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Abstract

Much of the US inflation forecasting literature deals with examining the ability of

macroeconomic indicators to predict the mean of future inflation, and the overwhelm-

ing evidence suggests that the macroeconomic indicators provide little or no pre-

dictability. In this paper, we expand the scope of inflation predictability and explore

whether macroeconomic indicators are useful in predicting the distribution of future

inflation. To incorporate macroeconomic indicators into the prediction of the condi-

tional distribution of future inflation, we introduce a semi-parametric approach using

conditional quantiles. The approach offers more flexibility in capturing the possi-

ble role of macroeconomic indicators in predicting the different parts of the future

inflation distribution. Using monthly data on US inflation, we find that unemploy-

ment rate, housing starts, and the term spread provide significant out-of-sample pre-

dictability for the distribution of core inflation. Importantly, this result is obtained

for a forecast evaluation period that we intentionally chose to be after 1984, when

current research shows that macroeconomic indicators do not add much to the pre-

dictability of the future mean inflation. This paper discusses various findings using

forecast intervals and forecast densities, and highlights the unique insights that the

distribution approach offers, which otherwise would be ignored if we relied only on

mean forecasts.
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1 Introduction

Forecasting the behavior of inflation plays a central role in the conduct of monetary pol-

icy due to the lagged impact of the central bank actions on economic activity. It is thus

important to accurately predict the effect of the many shocks that hit the economy on the

future dynamics of inflation. The standard approach for forecasting inflation has been the

Phillips curve (PC) model that, in its expectation-augmented version, assumes a trade-off

between unexpected inflation and unemployment, or more generally, indicators of real eco-

nomic activity. Despite its long-time success, recent empirical evidence on the effectiveness

of PC models is far from unanimous. Stock and Watson (1999) provide a detailed study on

the out-of-sample forecast accuracy of the PC by using an extensive set of macroeconomic

variables. Using the forecast evaluation period January 1970 - September 1996, their con-

clusion is that PC models have better forecasting performances (compared to univariate

time series models) using the unemployment rate as well as other leading indicators of eco-

nomic activity (e.g., output gap and capacity utilization). They also find that combining

information or models might provide better results than simply relying on few indicators.

However, Atkenson and Ohanian (2001) provide an opposite empirical evidence, albeit a

different forecast evaluation period January 1984 - November 1999, where they report that

PC models are no better than the näıve model, which assumes that the expected inflation

over the next 12 months is equal to inflation over the previous 12 months. For a compre-

hensive survey as well as discussion of the outstanding issues in inflation forecasting, see

Stock and Watson (2008).

While the contrasting findings on inflation predictability cannot be directly compared, they

may, nevertheless, suggest that the relationship predicted by the PC models might have

been unstable over time due to a possible shift in the dynamics of inflation. A phenomenon

that is typically suggested to have caused a regime shift is the change in monetary policy

that took place when Paul Volcker became Chairman of the Federal Reserve Board in

August 1979. The effect of the stricter monetary policy was fully incorporated into the

inflation process after 1984 and since then inflation has been low and stable (compared
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to the 1970s). Fisher et al. (2002) conduct a systematic comparison of the forecasting

accuracy (one-year ahead) of the näıve and PC models in different sub-periods: January

1977 to December 1984, January 1985 to December 1992 and January 1993 to December

2000. They find that the PC forecasts outperform the näıve forecasts only in the first sub-

period for most of the inflation measures that they consider. The issue of model instability

is also examined by Clark and McCracken (2006) and their results suggest that while model

instability cannot be ruled out, the bulk of the findings of unpredictability could also be the

result of the low power of out-of-sample forecast comparison tests. Inoue and Kilian (2004)

also question the practice of evaluating a model based on its out-of-sample performance

(as opposed to its in-sample fit).

Notwithstanding the causes (e.g., regime change), most of the current empirical evidence

suggests that indicators of economic activity are weak predictors of inflation. This is espe-

cially true in the most recent years (post 1984) when forecasting inflation has become in-

creasingly harder in the sense of providing forecast gains over time series models (Stock and

Watson, 2007). Despite the availability of extensive literature on inflation forecasting, little

or no attention has been paid to examining whether indicators of economic activity carry

useful information about the dynamics of higher moments, beyond the mean. For example,

having some idea on the conditional second-order moment of future inflation can be vital

in assessing the risk to inflation stability due to macroeconomic shocks. Greenspan (2004)

discusses this issue in the following terms: “Given our inevitably incomplete knowledge

about key structural aspects of an ever-changing economy and the sometimes asymmetric

costs or benefits of particular outcomes, a central bank needs to consider not only the most

likely future path for the economy, but also the distribution of possible outcomes about

that path. The decision-makers then need to reach a judgment about the probabilities,

costs, and benefits of the various possible outcomes under alternative choices for policy”

(p. 37). While average future inflation may signal the direction of the economy, it cannot

help policy makers to evaluate the risks of deviations from the most likely path and the

cost for the economy of such deviations. In a recent paper, Kilian and Manganelli (2008)

introduce a model in which the monetary policy maker is viewed as a risk manager trying
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to balance the risks to inflation and output stability. In this framework, if the preferences

of the policy maker are assumed to be quadratic and symmetric, then the only relevant

moment (of the inflation and output distributions) is the conditional mean. However, they

provide evidence of departure of the preferences from such a benchmark. All the above

elements point to the suggestion that forecasting the distribution of inflation represents a

relevant tool in the conduct of monetary policy. In fact, the Bank of England has been pub-

lishing for quite some time the so-called “fan charts” that represent the subjective forecasts

of the Bank about the future distribution of inflation.

In this paper, departing from the existing focus on conditional mean forecasting, we ex-

plore whether leading indicators of economic activity are useful in predicting the distri-

bution of future inflation. To incorporate macroeconomic variables into the prediction of

the conditional distribution of future inflation, we introduce a semi-parametric method

using conditional quantiles. The approach considers several conditional quantiles of future

inflation, and by doing so, it offers more flexibility (than, for example, the conventional

PC models) in capturing the possible role of macroeconomic indicators in predicting the

different parts of the inflation distribution. For instance, one may be able to investigate if

some periods of low or high inflation are driven by some macroeconomic indicators. Surely

such information cannot be delivered by PC-type models that deal only with predicting the

average or typical inflation. We specify the conditional mean of future inflation to follow a

univariate time series process and assume that the leading indicators are the driving factors

in explaining the dynamics of the distribution of the forecasting errors. Our set-up that the

conditional mean follows a time series process is motivated by the overwhelming empirical

evidence that, at least for the post-1984 period, incorporating macroeconomic information

in the conditional mean does not deliver superior forecasts compared to pure time series

models. To estimate the conditional distribution of the forecasting errors we use linear

quantile regression that relates the quantiles of the errors to the economic indicators. To

assess the benefit of conditioning on the leading indicators, we compare the out-of-sample

forecast densities of the proposed method with some benchmark (time series) models that

assume independent forecasting errors. We also explore whether density forecasts that use
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individual leading indicators can be combined to deliver better forecast accuracy. A great

number of studies on average inflation forecasting report that combining forecasts tends to

outperform individual forecasts.

We provide new empirical evidence of predictability of US core monthly inflation (core

inflation is measured after excluding food and energy), for which we find that indicators

of economic activity are useful in forecasting its distribution, especially when using unem-

ployment rate, housing starts, and the term spread. Interestingly, the empirical findings

apply to a forecast evaluation period that is intentionally chosen to be post 1984, when the

existing literature shows that macroeconomic indicators are not relevant to predict future

average inflation. We attribute this result to the ability of the semi-parametric method to

account for the differing relationship between inflation and indicators at different quantiles

of inflation. For some indicator variables, we also find an asymmetric effect in the sense

that an indicator is more relevant on the lower part of the forecasting distribution than the

upper part (and viceversa, depending on the indicator considered). These observed quan-

tile effects take place far away from the center of the distribution, making them difficult

to be detected with approaches (like PC-type models) that solely focus on evaluating the

relevance of these variables in predicting the conditional mean. To illustrate the aforemen-

tioned effects, we consider the late 1990s when inflation was at historically low levels despite

the possible rising inflation signaled by most indicators of economic activity. During this

period, unemployment rate was decreasing, and went even below 4% at the beginning of

2000. Our analysis shows that when unemployment rate is incorporated into forecasting the

future inflation distribution, the “expected” negative relationship between unemployment

and inflation was mostly at work in the tails of the inflation distribution, and more so at

lower quantiles. This observation is of practical relevance to policy makers when assessing

the possibility of such events as deflation, which was the case at the beginning of 1998.

A few, yet increasing, research exists that relates to our work in the sense of dealing

with distributional aspects of inflation. Robertson et al. (2005) forecast the distribution of

inflation based on a VAR specification. In addition, they propose a methodology to “twist”
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the forecasting distribution in order to incorporate theoretical restrictions (e.g., a Taylor

rule). Cogley et al. (2005) propose a Bayesian VAR model where both the conditional

mean and variance are time varying. They forecast inflation for the UK and illustrate their

method by comparing interval forecasts from their model to the fan charts of the Bank

of England. Corradi and Swanson (2006) evaluate the performance of time series and PC

models in forecasting one-month ahead inflation using different distributional assumptions

for the error term. Amisano and Giacomini (2007) forecast the distribution of inflation at

the one-month horizon using a Markov Switching model and find that the forecasts from

the nonlinear specification are more accurate compared to a linear one.

The rest of the paper is organized as follows. In Section (2) we introduce a quantile based

semi-parametric approach for predicting the inflation distribution. Section (3) outlines a

test of predictive accuracy that is used to evaluate the conditional distribution models

discussed in Section (2). In Section (4), we present (with discussion) the empirical findings

of the paper. Finally, Section (5) concludes.

2 Models

We denote the annualized inflation over a h-month period by Y h
t = (1200/h)[log Pt −

log Pt−h] and the one-month annualized inflation by Yt = 1200[log Pt − log Pt−1] where Pt

is the level of the price index in month t. Also let X i
t be some indicator of real economic

activity such as unemployment rate. A baseline specification often used in forecasting

inflation is the PC model, although in recent years different studies have questioned its

predictive power (see Atkenson and Ohanian, 2001, and Fisher et al., 2002). In this paper

we consider the generalized PC model of Stock and Watson (1999) that postulates that

changes in h-month inflation, Y h
t+h, depend on recent changes in one-month inflation and

past and present values of a candidate economic leading indicator,

Y h
t+h − Yt = µ0 +

p−1
∑

j=0

βj∆ Yt−j +
q−1
∑

k=0

γk X i
t−k + Ut+h (1)
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where the error term Ut+h has a zero conditional mean. Note that the above specification

assumes that Yt has a unit root. There is no consensus yet on the stationarity of infla-

tion (see the recent work by Stock and Watson, 2007, and Ang et al., 2006, for opposite

views). The monthly frequency considered in this paper is likely to provide more persistence

compared to the quarterly frequency that is used in most studies.

In evaluating the forecasting performance, the PC model is often compared with two time

series models: the autoregressive (AR) model and the näıve or random walk model. Al-

though simple, these two time series models are very competitive benchmarks. For example,

Atkenson and Ohanian (2001) find that various PC specifications do not outperform the

näıve model for the period 1984-1999. The näıve model specifies that the expected inflation

over the next h months is equal to inflation over the previous h months, i.e.,

Y h
t+h − Y h

t = Ut+h. (2)

The AR model is a special case of the PC model where no information on present and past

values of X i
t are included, i.e.,

Y h
t+h − Yt = µ0 +

p−1
∑

j=0

βj∆ Yt−j + Ut+h. (3)

As mentioned earlier, much of the focus in the literature has been on predicting the mean

of future inflation using PC models, and the evidence suggests that indicators of economic

activity are weak predictors of its mean dynamics. This is especially true in the most

recent years where forecasting mean inflation has become increasingly harder in the sense

that PC models are unable to provide forecast gains over time series models (näıve or

AR models), see for example Stock and Watson (2007). On the other hand, little or no

attention has been paid to examine whether indicators of economic activity carry useful

information about the dynamics of higher moments, and hence help improve the accuracy

of density forecasts of inflation. The implicit assumption is that the error Ut+h in the PC

specification in Equation (1) is independent of the past and present values of the economic

indicator (X i
t). In other words, the effect (if any) of the macroeconomic variable on the
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conditional distribution of Y h
t+h is only limited to the conditional mean.

In this paper we do not restrict ourselves to just the first moment (the conditional mean) and

instead consider the estimation of the forecast density of Y h
t+h conditional on the available

information set at time t. Let the past and present values of a particular indicator variable,

X i, be denoted by the vector X̃ i
t=(X i

t , · · · , X i
t−q+1). We also assume that a time series model

is the true model for predicting the conditional mean of Y h
t+h. In particular, we specify Y h

t+h

as a näıve model in (2)1. This implies that X̃t does not carry any relevant information

for predicting the mean, which is consistent with the existing empirical empirical evidence

after 1984. We argue that X̃ i
t may have an effect on higher-order moments of Y h

t+h and,

more generally, on the conditional density of Y h
t+h, which is not permitted in a PC-type

specification.

In the rest of the paper, we use the notation AO-U |X i to denote a predictive model where

the conditional mean follows the näıve model of Atkenson and Ohanian (2001) (denoted

by AO) and the error, Ut+h, is dependent on X̃ i
t

2. Let the conditional density of Ut+h be

h(u|X̃ i
t) =

d

du
H(u|X̃ i

t) (4)

where H(·|·) is the conditional CDF of Ut+h. Then, we define the forecast density of Y h
t+h

implied by AO-U |X i as

f i
t+h|t(Y

h
t+h) = h(Ut+h|X̃ i

t). (5)

In a similar logic of notation, the näıve model with errors independent of X̃ i
t is denoted

AO-U (Equation 2), the generalized PC model of Stock and Watson (1999) (Equation 1) is

1The choice of the näıve model for the conditional mean of the inflation process is motivated by the
overwhelming evidence that this specification outperforms both AR and PC-type models in out-of-sample
forecasting (at least for the post-1984 period). As we will see in Section (4), the forecast evaluation period
is intentionally chosen to be post 1984.

2Note that the h-step ahead forecast errors Ut+h will follow a moving average process of order h − 1,
MA(h−1). With a slight abuse of terminology and notation, in the rest of the paper we refer to the forecast
errors as “independent” when the MA-filtered forecast errors are assumed independent of the indicators,
and as “dependent” when the filtered forecast errors are modeled conditional on the X̃i

t . Hence, when
referring to the forecast errors as (in)dependent, we are actually pointing to the filtered forecast errors,
that is, after the MA(h − 1) structure has been removed.
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denoted by PC-U and the standard AR model by AR-U (Equation 3). For the models AO-

U , AR-U and PC-U , the respective h-step forecast densities are estimated via a smoothed

empirical distribution of the forecasting errors Ut+h.

We now outline a simple approach to estimate the forecast density of AO-U |X i, i.e.

f i
t+h|t(Y

h
t+h). Note from (5) that it is sufficient to estimate h(u|X̃t). One possible method

of estimation may be to use Hansen (1994) by assuming a parametric distribution for Ut+h,

and then allowing the higher-order parameters (such as skewness) to depend upon X̃t.

For example, Hong et al. (2007) use this approach to estimate forecast densities of (high

frequency) exchange rates by assuming a generalized skewed-t for the standardized error

distribution, and allow the skewness and kurtosis follow an autoregressive process. Ide-

ally, if h(u|X̃t) can be represented by a few dimensional parametric distribution, Hansen’s

approach can be useful to identify which higher-order dynamics (variance, skewness or

kurtosis) are affected by the macroeconomic indicator. Although this direction is worth

investigating, we instead use a quantile regression approach which is direct and does not

require any parametric assumption3.

Denote the α ∈ (0, 1) conditional quantile of Ut+h conditional on X̃ i
t = x̃i

t by Qt+h(α|x̃i
t).

We estimate Q(α|x̃i
t) using a linear quantile regression model (Koenker and Bassett, 1978),

Qt+h(α|x̃i
t) = δ0,α +

q
∑

k=1

δk,αxi
t−k+1. (6)

Although the local effect of xi
t−k+1 on the α-quantile is assumed to be linear, the model is

very flexible because each slope coefficient δk,α is allowed to differ across quantiles. This

is a useful property since it provides guidance as to where in the distribution of Y h
t+h the

indicator X i
t has a significant effect. Of course, the effect of a macro variable X i

t may well

be non-linear. Possible non-linearity can be easily entertained by extending (6) to additive

models; see for example, de Gooijer and Zerom (2003), among others. Additive quantile

models can be estimated with no added difficulty over their linear counterpart. We think

3In a recent paper, Cenesizoglu and Timmermann (2008) use quantile regression to investigate pre-
dictability of the distribution of stock returns.
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that linear quantiles are already flexible enough to capture higher order features of the

forecast errors under our set-up. We estimate h(u|X̃ i
t) using (4) where

Ĥ(u|X̃ i
t) =

∫ 1

0
1

(

Q̂t+h(α|X̃ i
t) ≤ u

)

dα (7)

with 1(A) denoting an indicator function of set A. An advantage of (7) is that even when the

conditional quantile Qt+h(α|X̃ i
t) may not be monotonic in α, the conditional distribution

Ĥ(u|X̃ i
t) stays monotonic in u, see Chernozhukov et al. (2006) for more details.

In an ever evolving macroeconomic environment, a particular prediction model might out-

perform alternative models in one period and not in others. Thus, averaging different

forecasts may provide superior performance over time. In fact, the literature on condi-

tional mean forecasting has documented that combining forecasts from different models

typically achieves better performance compared to the (best) individual models, see for

example, Stock and Watson (1999) and Ang et al. (2006). In addition, simple combination

schemes such as averaging forecasts, achieves better performance than more sophisticated

schemes. For an extensive survey of the empirical evidence and the motivation for com-

bining forecasts, see Timmermann (2006). To explore whether the idea of combining also

extends to density forecasts4, we average the forecast densities from various economic indi-

cators, i.e. f i
t+h|t(Y

h
t+h) for i = 1, . . . , I where I is the total number of economic indicators.

In so doing, we use a simple equally weighted averaging as follows,

f
(comb)
t+h|t (Y h

t+h) =
1

I

I
∑

i=1

f i
t+h|t(Y

h
t+h).

Note that the weights are assumed to be constant over time. Other schemes for combining

forecasts have been proposed in the literature in the context of conditional mean forecasts

that can be easily adapted to density forecasts. For example, the weights used in combining

could be varying over time based on the recent accuracy of the density forecasts.

4An example in the context of density forecasts is Mitchell and Hall (2005) that investigate whether
combining density forecasts (for UK inflation) produced by the Bank of England and the NIESR achieves
better results compared to using the individual forecasts.
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3 Measuring relative predictability of models

In this paper our focus is on forecast distribution of future inflation. Clearly, this raises

the question on how to measure the relative accuracy of a particular forecast density as

compared to a certain benchmark. Much of the approaches to evaluate forecast densities

have mainly focused on their absolute accuracy by developing tests that examine their

dynamical and distributional misspecification, see for example Diebold et al. (1998) and

Hong et al. (2007). However, it is very likely that empirical forecasting models are, to some

extent, almost always misspecified. In this sense, an “absolute” evaluation measure of one

or more forecast densities would not be that informative. On the other hand, we might be

willing to accept a possibly misspecified model if it provides a more accurate forecast density

relative to another model. This is the approach we take to evaluate the relative accuracy

of a particular forecast density. Let’s assume there are two forecasting methods used to

estimate the density forecast of the h-month ahead inflation, Y h
t+h, where one of them is

the benchmark model. As benchmark model, we consider AO-U or AR-U , and we denote

the benchmark forecast density by f 0
t+h|t(Y

h
t+h) where 0 ∈ {AO, AR}. These benchmark

forecast densities are separately compared against alternative models that incorporate the

effect of macroeconomic indicators. For the latter, we consider density forecasts from PC-

U ( denoted by fPC

t+h|t(Y
h
t+h)), AO-U |X i (f i

t+h|t(Y
h
t+h)) and the combined density forecasts

(f
(comb)
t+h|t (Y h

t+h)). For the purpose of this section, let’s denote these alternative models by

f 1
t+h|t(Y

h
t+h) where 1 ∈ {PC, i, comb}.

We adopt a rolling window approach when generating the out-of-sample density forecasts.

Let T be the total number of available observations and t0 be the first forecast base. This

means that there are t0 observations up to and including the t0-th observation. By rolling

it is meant that the forecast base t extends as far as T − h where h is the forecast horizon.

Hence, we have t = t0, t0 + 1, . . . , T − h. The goal is to compare the relative accuracy

of the two forecast densities even if both models may be misspecified. In other words,

which forecast density provide better predictability. We use an intuitively simple metric

introduced by Giacomini and White (2006) and Amisano and Giacomini (2007) although
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other similar suggestions can also be used, see Mitchell and Hall (2005) and Bao et al.

(2007). This metric is based on the average logarithm score of two competing forecast

densities defined as follows

1

T

T−h
∑

t=t0

log f 0
t+h|t(Y

h
t+h) and

1

T

T−h
∑

t=t0

log f 1
t+h|t(Y

h
t+h).

Note that the forecast densities are evaluated at the realized h-step true value, Y h
t+h. Then,

the forecast density (f 0 or f 1) with higher average logarithm score is said to be relatively

more accurate. Based on this idea, Amisano and Giacomini (2007) introduce a test proce-

dure to evaluate the null hypothesis of equal density forecast accuracy. Let

WLRt = log f 0
t+h|t(Y

h
t+h) − log f 1

t+h|t(Y
h
t+h), t = t0, t0 + 1, · · · , T − h. (8)

where the null hypothesis of the test is

H0 : E (WLRt) = 0.

Note that WLRt can also be weighted if one is interested to focus only on a certain aspect

of the distribution (such as the center or the tails). In this paper, we compare forecast

densities in the complete range of variation of the variable and hence weighting is not

applied. Let N = T − h − t0 + 1. The test for equal accuracy of the density forecasts is

based on the AG (Amisano and Giacomini) test statistics,

AG =
WLRN

σ̂N/
√

N

where WLRN is the sample average of WLRt and the variance of the test statistic is of

the HAC type to correct for heteroskedasticity and autocorrelation. The AG statistic is

asymptotically standard normal distributed. Rejections that occur for AG < 0 indicate

that f 1(·) provides more accurate density forecasts relatively to f 0(·), and viceversa for

AG > 0. One can also examine the pattern of WLRt to see if the predictive ability of a

particular economic indicator varies over time.

In order to put our contribution in the context of the existing empirical evidence on US
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inflation forecasting, it is also necessary to evaluate the relative accuracy of models in

terms of their point forecasts. In so doing, we use the Root Mean Square Prediction

Error (RMSPE) of the conditional mean forecasts of PC-U (where X i is allowed to affect

the conditional mean ) relative to the RMSPE of AO-U5. By construction, the relative

RMSPE of AO-U |X i is 1 because the conditional mean of the latter model is the same as

AO-U . Post 1984, the overwhelming majority of empirical studies on forecasting inflation

suggests that indicators of economic activity do not carry much relevant information about

the conditional mean of the inflation process. When this is the case, we expect the relative

RMSPE of PC-U to be greater than or equal to 1. The forecast density of AO-U is also

expected to be more accurate than that of PC-U because the only part of the conditional

distribution that is allowed to depend on X̃t is the conditional mean. Thus, for the PC-U

model, both the AG-test and relative RMSPE are likely to lead to the same conclusion. On

the other hand, if the forecast density of AO-U |X i is more accurate than AO-U as reflected

in the AG-test, this suggests that X̃t carries relevant information for moments beyond the

conditional mean. So, in summary, a particular macroeconomic indicator is said to have a

dynamic effect on higher-order conditional moments of h-step future inflation when the the

following occur: (a) The relative RMSPE of PC-U ≥ 1 and (b) The AG-test shows that

the forecast density of AO-U |X i is more accurate than AO-U .

4 US inflation density forecasts

This Section presents results on the application of models introduced in Section (2) in order

to explore the out-of-sample predictability of the distribution of US inflation using leading

indicators of economic activity. We use four measures of the monthly price index (Pt):

Consumer Price Index for all items (CPI), CPI excluding food and energy (core-CPI), Per-

sonal Consumption Expenditure deflator (PCE), and the PCE excluding food and energy

(core-PCE). We follow the inflation forecasting literature (see Stock and Watson, 1999,

and Ang et al., 2006) and include six of the indicators of economic activity that are often

5As discussed earlier, the literature indicates that the AO model is the best performing model and
should be considered as the benchmark in evaluating alternative models. Instead, using the AR would give
the idea that alternative approaches are indeed useful only because of the sub-optimal choice of benchmark.
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considered as predictors of inflation: the civilian unemployment rate (UNEM), the index

of industrial production (IP), real personal consumption expenditure (INC), employees on

non-farm payrolls (WORK), housing starts (HS), and the term spread (SPREAD) defined

as the yield on the 5-year Treasury bond minus the 3-month Treasury bill. In terms of

the notation used above, the activity variables are denoted by X i
t where i ∈ {UNEM,

IP, WORK, HS, INC, SPREAD}. All the data were gathered from the Federal Reserve

Bank of Saint Louis database FRED and the sample period spans from January 1959 until

December 20076. Some of the the leading indicators (i.e., IP, INC, and WORK) are not sta-

tionary. We thus consider these variables in gap form where the long-run trend is modeled

using a Hodrick and Prescott (1997) filter (HP) with parameter equal to 14400 (typically

used for monthly data)7. The trend is estimated only on information available at the time

the forecast is made. For the estimation we use a rolling window scheme as described in

Section (3). Our first forecast is January 1985 and the models are estimated on the window

1959:1 to 1984:12 minus the forecasting horizon h (equal to 6 and 12 months8). The next

forecast is for February 1985 and so on. The size of the rolling window is kept constant

by dropping one observation at the beginning of the sample. We report forecasting results

for two sub-periods, 1985:1 to 1995:12 and 1996:1 to 2007:12. This allows us to evaluate

whether there is any significant change in predictability of the macroeconomic variables.

4.1 Results

We report results for CPI and PCE in Table (1) and Table (2), that correspond to h = 12

and h = 6, respectively. Similarly, we give results of core-CPI and core-PCE in Table (3)

and Table (4).

CPI and PCE

For both h = 12 and h = 6, the ratio of the RMSPE of AR-U to the AO-U is larger

6The macroeconomic series consists of revised data available at the January 2008 vintage due to the
lack of a comprehensive real-time dataset at the monthly frequency.

7We also considered a quadratic trend as in Ang et al. (2006) but the results are very similar to the
HP filter. To conserve space we decided to report only the results of the HP filter.

8We also used a one quarter horizon. However, the results were largely similar to the semi-annual and
annual horizon and decided not to report them in this paper.
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than one, indicating that the näıve predictor of the conditional mean outperforms the

AR model. The same result also holds when the PC-U (conditional mean) forecasts are

compared to the näıve forecasts, confirming the earlier results in the literature on the

inability of activity indicators to predict inflation. With regard to the density forecasts,

we focus on the AG statistic that uses the benchmark (time series) models AR-U and AO-

U . When this statistic is negative and significant, it indicates that the alternative model

(PC-U or AO-U |X i) provides more accurate density forecast compared to the benchmark

model. Examining the AG test, we observe that none of the macroeconomic variables have

any predictive power for CPI. For PCE, there seems to be some evidence of predictive

ability using housing starts (HS) and the term spread (SPREAD), and this occurs only in

the first sub period, 1985-1995. Further, when combining the semi-parametric densities of

AO-U |X i, the combined density outperforms that from AO-U although this improvement

is restricted once again to the first sub-period.

Core-CPI and Core-PCE

Considering the results for forecasting the mean process, we find that using the activity

indicators, as in the PC-U , does not improve forecasts compared to simple time series

models, which is consistent with existing empirical evidence. On the density forecasts, the

negative and convincingly significant AG statistics values show that the semi-parametric

method outperforms the AR-U density forecasts at both horizons and sub-periods. When

the benchmark time series model is AO-U , the evidence is mixed. At the annual horizon

(h = 12), a large number of activity indicators are useful in providing more accurate

forecasts of the distribution of inflation for core-PCE (in particular in the second sub-

period). For predicting core-CPI at h = 12, unemployment rate, housing starts, and the

term spread are found to be useful in the first sub-period while only unemployment is able

to extend its relevance to the second sub-period. When predicting core-CPI at h = 6, all

indicator variables are found to be significant as reflected in their respective AG values

(compared to AO-U) when considering the first sub-period. The usefulness of half of the

indicators also extends to the second sub-period. For core-PCE and at h = 6, predictive
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relevance of the indicator variables appears to be concentrated in the second sub-period.

For both core-CPI and core-PCE, combining forecast densities of individual indicators is

able to deliver better accuracy at both horizons.

4.2 A closer look

One interesting conclusion that emerges from our out-of-sample predictability evidence

is that activity indicators provide improvements in accuracy of the density forecasts for

core-CPI and core-PCE, although they seem to be uninformative when forecasting CPI

and PCE. We now provide a more detailed analysis using forecast intervals and forecast

densities in order to gain some understanding of the reasons underlying this result. The

discussion also highlights the unique insights that the distribution approach offers, which

otherwise would be ignored if we only focused on conditional mean based forecasts. The

analysis will be restricted to PCE and core-PCE inflation measures. The conclusions that

can be drawn from the results of CPI and core-CPI are not qualitatively different.

Figure (1) (mid-plot) gives a 90% forecast interval (at h = 12) of PCE inflation for AO-U

and AO-U |XUNEM (the latter is the semi-parametric model that conditions on the unem-

ployment rate). The shaded areas in the figure present the months when the smoothed

WLRt is negative, indicating that AO-U |XUNEM is more accurate compared to the AO-U

model. Note that for a large part of the forecasting evaluation period, the semi-parametric

densities outperform the näıve density forecasts. A significant difference between the im-

plied forecast intervals of the above models occurs in the late 1990s when the historically

low levels of unemployment (shown in the top part of the Figure9) predict an increase in

inflation, in particular at the lower end of the inflation distribution. This feature seems

to indicate that the expected negative relationship between the two variables might be

more relevant at low quantiles of the inflation distribution rather than at the median or

high quantiles. We will return to this issue later, since this effect is more pronounced (and

statistically relevant) for the core inflation measures.

9We shifted the variable to be aligned with the forecasting target date. So, the value, e.g. in January
1985, actually refers to January 1984 and represents the value of the activity indicator used in producing
the forecast for the target date.
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In Figure (1) (bottom-plot), we report WLRt (see Equation 8) where we smooth it to

eliminate short-run fluctuations for better exposition. From the plot, positive values of

WLRt (meaning that AO-U is more accurate than the AO-U |XUNEM) seem to occur

typically during periods of rapid changes in inflation. An example of this occurs in the

months during and after the recession of 1990-1991, when PCE inflation experienced a rapid

decline, and the period between 1997 and 2003, when PCE inflation fluctuated between

below 1% and peaked (at the beginning of 2000) around 3%. In part, this can explain

the earlier findings that, on average (see the AG test result), the semi-parametric method

does not (significantly) outperform the näıve random walk model with independent forecast

errors. Although AO-U |XUNEM delivers more accurate forecasts in a large fraction of the

forecasting sample, the forecasting gain is wiped out during the periods of sudden change

of the inflation rate.

Figure (2) is similar to Figure (1) except that the conditioning variable for the semi-

parametric method is housing starts (HS). We have seen earlier that (see Table 1) AO-

U |XHS outperforms the näıve model in the period 1985-1995, but not in 1996-2007. For

the period 1985-1995, the Figure shows that the 90% forecast interval from the semi-

parametric distribution is narrower than that for AO-U . The slow and steady decrease

in housing starts that occurred from the mid-1980s to January 1990 exerts a downward

pressure on the inflation rate. However, this effect seems to take place mostly at higher

quantiles of the inflation distribution and less so at low quantiles. Also notice the gaps

between the forecast interval bounds of AO-U and AO-U |XHS. For example, the maximum

difference between the intervals is reached in January 199210 when the AO-U |XHS upper

bound is 1.3% lower compared to the corresponding bound for AO-U and the lower bound

was 0.7% below. To further evaluate the different implications of the methods, we show

in Figure (3) the one-year ahead forecast densities of AO-U and AO-U |XHS based on the

information available in January 1991. Note that conditioning on the level of housing starts

leads to the narrowing of the spread of the AO-U |XHS distribution compared to the näıve.

It also results in a shift in central location due to the significance of housing starts for

10Which corresponds to 12 months after the housing starts indicator reached its bottom.
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the conditional median. Although, for both distributions, the realization of inflation is far

in the left tail, it seems that the AO-U |XHS provides a more accurate prediction of the

distribution of PCE inflation.

Moving to the period 1996-2007, the result of the AG statistic (Table 1) indicates that there

is no significant difference in accuracy between the two forecast densities considered. But,

even in this sub-period, housing starts plays a significant role in changing the forecasting

distribution (compared to AO-U). Because this period is characterized by higher levels

of housing starts, the outcome is an upward pressure on the inflation distribution that is

visible in the upper limits of the 90% forecasting interval. This turn out to be useful at the

end of 2004 and beginning of 2005 when the realization of inflation happens to be outside

the forecasting interval of AO-U , but within the interval for the semi-parametric method

conditional on housing starts. Figure (4) shows the density forecasts for October 2004

(based on information available 12 months earlier). The foregoing analysis shows that even

when statistical tests (AG test) may not show better accuracy for AO-U |X i, it may still be

the case that a particular indicator (for example, unemployment rate and housing starts)

provide useful information for a forecaster. For example, the forecaster can use it to assess

the possible outcomes that macroeconomic events might have on the future evolution of

inflation.

Another related issue, in light of the empirical findings, is the relative importance of the

various economic activity indicators. It may be that some episodes of increase or decrease

in inflation might be driven by different factors. To illustrate this point we report the out-

of-sample WLRi
t (of the six indicators that we consider) in Figure (5). From the Figure,

there appears to be a marked difference between the sub-periods 1985-1995 and 1996-2007.

In the first sub-period, the performance of the semi-parametric method (compared to the

näıve model) varies significantly depending on the indicator used. On the other hand, it

seems to be more synchronized in the second sub-period, when their performance (against

AO-U) broadly follows a similar pattern. For example, looking at the performance in the

period after the 1990-91 recession, some variables (UNEM, IP GAP, WORK GAP, and
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SPREAD) were less accurate compared to the näıve model, although HS and INC GAP

outperformed the AO-U model. Interestingly, the dispersion (or lack of) in performance

has implications for the potential gains from aggregating densities through combination.

While in the first sub-period there is a clear advantage in combining (rather than relying

on just an individual indicator) due to the different performance of the indicators, in the

second sub-period all the variables provide similar performances, hence compromising the

usefulness of combining. This explains the result for the combined density forecasts in

Table (1) where the AG statistic was significantly negative in the first sub-period, but

insignificant in the latter.

Finally, we consider core-PCE and, to save space, only focus on the unemployment rate as

indicator variable. As given in Figure (6), for the period 1985-1995, the semi-parametric

method that uses the unemployment rate as conditioning variable (AO-U |XUNEM) provides

forecast intervals that are shifted downward compared to AO-U . In addition, starting in

1996 we see a remarkable difference between the forecast intervals for the two methods: the

upper quantile of the forecasting distribution for AO-U |XUNEM is larger than for AO-U

and even more so for the lower bound of the interval. This result may be attributed to the

upward pressure on inflation derived from the decrease in the unemployment from already

low levels. The fact that unemployment was at historically low levels and continued to

drop toward 4% until the beginning of 2000 explains the shift of the forecast distribution

to higher levels (compared to the näıve model), in particular at low quantiles of the inflation

distribution. In Figure (7), we show the forecast densities for AO-U and AO-U |XUNEM

based on information available in December 1997 for the target date December 1998. We

chose this specific date because at the end of 1997 and beginning of 1998 a debate on the

possibility that the U.S. economy could enter a period of deflation was started11. The Figure

shows that a forecaster using the AO-U model would have assigned a large (relatively to

the semi-parametric density) probability to such an event, while the probability of deflation

based on the AO-U |XUNEM density forecast is negligible.

11The debate was also sparked by a speech by the Federal Reserve Board Chairman on January 3rd,
1998 (see Greenspan, 1998). Figure (7) show the density that a forecasters would have produced based on
the information available in December 1997.
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5 Conclusion

Most studies on U.S. inflation forecasting have focused on predicting the mean inflation

using time series and PC models. The findings indicate that using real economic indicators

(such as unemployment or the output gap) improve out-of-sample forecasting performance

during the late 1970s and the first half of the 1980s. But after 1985, PC based forecasts do

not lead to forecasting gains vis-á-vis time series models (autoregressive and random walk

models) when the latter models became a lot harder to outperform. This paper examines

whether indicators of economic activity carry relevant information about the dynamics of

higher moments of inflation, and hence help improve the accuracy of the distribution of

inflation. We forecast (out-of-sample) the distribution of inflation for 6 and 12 months

ahead for the period 1985:1 to 2007:12, and evaluate the performance of the various models

in two sub-samples (1985:1 to 1995:12 and 1996:1 to 2007:12). Our results show that

for the core inflation measures, conditioning the dynamics of the inflation distribution on

the leading indicators provides more accurate forecasts relative to time series models. In

particular, we show that the activity indicators are relevant in driving the low and high

quantiles of the inflation distribution. The latter result can be particularly important for

policy makers interested in evaluating the probability of certain events, such as whether

inflation will be above or below a certain level in the future.
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Table 1: h = 12

Variable i Method CPI PCE

1985:1-1995:12 1996:1-2007:12 1985:1-1995:12 1996:1-2007:12

RMSPE AG test RMSPE AG test RMSPE AG test RMSPE AG test

ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U

AR-U 1.131 1.414 1.029 0.504 1.202 3.826 1.05 0.484

UNEM PC-U 0.992 -0.107 1.651 1.050 0.786 0.805 1.010 -0.549 3.986 1.033 0.513 0.573

AO-U |Xi -0.898 0.407 -0.156 0.261 -2.112 0.162 -0.875 -0.512

IP GAP PC-U 1.061 0.898 1.637 0.991 -0.294 0.365 1.061 1.298 3.569 0.952 -0.020 0.520

AO-U |Xi -0.372 1.253 -0.716 -0.677 -2.626 0.531 -1.380 -1.314

INC GAP PC-U 1.085 1.274 1.913 0.951 -1.99 -0.276 1.101 0.870 2.803 0.989 -0.443 0.368

AO-U |Xi -0.161 0.800 -1.000 -1.251 -2.489 0.127 -1.410 -1.403

WORK GAP PC-U 1.022 0.062 1.295 1.049 0.186 0.548 1.039 0.775 3.450 1.044 0.642 0.741

AO-U |Xi -0.837 0.630 -0.385 -0.023 -2.471 0.559 -1.250 -1.200

HS PC-U 1.141 1.444 1.756 0.963 0.046 -0.595 1.065 -0.012 2.352 0.959 -0.080 0.260

AO-U |Xi -0.856 0.061 -0.747 0.530 -10.81 -2.875 -1.493 -1.289

SPREAD PC-U 1.072 1.528 1.726 0.988 -0.447 0.453 1.032 1.956 3.981 0.993 -0.431 0.404

AO-U |Xi 0.521 1.614 -1.161 -0.999 -2.441 -0.144 -1.597 -1.194

COMBINED AO-U |Xi -1.226 -0.044 -1.016 -1.196 -4.852 -2.734 -1.494 -1.301

AR-U = AR model with i.i.d forecasting errors (order selected by AIC), AO-U = Atkenson-Ohanian
random walk model and i.i.d forecasting errors, PC-U = Phillips curve model with i.i.d errors, AO-U |Xi

= AO conditional mean and semi-parametric error distribution conditional on the leading indicator (q=1).
Combined refers to the forecasting distribution resulting from the combination of the AO-U |Xi for ∈
{UNEM, IP, WORK, HS, INC, SPREAD}. RMSPE Ratio indicates the ratio of the RMSPE of a model
forecasts compared to the RMSPE of AO-U . AG test indicates the Amisano-Giacomini test with null
benchmark models AR-U and AO-U . In bold are denoted the (one-sided) rejections of the hypothesis of
higher accuracy of the alternative model compared to the benchmark (at 5% significance level).
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Table 2: h = 6

Variable i Method CPI PCE

1985:1-1995:12 1996:1-2007:12 1985:1-1995:12 1996:1-2007:12

RMSPE AG test RMSPE AG test RMSPE AG test RMSPE AG test

ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U

AR-U 1.006 -0.084 0.966 -0.660 1.092 2.727 1.070 1.218

UNEM PC-U 1.007 1.145 0.329 1.030 1.436 -0.194 0.997 -0.646 2.575 1.002 0.352 1.259

AO-U |Xi 0.547 0.969 0.716 0.516 -1.184 0.484 -0.110 0.886

IP GAP PC-U 1.084 1.132 0.720 0.990 0.058 -0.639 1.013 -0.246 1.877 1.004 -0.375 1.094

AO-U |Xi 0.916 1.846 0.699 0.570 -2.011 -0.065 -0.142 0.805

INC GAP PC-U 1.051 0.669 0.512 0.968 -1.103 -0.994 1.002 -0.654 1.042 0.985 -0.533 0.977

AO-U |Xi 0.567 0.747 0.657 0.483 -2.824 -0.704 -0.506 0.440

WORK GAP PC-U 1.079 0.998 0.540 1.033 0.273 -0.477 1.014 -0.414 1.959 1.013 0.289 1.198

AO-U |Xi 0.855 1.709 0.871 0.962 -2.143 -0.128 -0.188 0.868

HS PC-U 1.104 1.077 0.939 0.980 -0.359 -0.918 1.008 -0.408 1.215 0.952 -0.745 0.553

AO-U |Xi 0.104 0.086 0.450 -0.013 -4.588 -1.720 -1.106 -0.438

SPREAD PC-U 0.995 -0.301 -0.140 1.004 0.943 -0.623 0.996 -1.743 2.579 0.993 -0.236 1.243

AO-U |Xi 0.720 1.100 0.544 -0.171 -2.688 -2.032 -0.217 1.293

COMBINED AO-U |Xi 0.092 0.063 -0.015 -2.036 -4.014 -3.639 -0.740 0.147

AR-U = AR model with i.i.d forecasting errors (order selected by AIC), AO-U = Atkenson-Ohanian
random walk model and i.i.d forecasting errors, PC-U = Phillips curve model with i.i.d errors, AO-U |Xi

= AO conditional mean and semi-parametric error distribution conditional on the leading indicator (q=1).
Combined refers to the forecasting distribution resulting from the combination of the AO-U |Xi for ∈
{UNEM, IP, WORK, HS, INC, SPREAD}. RMSPE Ratio indicates the ratio of the RMSPE of a model
forecasts compared to the RMSPE of AO-U . AG test indicates the Amisano-Giacomini test with null
benchmark models AR-U and AO-U . In bold are denoted the (one-sided) rejections of the hypothesis of
higher accuracy of the alternative model compared to the benchmark (at 5% significance level).
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Table 3: h = 12

Variable i Method core-CPI core-PCE

1985:1-1995:12 1996:1-2007:12 1985:1-1995:12 1996:1-2007:12

RMSPE AG test RMSPE AG test RMSPE AG test RMSPE AG test

ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U

AR-U 1.064 9.765 1.175 4.578 1.248 13.47 1.287 2.637

UNEM PC-U 0.963 -6.998 7.216 1.225 -0.218 4.135 1.043 -0.736 6.663 1.129 0.578 1.917

AO-U |Xi
-8.975 -3.342 -5.223 -3.297 -14.753 -4.646 -8.565 -4.596

IP GAP PC-U 1.666 -0.696 4.703 1.089 -1.840 3.898 1.168 1.445 8.987 1.024 0.242 2.695

AO-U |Xi
-6.959 0.030 -4.018 -0.852 -6.276 -0.817 -7.810 -4.153

INC GAP PC-U 1.449 -3.031 5.452 0.987 -3.943 3.599 1.145 1.171 15.106 1.000 0.383 2.752

AO-U |Xi
-11.456 -1.104 -5.207 -1.580 -4.814 -0.823 -8.195 -4.034

WORK GAP PC-U 1.654 -0.586 3.747 1.001 -5.353 2.987 1.19 0.92 6.43 1.03 -0.36 2.62

AO-U |Xi
-7.576 0.042 -4.199 -1.042 -6.789 -0.79 -8.698 -4.916

HS PC-U 1.441 -3.005 7.280 0.997 -2.056 1.695 1.012 -0.917 7.145 0.908 -1.044 1.102

AO-U |Xi
-19.442 -2.615 -3.964 -1.213 -16.918 -6.129 -7.536 -3.714

SPREAD PC-U 0.946 -6.259 7.306 1.012 -0.269 4.663 0.992 -1.824 7.448 0.962 -1.413 2.329

AO-U |Xi
-8.495 -3.583 -4.374 -0.291 -9.055 -3.282 -7.588 -2.934

COMBINED AO-U |Xi
-10.961 -3.893 -4.727 -1.511 -9.792 -3.189 -8.609 -4.25

AR-U = AR model with i.i.d forecasting errors (order selected by AIC), AO-U = Atkenson-Ohanian random walk
model and i.i.d forecasting errors, PC-U = Phillips curve model with i.i.d errors, AO-U |Xi = AO conditional
mean and semi-parametric error distribution conditional on the leading indicator (q=1). Combined refers to the
forecasting distribution resulting from the combination of the AO-U |Xi for ∈ {UNEM, IP, WORK, HS, INC,
SPREAD}. RMSPE Ratio indicates the ratio of the RMSPE of a model forecasts compared to the RMSPE of
AO-U . AG test indicates the Amisano-Giacomini test with null benchmark models AR-U and AO-U . In bold
are denoted the (one-sided) rejections of the hypothesis of higher accuracy of the alternative model compared to
the benchmark (at 5% significance level).
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Table 4: h = 6

Variable i Method core-CPI core-PCE

1985:1-1995:12 1996:1-2007:12 1985:1-1995:12 1996:1-2007:12

RMSPE AG test RMSPE AG test RMSPE AG test RMSPE AG test

ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U ratio AR-U AO-U

AR-U 1.032 11.946 1.054 4.419 1.179 8.613 1.126 1.204

UNEM PC-U 0.997 -2.388 7.687 1.247 1.814 3.715 1.018 -0.267 5.976 1.055 0.315 0.992

AO-U |Xi
-11.435 -4.474 -4.25 -2.507 -8.381 -3.091 -4.265 -3.719

IP GAP PC-U 1.517 0.815 5.605 1.128 0.973 3.875 1.048 0.236 7.317 1.015 0.327 1.252

AO-U |Xi
-9.799 -2.252 -4.651 -1.627 -4.13 -0.444 -4.892 -5.574

INC GAP PC-U 1.268 -0.104 7.144 1.016 -1.263 3.476 1.028 0.199 8.417 1.005 0.743 1.389

AO-U |Xi
-11.555 -1.826 -5.529 -2.54 -5.44 -1.249 -4.075 -4.347

WORK GAP PC-U 1.598 0.191 3.805 1.059 -1.183 2.896 1.070 0.414 6.565 1.009 -0.724 1.049

AO-U |Xi
-10.916 -1.866 -5.478 -2.278 -4.019 -0.387 -5.143 -6.013

HS PC-U 1.272 -0.142 8.995 1.041 -0.815 2.184 0.997 -0.968 7.661 0.934 -1.259 0.187

AO-U |Xi
-15.165 -3.206 -3.682 -1.271 -8.606 -3.885 -3.813 -3.339

SPREAD PC-U 1.079 -1.959 8.061 1.022 0.209 4.258 1.002 -0.251 6.118 0.984 -0.634 1.042

AO-U |Xi
-8.502 -4.204 -3.957 0.489 -9.459 -5.426 -4.486 -4.189

COMBINED AO-U |Xi
-15.241 -7.346 -5.234 -2.231 -8.331 -4.148 -4.895 -4.993

AR-U = AR model with i.i.d forecasting errors (order selected by AIC), AO-U = Atkenson-Ohanian random walk
model and i.i.d forecasting errors, PC-U = Phillips curve model with i.i.d errors, AO-U |Xi = AO conditional
mean and semi-parametric error distribution conditional on the leading indicator (q=1). Combined refers to the
forecasting distribution resulting from the combination of the AO-U |Xi for ∈ {UNEM, IP, WORK, HS, INC,
SPREAD}. RMSPE Ratio indicates the ratio of the RMSPE of a model forecasts compared to the RMSPE of
AO-U . AG test indicates the Amisano-Giacomini test with null benchmark models AR-U and AO-U . In bold
are denoted the (one-sided) rejections of the hypothesis of higher accuracy of the alternative model compared to
the benchmark (at 5% significance level).
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Figure 1: (Top plot) Unemployment rate (shifted forward by h = 12 months), (Mid-
dle) 90% forecasting interval for AO-U and AO-U |XUNEM with the shaded area de-
noting the months when the smoothed WLRt (with null model AO-U and alternative
AO-U |XUNEM ) is negative, and (bottom) the smoothed WLRt. The vertical lines in-
dicate the NBER recessions.
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Figure 2: (Top plot) Housing starts (shifted forward by h = 12 months), (Middle)
90% forecasting interval for AO-U and AO-U |XHS with the shaded area denoting the
months when the smoothed WLRt (with null model AO-U and alternative AO-U |XHS)
is negative, and (bottom) the smoothed WLRt. The vertical lines indicate the NBER
recessions.
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Figure 3: Predictive densities for PCE inflation using AO-U and AO-U |XHS .
The forecasting base is January 1991 and the horizon is 12 months. The vertical
line represents the realization of PCE inflation in January 1992.
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Figure 4: Predictive densities for PCE inflation using AO-U and AO-U |XHS .
The forecasting base is October 2003 and the horizon is 12 months. The vertical
line represents the realization of PCE inflation in October 2004.
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Figure 5: Smoothed WLRi
t for PCE inflation (h=12) with null model AO-U and alterna-

tive model AO-U |Xi for i ∈ {UNEM, IP GAP, INC GAP, WORK GAP, HS, SPREAD}.
Negative values indicate that the alternative model outperforms the null model (and
viceversa).
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Figure 6: (Top plot) the unemployment rate (shifted forward by h = 12 months),
(Middle) 90% forecasting interval for AO-U and AO-U |XUNEM with the shaded area
denoting the months in which the smoothed WLRt (with null model AO-U and alternative
AO-U |XUNEM ) is negative, and (bottom) the smoothed WLRt. The vertical lines
indicate the NBER recessions.
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Figure 7: Predictive densities for core-PCE inflation using AO-U and AO-
U |XUNEM . The forecasting base is December 1997 and the horizon is 12
months. The vertical line represents the realization of core-PCE inflation in
December 1998.
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