hy-

perplane games, and later de�ned in Maschler and Owen (1992) for the more general setting of

NTU-games.
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