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Abstract.

In this article we discuss fundamentals of the debt securities pricing. We begin with a
generalization of the present value concept. Though the present value is the base
valuation method in the modern finance we will illustrate that this concept does not
sufficiently accurate in producing instrument pricing. The incompleteness of the unique
present value approach stems from variability of the interest rates. Admitting variability
of the interest rates we define two present values one for buyer other for seller. Therefore
future buyer and seller cash payments can be described by the correspondent present
values. Usually used assumption that future interest on investment over a specified time
period would be the same as before specified period is a theoretical simplification that
might be admitted or not. Admitting such assumption leads to eliminating an important
component of the market risk. Recall that the assumption that a future payment can be
invested with the same constant interest rate equal to the one used in the past is a
component of the group conditions that specify frictionless of the market. We use this
new concept that splits present value within two counterparties to outline details of the
new valuation method of the fixed income securities.

The primary goal of this paper is a credit derivative pricing method of the risky
debt instruments. First we introduce a formal definition of the default. It somewhat close
but does not coincide with the reduced form of the default setting.

The first distinction is the “risk neutral” valuation used for credit derivatives. It is
not difficult to note that the risk neutral valuation originated by mathematical
interpretation of the option pricing. There are two different ways in the modern finance to
introduce risk neutrality. These ways are specified by binomial scheme or the continuous
time. In continuous time setting the “risk neutral” world came up from measure change
technique used in stochastic calculus. Taking into account that Girsanov theorem it is
possible to change real expected rate of return of an option’s underlying security on risk
free interest rate. This adjustment can be provided by the transition from original
probability space {QQ, F, P } to { Q, F, pP } where p is the exponent Girsanov density



that provides a change a drift coefficient in stochastic Ito equations. This technique was
intended to apply for Black Scholes equation (BSE) to present its solution in the
stochastic form. On the probability space {Q2, F, pP } with the appropriate density p the
real expected return (the drift coefficient) of the security will the be replaced by the risk
free rate of return. Nevertheless as far as the solution of the BSE is the expected value of
the functional along the security price then its value does not change with the transition
from original probability space to risk-neutral world { Q , F, pP }. Thus the risk-neutral
world is incorrect interpretation of the Cauchy problem for the parabolic equation.

In binomial scheme the “risk neutral” probability distribution does not relate to
original probability measure whether it exists or not. This is the essence of the option
valuation. As far as the real world distribution does not involve in option pricing either
for discrete or continuous time then for example two securities having expecting returns
say 10% or — 20% with the equal volatility have the same option price over the same time
period and equal strike prices. The last remark shows that either binomial scheme or BSE
present a wrong understanding of the option price.

For credit derivatives the risk neutral world has been used as an original
probability space. It is common tradition does not specify the structure of the probability
measure on the risk neutral probability space. This implies that risky securities and credit
derivatives dynamics are represented with respect to measure Q = pP where p is the
Girsanov density. This density depends on risk free rate as well as the equity market
parameters. It also depends on the exact number of stocks on the equity market their
expected returns and volatilities. One should use measure pP for calculation local
characteristics of the stochastic differential equations (SDEs) which govern risky
securities dynamics. For instance if we apply the measure P to estimate the
expected value of a random variable it can be the arithmetic average value. On the other
hand calculation of the expected value of the random variable with respect to Q = pP
leads to the different value. It would be important to take into account peculiarities of the
risk neutral world statistical calculations. Theoretically it is possible to transform SDEs
givenon { Q, F, pP } to the SDEson { Q, F, P } or inverse but it does not make any
sense because we involve for calculation equity market parameters that actually should
not play any role. Either risky securities or credit derivatives valuation methods could be
apply regardless on whether equities exist or not. It looks like that risk neutrality is a
needless complex construction used for the credit derivatives pricing.

There is other distinction of our approach. We relax a condition related to the
market frictionless. This condition implies that payments received in the future moments
of time could immediately be invested with the same interest rates. It is not difficult to
check that real market data does not follow this assumption. In contrast to commonly
accepted cash flow modeling dealing with expected values our model deals with the real
stochastic flows. Thus given stochastic setting any market price accepted by a market
participant anticipates a risk. The value of the risk is determined by the event when the
value of the rate of return of a particular instrument implied by the market is lower than
implied by the original market price.



The paper is structured as follows. In section 1 we assume that all parameters of
the model are available. We present a formal definition of the default and develop pricing
formulas for zero and nonzero coupon corporate bonds. Then in the second section we
focus on the practical problem how using the theoretical model and given market data to
study risk characteristics of the corporate debt instruments.

JEL classification code: G13.
Keywords: default, risky bond, reduced form model, credit risk,

1. A risky bond pricing model.

In this section we perform a model of the risky bond pricing. We present a formal
definition of the default using a simple model. Then applying this definition we establish
valuation formulas for main types of the bonds.

In this paper we follow a primary type of credit events defined by the ISDA as the
“Failure to pay”. This by definition is an event when an entity fails to make scheduled
full payment either a coupon or a principal of the risky debt. Within other important types
of credit events defined by ISDA are bankruptcy, obligation default, moratorium,
restructuring. We do not study these credit events here.

Risky 0-coupon debt valuation.

We begin with the pricing formulas of a 0-coupon bond. The bond price B (t, T ) by
definition is a function of two variables t and T. The t is a current time and T denotes the
bond maturity. In many practical situations it seems more convenient to use as
independent variables t and time to maturity T — t which would replace the variable T.
The value B (t, T ) represents the value at date t of the $1 at date T. Thus B (t, T ) is the
present value at date t of receiving one dollar at T with no risk of default. The standard
form used for pricing the Treasury security is

T—1 1
B(t.T)=1-i _
(&.7) ' 7360 Tt

I+
© 365

Here B(t, T ) is might be a notation for the zero-coupon T-bill, note, or bond price at
datet,and B( T, T ) = 1. Parameters id and is are assumed here to be constants but they
also can depend on time. In a more complex environment they might be assumed to be
stochastic too. They are known as discount rate and simple interest rate respectively.
Given B (t, T ) the values of interest and discount rates can be easily calculated and



vice versa. The finical tables usually provide investors information about the bond prices.
In continuous compounding we assume that

4BT) _ g1
di

t < T, with a boundary condition B( T, T)=1.

A 0-coupon debt-security price with no risk of default is sometimes referred to as
a present value or a discount factor.

Now we consider a valuation method of the default debt securities. Default is a
class of the wider notion such as the credit event. We formalize now the event “failure to
pay” which we consider as a definition of the default. Though this method is close to the
reduced form of the risky bond valuation it has also some significant distinctions. We
begin with a formal definition of the default in a discrete time setting. In a simple
example it will be clear the difference between the standard reduced form models
introduced in [4], [5] and the approach that we will develop bellow. Let us consider in
details the model example the zero coupon risky bond. A risky corporate bond like a
government zero default bond promises $1 at maturity T. As far as there is no cash flow
prior to maturity it seems quite reasonable to assume that the only time when corporate
bond can represent its risk is a maturity date. Assume that the value of the risky corporate
bond at the maturity T is defined as

1, if no default at the date T

(1.1)
A, if default occurred on the date T

where is a known constant A € [ 0, 1 ). The case A =1 is a limit situation when the risky
bond coincides with the Treasury bond having by definition 0 chance of default. From
(1.1) it follows that the risky bond pricing implies stochastic setting. Denote R (t, T ) =
R(t,T;®) the risky bond value at date t, t < T, where T is the bond maturity. The
variable o is associated with two elementary events or scenarios if one prefers financial
terminology. Let the value wo signifies the ‘no default’ scenario and md denotes the
default event of the risky bond. The random function R (t, T ) is a stochastic process for
which the face value R ( T, T ) is defined by (1.1). The risky bond value at any time prior
to maturity can be easily established by expressing its value through the risk-free bond
values with the same maturity. Instead of the using informal no arbitrage argument we
prefer to give a formal definition of the equality for two investments. Thus two
investments are called equal over a given time interval [ t, T ] if for equal notional values
their rates of return are also equal. Using this definition the price of the risky bond should
promise the same rates of return as the risk free bond regardless a scenario. This ‘perfect
replication’ can be achieved by presenting the risky bond price in the form



R(t,T;0) =B(t, T){[l -x(0,D)] +Ax(0,D)}=

(1.2)
= B(t, T){1-(1 -A)x(o,D)}

where the function
1, ifo € D
x(o,D)=y(o,D,T)= {
0, ifo ¢ D

is the indicator of the default event D at the date T. Indeed (1.2) follows from the
equation

R(T, T;o)  B(T,T)

R (t, T;o) B(t,T)
that uniquely represents equality of the two investments in risky and government bonds.
This equation is a short form of the equal rates of return relationship. Thus the perfect
replication calculates the risky bond price based on other three given values. Note that it
promises the same rate of return for each ® in contrast to the expected values as it
accepted in derivatives pricing. Here B( T, T ) = 1, and corporate bond face value R ( T ,
T;m),0 e Q={wo,nd} is given by (1.1). The value

s(o)=B(t, T)(1 —-A)y(w,D)

is the deference between 0-default Government bond and the corporate bond at the date t.
This differential can be called a stochastic spread in contrast with commonly used spread
notion that is the defined as the expected value of the stochastic spread we introduced
above. The stochastic spread shows the price difference of the risky and 0-default
Treasury bond. The expectation and standard deviation of the risky bond are

ER(t,T;®)=B(t,T)[ 1-(1 -A)P(D)]

STDVR (t,T;0) = B(t,T)(1- A)y/P(D)(1-P(D))

These formulas represent primary risk characteristics of the risky bond given recovery
rate (RR) and probability of default (PD).

Remark 1. The formula of the expected value of the risky bond first was presented by

P. Jarrow and S. Turnbull first in [4]. This formula was used as a definition of the risky
bond price. In this interpretation the spot price was interpreted as the expected value of
the undefined random function that in our interpretation is the risky bond price. Reducing



the random price definition of the risky bond to its expectation eliminates market risk and
related risk information. Thus stochastic setting helps us to price a corporate debt in more
realistic environment.

The difference between the benchmark Treasury bond and the corporate bond
with the same maturity called spread and is defined as

s=[B(t,T)-ER(t,T;o)] =B(t,T)(1-A)P(D)
(1.3)

Here ER (t, T ; o) is expected value of the corporate bond. This equality is similar to
the credit triangle relationship [6]. Indeed admitting the expected value of the bond as the
market price automatically implies risk. The risk is connected to the possible losses when
the market price is interpreted as the expected value of the risky bond. The value of the
risk then is the measure of the chance that investors pay higher price than the ‘perfect’
price. This risk can be expressed with the help of probability

P{R(t, T;0) <ER(t, T;0)}

Note that this definition of the bond price theoretically implied but unfortunately have not
been explicitly established by the reduced form approach. In reduced form the risky bond
price corresponds to the expected value or market price. If the recovery ratio A is equal to
0 then the probability of default could be expressed by a simple formula

P(D)=B(t,T)- ER(t,T)

Now we extend the pricing method of the corporate bond by letting the bond to
default at a discrete set of dates. Assume that 0-coupon risky bond might default only at a
known sequence of the datest=to <t <t, <...<tn = T. As far as there is no up front a
payment to counterparty it might be reasonable to exclude the chance of default at the
initiation date t. Otherwise some insignificant adjustments can be made to cover this
possibility. Let o ;,
1=0,1, ... N denote the default event at the date t ; and let t () denote the random time
of default. Putting by definition ® ¢ = { ®: T (®) > T } we note that ® (¢ denotes the event
“there is no default during the lifetime of the risky bond”. Then o ; = { ©: t (®) = t;},
denotes the event that default occurred at the date t;, j > 0.Then the union of the mutually
exclusive events o j,j = 0, 1, ... N provides a decomposition of the probability space Q.
Assume that RR at the date tj is a known constant A j < 1. The equality A j = 1 implies
that there is no default at the date tj . Then the present value of the risky 0-coupon bond
can be written in the form

R(t,T;0)= i AB(t, t)g(t =t) + B(t, T)yx(t>T) (1.4)

j=1



where time of default T = 1 (®) is defined as

I
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tex(t=t,)
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The formula (1.4) is a generalization of the formula (1.2). It represents the value at t of
the seller’s credit commitments over the lifetime of the bond. The only technical
difference is that the lifetime of the bond is now a random variable with recovery rate that
might or might not depend on time. There are several ways to establish RR. For example
when recovery rate does not depend on time might be expressed as a fixed portion of the
face value of the bond. In more complex setting RR can depend upon a benchmark fixed
income security.

The distribution of the random time t (®) in the pricing model (1.4) is assumed to
be given. Note that for an arbitrary real world scenario ® the only one term on the right
hand side (1.4) does not equal to 0 and therefore the bond pricing for every scenario o is
identical to the model (1.2) studied above. This follows from the fact that @ ; decompose
the probability space Q. The proof of the formula (1.4) is straightforward. Indeed for the
scenarios belonging to the @, 1 <j <N the price of the risky bond is simply the present
value of the A j . This follows from the case studied above when default might occur at
maturity only. For the scenario o ( the risky bond price coincides with the risk free bond
and its present value is the well-known benchmark price. Then the pricing formula for
any scenario from ® ¢ U o y coincides with the risky present value of the bond when
default might occurred at maturity only. Summing up over all possible scenarios leads to
the formula (1.4).

Adding and subtracting appropriate terms in (1.4) we note that it could be rewritten
in the form

R(t,T;m)zi A;B(t, t;)x(t =t;) + B(t, T)x(t>T)=

—
1l
—_

Z

-1

=Y R (ttie) - Y B(Lt)(t>t)

i=1 ]

—
1l
—_

Here the upper line over risky bonds signifies that bonds could default at maturity only.
The low index j” points on dependence of the bond value on recovery rate A ;. Note that
if default occurred at t ; then the terms through 1 to j in the first sum and from 1 to j-1 in
the second sum in above formula will not be equal to 0.



Continuous time zero coupon bond valuation.

Continuous time valuation formula can be obtained from (1.3) when max (tj+1-tj)
tends to zero. Then the valuation formula can be rewritten then in the form

R(t,T;m)sz[ A(s)B(t,s)yx{t(w)eds} + B(t, T)x(t>T)

t

where A(s) is a given nonrandom recovery rate. Assume that the probability of default
over a small time interval can be presented as follows

P{t(®)e(s,sTAs]} = u(s)As +o(As)

where p (s ) is a given function. Then for the first moment of the risky bond price can be
written in the form

ER(t,T;m):} A(s)B(t,s)u(s)ds + B(t, T)M(t,T) (1.5)

t

Here M (t, T)= P {t(®w)>T }. The case when

p(s)=p/[T-t]"

corresponds to uniform distribution of default on [ t, T ]. The uniform model is an
important simple example. Under the assumption default probability does not increases
over the time in contrast to Poison default time model. In many situations the uniform
default time distribution looks more realistic than alternatives. Note that risk
characteristics in continuous time can be approximated by the corresponding risk
characteristics in discrete time. The functions A ( * ) and p ( * ) in the discrete and
continuous time settings could be construct follow next steps. First we need to present an
estimate of the function M ( t, s ). It will help then in construction the default density p.
Given p, M observing ER (t, T ; ® ) we see that the function A (' s) is a solution of the
integral equation (1.5).

In above we assumed that recovery rate is a given portion of the face value. Now
let us assume that recovery rate is a random variable taking a finite number of different
values

A(@)=3, A, 7(D))

j=1



Thus in a simple model when a risky bond can default at maturity T only the face
value of the bond is defined as

I, ifogD
R(T,T; 0) = {

k
j=1,2,..,k and UDj:D

i=1

A, ifoeD,, A, <A

j+1 0

and therefore
k k

R(t, T;0) =Y A;x(D;) + z(@\D)=1- Y (1-4)x(D))

T=1 I=1

Here the event Q \ D is no default at maturity. It is not difficult to study random recovery
rate model when default might occur at a discrete or in continuous time setting.

Risky coupon-bond valuation.

The benchmark formula

N
PVB(t,T,c) = PV(t;t,,Cty,,C, ty,c+F)= D ¢B(t,t;) + FB(t, T) (1.6)

j=1

represents the well known present value (PV) of the cash flow associated with a coupon
bearing bond. Here

*) ¢ is the coupon paid by issuer of the bond to the bond holders on predetermined dates
t=to<ti <t2<...<tn=T

*)B (t, T) is the value of strips (0-coupon bond) with no risk of default.

*#%) F is the face (par) value of the bond.

Thus, the benchmark price of the coupon bond is by definition the present value
of the all the payments attached to the bond over its lifetime. The formula (1.6) uses the
value of
0-coupon bonds with various maturities. By definition the function B (t, T ) when t is
fixed and T is considered as a variable argument is called the term structure of the bond.
Thus term structure depends on a current moment t as a parameter. This is the financial
standard to use PV as a price of the coupon bearing bonds. We will show bellow that this
pricing method should be completed in order to represent real market more accurately.
With this interpretation the coupon bond pricing formula (1.6) represents the bond



seller’s price while the bond buyer’s bond price can be represented by a different
formula.

To highlight a motivation for the distinctive buyer’s price one should remark that
bond seller price over lifetime of the bond is the present value of the cash flow (t1,c), (
t2,c),...,(tn, c+F)paid by the seller to the buyer. Note that the coupon value of $c
atadates € (t, T) can be generated by $c B (t,s), B(t,s) <1 invested at the date t.
Note here that the issuer of the bond is the owner of the $c¢ over the time [ t, s ). On the
other hand a bond buyer who is also the investor receives the coupon payment at the date
s owns $c sum over the future adjacent period (s, T ] until the bond expiration. Recall
that we have assumed that there is no chance of default of the government bond. The
market observation shows that the discount rates over different time intervals are not
equal. That proves the necessity to distinguish seller and buyer prices generated by the
same coupon bond. Hence it is clear that the bondholder return should be estimated based
on forward discounted cash flow. The bond investor’s price can be constructed as
follows. Note that the value at time T of the amount of $c paid at t j is by definition equal
to ¢ x B(tj, T ). Thus the bond buyer accumulated capital at the date T is

N
FV(t;t,,0,.., ty_,c, ty,c+F) = > ¢B™'(t,,T) + F

j=1

Recall that by definition B ( T, T ) = 1. The pricing problem is to establish the price of
the coupon-bearing bond at any moment t prior to the bond expiration T. Thus, the bond
buyer has two alternatives: the investment in 0-coupon or in c-coupon bond. Note that if
0-coupon does not exist then it can be considered hypothetically. To avoid arbitrage
opportunity market should promise equal rate of return on any type of the government
bonds with the same expiration date regardless of the coupon value. Thus if the PV
amount invested in the risk free bond with expiration date at T yields strictly smaller or
larger then the FV represented above then there exist an arbitrage opportunity. Therefore
the equation

FV(t;t,,c,...,ty,,C, ty,c+F) B(T,T) (1.7
B.(t,T) - B(t,T) |
for Be (t, T ) is the unique way to avoid arbitrage. The solution of the equation (1.7) is
the investor price at the time t of the coupon-bearing bond. From (1.7) it follows that
N
B,(t,T) =[ >, ¢B'(t;,T) + F 1B (t,T) (1.8)

j=1

10



The equality (1.8) states that the bond buyer price of the coupon bond is the present value
of the total cash amount accumulated at maturity. Note that the value Bc (t, T ) is not
equal to the price on the right-hand side (1.6). The formula (1.8) contains value of the
bonds related to the future moments of time that are not known at t. In stochastic setting
these values can be modeled by the random functions. Therefore the bond buyer faces a
risk accepting the date t market price. The real rate of return can be either lower or higher
implied by the market. The value of the bid-ask spread could be considered as an
indicator of the stability of the market.

Remark 2. The idea that the present value methodology does not perfectly fitted to the
real market has been highlighted in some papers. In [7] it was highlighted the
assumptions behind definition of the yield to maturity. These are
1. An investor who buys bond can only achieve a return equal to the yield if the bond is
held to maturity and if all coupons can be reinvested at the same rate as the yield
2. The yield curve is flat. That means equal reinvestment rates for different maturities.
Also it was noted in [7] that either of these assumptions do not take place in practice.
The idea to differentiate buyer and seller transactions in bond trading was
presented in [Fixed Income Pricing]. As far as the values B (tj, T ) fort; >t,j=1, 2,
...N are unknown at the date t the one commonly excepted way to proceed is a
randomization of the problem setting. Admitting stochastic of the bond price one can
apply statistical hypotheses testing along with statistical estimates theory to draw
conclusions from population presented by the market data. The forward contract
historical data can be applied for developing hypothetical distribution. Other way that
often used in finance is an analytic assumption in a form of a stochastic differential
equation about a bond price dynamics.
Let s be the difference between (1.6) and (1.8). Then the value

s=s(®w)=PVB(t,T;c)-Bc(t, T;m)
is a random depending on parameters t , T. This interpretation of the market price implies
a risky settlement between two counterparties. Let for example the present value PV (t,

T ; ¢ ) is a market settlement price. Then the counterparties risk can be expressed with the
help of the cumulative distribution function F' ('x ) of the random variable s (o ). Indeed

F(x)-F(0)=P{0 <B (t,T;0)-PV(t,c,T)<x}

F(-x)=P{B.(t,T;o)-PV(t,c,T)<—x}

The first equality above represents the probability of the chance that investor price PV (*)
is bellow of the real price Bc (* ; ). This is the value of the bond seller risk. The second
equality represents the probability of the complimentary events i.e. the probability that
the market price PV (*) of the bond is above than the bond value B¢ (* ; ® ). That is the

11



bond buyer risk value. An assumption on the bond price dynamics is needed in order to
present the distribution function F ( X ) in an analytic form. Implied approach is the
common way in the modern finance sciences to avoid statistical inference regarding the
explicit form of the function F (x). Thus thee contemporary implied approach admits a
hypothetical distribution without statistical testing the model.

The probability that bond price exceeds the present value is F (x ) —F ( 0). This
value specifies the chance that bond price is higher than was admitted at the moment t.
Indeed, from seller’s point of view the cost of the coupon bond at time t is given by (1.6).
The bond value given by (1.8) is what the bond buyer assumes to be the bond price at the
date t. The present value of the bond in the neutral market would have a symmetric
distribution with respect to expected return. In this case PV could be a good unbiased
estimate of the bond price. Below we will illustrate such a situation in details.

We prove the formula (1.8) by using the method of mathematical induction. We
begin with the last interval (t~-1, T ]. Over this interval the value of the coupon bond
can be received from the 0-coupon bond curve by multiplying it by the factor
( F +c¢). Indeed bonds with 0 or ¢ > 0 coupon issued by a financial institution having 0
chance of default should promise equal rate of return for any moment t from (t~-1, T].
Otherwise, there exist an arbitrage opportunity. From the equation

c+F 1
B.(t,T) B(t,T)

it follows that for any t from (t~-1, T ]
Be(t, T)=(c+F)B(t, T)

At the date t n-1 the bondholders receive a coupon of $¢ and from the formula above we
see that

Bc(tN-l, T): Bc(tN-1+0, T)+C
where Be (tx-7+0, T) = limBc(twy-; +h, T) when the variable h > 0 tends to 0.

Next let us repeat the pricing method over the next interval ( tv-2,t~-: ]. Then from
the equation

B.(ty,,T) B(ty,,T)
B.(t,T)  B(t,T)

follows that

12



[B,(ty, +0,T)+c]1B(t,T) y
B.(t,T) = B T) =[(c + F)+¢B'(t,_,,T)]B(t,T)

for arbitrary t from the interval ( t~-2,t~-1]. Notethat B(t~n.1+0, T)=B (t~.1, T)
as far as the 0 coupon bond price is assumed to be a continuous function. Since there is a
finite number subintervals (tj-1,tj],j=1,2,...Non[t, T ] then the construction can
be completed for the finite number of steps. Indeed let this formula is true on (tj, T ].
Then

B.(t,T) = i ¢B'(t,,T)+ F 1B(t,T)

k=j+1
forany t from (tj , tj+1 ]. In particular
N
B.(;+0,T) =[ >, ¢B ' (t,,T) + F 1B(¢t,,T)
k=j+1
Hence
Be(tj, T)= Be(tj+0, T)+c
Then

B.(t,,T) B(t;,T)
B.(t,T) B(t,T)

for any t from (tj-1, t;j]. Therefore

[B,(t,+0,T)+c] B(t,T)
B(t,,T) -

B.(t,T) =

[ B(t,,T)( i cB7'(t, ,TY+F)+c]B(t,T)

k=j+1

B(t,,T)

13



N
= B(t,T)[ DY, ¢B'(t, ,T)+ F]
k=j
That justifies formula (1.8).
We highlighted the difference in bond pricing given by (1.8) and (1.6).
Statement. In order that the values (1.6) and (1.8) were equal for an arbitrary date t it is
necessary and sufficient that the 0-coupon bond prices satisfy the equality

B(t,s)B(s,T)=B(t,T)

for arbitrary 0 <t <s < T. Historical data shows that this equality does not take place in
the real world.

Putting in (1.8) ¢ = 0 we arrive at the 0 coupon bond with face value $F and
therefore its present value is $FB (t, T ). This price represents an instrument referred to
as a ‘strip’. In this case we see that the bond price is equal to its present value. If F =0,
then the price of this component of the Treasury bond can be obtained from the formula
(1.6). This financial instrument is a claim on pure coupon payments over the lifetime of
the bond. The Wall Street Journal uses abbreviations: “np” and “bp” for the Treasury
note and bond respectively, and “ci ” for the claim on pure coupon payments. Using
historical data one can easy figure out that the values (1.6) and (1.8) are different. A
source of such discrepancy is a variability of the interest rates.

Assume now that the bond value at the date t j is estimated at the moment t.
Denote this estimate B (tj, T| t; ®),j=1,2, ... N. We interpret this value as a random
variable and therefore the spreads (® ) = PVB(t,T;c)-Bc(t,T)is also a random
variable. The buyer’s risk is then associated with the probability of the event { ® : s <0 }
and the bond seller’s risk is associated with the scenario { ® : s > 0 }. The distribution of
the spread is a random functions =s (t, T ; ® ) depending on the unobservable at date t
random variables B (tj, T ), tj>t. To derive statistical characteristics of the spread the
unobserved random variables B (tj, T ) would be replaced by their statistical estimates.
The data related to the bond forward contacts could be used to construct reliable
estimates. The mathematical statistics usually uses the conditional expectation
E{B(tj,T)| F } as such estimates. Here F': is the c-algebra generated by the bond
price values prior to the date t.

Let us return to the risky coupon bond valuation. Let t j be coupon payment dates
and let the recovery rate at t j be a known constant Aj,j=1,2,...N.LetBc(t,T;F)be
the value of the risk free coupon bond at date t with coupon $c¢ with maturity T and face
value F. That is a holder of the bond will receive a coupon payment of $c at the dates t j
and $( F + ¢ ) at the date T. From (1.8) it follows that the buyer’s price of the bond of the
risky coupon bond is a random variable depending on scenario ® and equal to

Be(t, T;F+c), ifoe {t(0)>T}

14



Be(t,tj;rr(j)),ifoe{t(®) =tj}, t<t;<T

j=1,2,... N. Here the recovery rate rr (j ) is a claim paid by the bond issuer to the bond
holders if default occurred at the date t j . There are several reasonable possibilities to
establish the value of the rr (j ) claim. For example it can be chosen equal toc Aj, or (¢
+F ) Aj, or the portion of the value of the government bond at the date of default t
covered the total loss remained to paid after default by the bond seller to the bond
holders, i.e. the sum

Aj{i ¢B(t,,t,)+ FB(t,,T)}

Obviously that different recovery rates would lead to the different bond values. Recall
that the coupon bond is an example of the path dependent security. Taking into account
equalities (1.6) and (1.8) the price of the risky coupon bond can be written now in one of
the next forms

Rf)(t,T,co):i B (t, t;;rr(j))x(t =t,)+B.(t,T;F+c)y(t >T) (1.9)

j=1

R(:)(t,T,oa) = ix(r:tj)B(t,tj)[jZ_i CB_I(tk,tj)-‘rIT(j)] +
(1.10)

+ x(t>T)B(t, T)[ NZCB’I(tk,T)+F]

The lower indexes ‘s’ and ‘b’ here stand for buyer and seller pricing. In the second
formula the expression in the first brackets represents the future value of the c-coupon
bond with maturity

t j with the face value equal to the claim amount rr (j ),j =1, 2,.., N - 1. The expression
in the second brackets represents the future value of the no default bond.

Let us consider an example. Suppose that a credit event could occur only on
coupon payment dates and the recovery rate is a known constant A times default date
payment. Let F and ¢ be a face value and coupon value correspondingly. Then the risky
cash flow can be presented in the form
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c i [Ax(rztj)+x(r> tj)] +

j=1

+ F [AX(T:tN)+X(T>tN)]

Therefore at the date t the spot price of the short or long positions of the risky coupon
bearing bond are the standard present value or the discounted future value of the above
cash flow. Thus

N

RO(EL,T;0) = Y B(t,t)c[Ax(t=t)+x(t>t)] (1.11)

j=l1

REO(LT,0) = B(LT) Y, B (1, T)[Ax(x = 1) +1(x > 1) +

_ (1.12)
+F[AX(T:tN)+X(T>tN)]

Thus the buyer and seller prices are random processes depending on the distribution of
the time of default. Note that the buyer price also depends on random forward interest
rates. Given a distribution of the default time and forward rate statistics one can easy
calculate mean, variance and other risk characteristics of the corporate bond price. If the
expression (1.8) or (1.11) or any other is the market price of the risky bond then
counterparties take a risk. Applying a particular model distribution for the default time it
is easy to present statistical characteristics of the corporate bond price in a compact
closed form.

Let us consider a more general corporate pricing problem that involves tri-party
transactions. In this problem we assume that the bond buyer might decide to buy
protection against a possible default. Here we assume that a protection seller and the
bond seller are the same party. In the event of default the bondholder would receive a
protection payment. In return protection buyer pays a constant premium until default or
the bond maturity which one comes first. In the discrete time setting this type of
insurance problem can be easy resolved. Note that this problem contains two types of
transactions. The first one is the bond-pricing problem studied above. Other type of
transaction taking separately is known as a credit default swap (CDS). We briefly
describe here the CDS pricing model. If the protection buyer does not a risky bondholder
then CDS is rather game in insurance were one party pays fixed payments and other party
pays a claim value at the event of on default.

Let us first consider a case N = 1. In this case default can occur at maturity only.
If the bond defaults at the date T the payment from protection seller to protection buyer
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would be a claim equal to (1 -A) x{ t=T }. Assume then that the first payment $d paid
by bondholder who also might be the buyer of protection takes place at initiation at the
date t and the second payment $d takes place at maturity if there is no default at this date.
That is

dlx{t>t}+y {t>T }] The two cash flows are equal if and only if when the
premium payment d is equal to

(1-A)git=T} _(1-A)x{t=T}

do) = s 1) 2 - y{t=-T)

If the premium will be paid at maturity only then the number 2 in the denominator on the
right hand side would be replaced by 1. There does not exist an universal constant that
solves pricing problem. Then every market choice of the premium implies the risk. In the
modern applications it is common to assume that counterparties use expected value of the
cash flows to define the premium value. Note that this value does not coincide with the
expected value of the exact premium value d ( ® ) presented above. If we follow this way
then it is not difficult to see that the premium value could be written as

(I - A)P(D)
2 - P(D)

[d] =
where D = {t = T} denotes default event at the date T. Note that the volatility of the
protection seller is

(I-A)>Vary{t=T}=(1-A)?P(D)[1-P(D)]
and the protection buyer volatility
<d>Vary {t>T} = <d>Var[l-y{t=T}]

These equalities demonstrate that the risk exposures of the protection buyer and
protection seller are not equal. The expected value of the exact premium is

<d>=Ed(o)= (1-A)P(D)

If the premium payment does not take place at t then the expected value of the exact
solution of the equation

(T-A)x{t=Ti=dy{t>T}
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U=M)fr=T3 _opigip)+ Lp(p)
x{t>T} ®

Ed(w) = E

is undefined. That is it makes sense do not use this setting in the market practice. In
contrast one can use the estimate [d]. This value is defined as

(1 -A)P(D)

4] = - P(D)

Let us return now to the more general case when default might occur at a finite
number of dates tj, j =1, 2, ..N. The cash flow from protection seller to protection buyer
is

Sy = Z (l—rr(j))X{Tth}+0X{’t>tN}

j=1

The cash flow from protection buyer to protection seller is

b, = Y, (id)x{rztj}w{wT}Zd

j=1 i=1 i=1

For every scenario there is only one term does not equal to 0 and therefore there is no
need to reduce cash flows to its present value. These two cash flows are equal when

> (A-m(irft=t}

d = d(o) = !
ij{r:tj}Jr Ny{t>T}

j=1

This is a definition of the premium representing its value as a random variable that is also
depends on t and T. This implies that a market settlement value implies a market risk for
either counterparty. Note that

<d>=Ed(0)= ),

j=1

SO b
j ]
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Let us assume that counterparties used expected cash flows to derive the equilibrium
premium value. Then the value of premium [ d ] that equates the expected cash flows is
equal to

Z (I-mw(HP{t=t;}
[d] =
> jP{t=1¢} + NP{1>T}

j=1

These two premium are different and therefore the estimate [ d ] is biased. The risk
management specifies the risk value of each leg of the deal. The bondholder risk
combines two unfavorable events. The first is the bond buyer risk. The value of the bond
buyer risk is measured by the probability of the event that the buyer price (1.12) for the
realized scenario is bellow than the market price. The second bondholder’s risk is the
protection buyer risk measured by the probability of the event that cumulative premium
over the lifetime of the bond for the realized scenario excesses the default payoff. Let the
bond buyer purchases the risky bond for $A. Then the probability

P{o: R (t, T;0)<A}

is the measure of market risk.

Let d* be a settlement premium value paid by protection buyer to protection
seller. Then protection buyer risk is P{ 2d* > s b }. It represents the probability of all
events when the cumulative protection premium Xd* is larger than default payoff. Thus
overall bondholder risk is associated with the union of the next unfavorable events

{m:R§°)(t,T;co)<[R]}LNJ{[UJ:kd >(1 -k (t=t )} J{o:t>T}

Continuous time risky bond pricing.

Continuous time study we begin with pricing of the 0-coupon risky bond. Assume
that default might occur at any time prior to maturity. Recall that a high yield risky bond
known also as junk bond has a significant lower price and therefore promises
significantly higher rate of return than the 0-default government bond with the same face
value and maturity. Assume as usually that it is possible to interpret the risky bond price
as a random process. The risk-free bond price is also can be a stochastic process though
this particular case will not be studied here. Thus the time of default t is now a random
variable having a continuous probability distribution depending on parameters t and T.

19



Assume that the default is defined as a moment when stochastically continuous bond
price process breaches a fixed barrier H. We note that in this case T admits exposure

i-1

T :MZQ {R(t;,T;0)<H}[] x{R(t;, T;0)>H}

j=0

where R( * ) in the above formula denotes the risky bond price or more accurately its
separable modification. For writing simplicity and without loss of generality we also
assumed that the partition leg A= ti - ti-1 does not depend on i.

The bond payoff at maturity T is equal to $1 for any scenario ® for which t () >
T. If t (0 ) £ T then the value of the recovery rate & should be specified. For instance the
recovery rate o (®) in continuous time can be one from follows

1) d1(w) =A, 2)02(w) = AB(t(w),T),or
3)8; (@) =A[B(t,1(®)) — R(t,1(0);m)]

where the given constant A < 1. It is also possible that the ratio A might depend on time.
The third version of the RR is interpreted as a known fraction of the risk free and risky
bonds spread at the time of default. We primarily assume that given {t (0) < T} the
corporate bond price at the moment of default is definedas R (t, 1 (0); ® )=
=AB(t,1(®)).

LetD={o:1(w) < T }denote default event. Putting the face value of the
corporate bond equal to $1 we note that payoff on risky bond is either $1 at date T for the
scenarios ® for which t (w) > T or the value 61 (w),1=1, 2,3 atdate 7 (0) if T () < T.
Here the values 0 i (o) are defined above recovery rates. If the risky bond price is a
separable random process then we can apply the discrete time approximation to present
risky bond valuation

Remark. Note that recovery rate classification used for example in [8] deals with
the market data statistics rather than with its theoretical counterparts. There are two
different approaches to risky valuation problems. One approach has been discussed
above. In this approach we assumed that complete information about parameters and
distributions are given. The other approach follows to mathematical statistics. This
approach deals with historical data and its randomization. The accurate randomization
includes definition of a probability space Q and a hypothesis regarding a sample
probability distribution of the risky bond. Recall that the spot price is commonly
interpreted as expected value of the risky bond. For example the stochastic recovery rate
0 1(m) above corresponds to Fractional Recovery of Par ( FRP ). This FRP recovery rate
is a given fraction of its face value. Thus this recovery rate implies that

02(0) = AB(1(0), T;0)x(1(0)<T)
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Recall that the risk free bond price is assumed here to be deterministic continuous
function.

Let the time of the default time be a continuously distributed random variable and
assume that the random process R (t, T ; ® ) is continuous in t with probability 1. The
structural model associates the default event with the event that company’s equity price
falls below a certain level {t: S (t,T;® )< d} for the some particular value d. In this
case default time td (o) =inf{t:S(t, T; ) < d }. This assumption can help to
determine a distribution of the default time.

We now present a risky bond valuation. Recall that the 0-coupon risky bond does
not a path-depended security and therefore there is a unique valuation formula for either
buyer or seller. This pricing formula is the present value benchmark formula

R.(t, T,0) = B(t, T)x(t>T) + B(t,1)d,(0)x(t<T)

where variables 0 i (w), 1= 1, 2, 3 are given above. There are several models are
commonly have been used in different continuous time applications to approximate the
random time 1 (®). The most popular model is when default is associated with the first
jump of the Poisson process. Taking into account this interpretation the well-developed
mathematical theory with adjusted for Finance terminology can cover the credit events
study. Let us briefly recall this well-known mathematical construction. Denote N ( t ) the
standard Poisson process. The function Q (t)=P{ 1 (w ) <t} is the probability that the
credit event occurred until t. Assume that the function Q ( t) is continuously
differentiable function that is the derivative

q(t)=Q'(t)isa continuous function on [ 0, T ]. The function P (t)=1-Q (t)
presents the probability that there is no default before the moment t. Let us introduce the
condition probability

P(t,T) =P{t(®)>T |t(0)>t}

The function P (t, T ) represents the probability that there is no default until T given that
there is no default before the date t. By definition of the condition probability we have

P{t(0)>TN1t(0)>t} P{t(w)>T} P(T)
P{t(0)>1t} T P{t(w)>t} P(t)

P(t,T)=

Then the probability of default over the period [t, T ]is Q(t,T) =1—- P (t,T).
Putting
T=t+Atwe have

O(t,t+At) = P() _If((;; A 1:((;)) At + o(At)
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Denote

P’ (1)

ST

(1.13)

The function A ( t) is called the hazard rate and
Q(t,t tAt) = A(t)At
The hazard rate at time t is the probability that the default occurred at next to t unit of

time if no default until the moment t. The solution of the differential equation (1.13) leads
to

P(s)=exp—[A(l)dl
From this formula follows that the probability that there is no default thaton [t, T ] is
T
P(t,T) = exp—j/z(z)dz (1.14)
The function A (t) can be estimated empirically. Hence the probability of default over
[t,T]is
Q(t, T)=P{t<1(0)<T}=1-P(t,T)
where P (t, T) is given by (1.14).

Remark. In modern credit derivatives research field a popular assumption is that hazard
rate follows a stochastic differential equation. For example

dA(t) = (a—br(t))dt + gJA(t) dw(t)

Note that this assumption is implied. Similar model equations are used for short-term
interest rates models for interest rates derivatives pricing. The term “implied” in finance
sciences means that constants a, b, g are calculated from historical data though there is no
statistical test has been used to justify the hypothetical distribution assumed for the
random process A ( t). It is somewhat uncommon in mathematical statistics. From
statistical point of view the implied distribution of the short term process A (t) is an
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assumption about hypothetical distribution with unknown parameters and according to
the mathematical statistics observed data must be tested in order to accept or reject the
hypothetical distribution. Note that the ‘implied’ technique is equivalent to accepting the
statistical hypothesis H o without making even attempt to test it.

The second remark we want to highlight here is an assumption that hazard rate A (
t ) is governed by the stochastic differential equation (SDE). It is not common in
applications such as for example operating research. Indeed the relationship (1.14) was
used as a definition of the hazard rate A ('t ). The SDE implies other than (1.14) definition
of the probability P (t, T ). This probability is now a random function and therefore can
not be considered as a standard probability. It might be make sense to interpret it as a
conditional probability. Then the problem is needed to be more accurate outlined. For
instance from the very beginning it should be explicitly formulate parameters of the
model that effect probability P (t) (or Q ('t)). Then it might become possible to
introduce conditional probabilities and consider the evidence in a favor of using the
special form of stochastic differential equation for hazard rate. Let us recall a
O.A.Vasicek result that widely used generalized in the modern theory of the derivatives
pricing. It might be used for stochastic interpretation of the hazard rate. Let companies
stocks are governed by the system

dAi(t) =rA;(t)dt+ oc;Ai(t) dW;(t)

i=1,2,...n, and EW; (t)W;(t)=ptfori+#j. Then Wiener processes W ; ( t) admit
representation

W, (1) =px (1) +/1-p &, (1)

where x (t)ande; (t),1=1,2,...n are independent Wiener processes. Indeed putting

x() =ad W, (1) + bU, si(t)=ﬁ(wi(t) - x()yp)

where the random process U is a Wiener process independent upon W; , i=1,2,...n
and

/e

a=
I+(n-1)p

JI+(n-1)p

and b

One can easy check that x (t) and € 1 ( t) are independent Wiener processes. In many
later publications the Wiener process x ('t ) has been interpreted as a common risk term
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and then one can study the conditional market dynamics with respect to the common risk
factor x (t ). We can remark here that by construction this common factor is a weighted
sum of the market risk factors W ; (t ) and an independent factor U (t ). From this
independence it follows that the factor U ( t ) does not relate to the market associated
with stocks A (t),1 =1, 2, ... n. If other components of the market exist it does not
make any effect and we can ignore their existence. Recall that U are usually attempted to
explained as a common economic factor though as we can see it does not relate to the
market at all. In this case it really independent factor as it was assumed above. Therefore
it should be defined explicitly similar to the Wiener process W ; ('t ) that could be
constructed from stock prices. If we use other orthogonalization method of the Wiener
system W ; (t) presented in [3e] then there is no common risk factor exist for the system
of stocks and it is not clear what type of conditional distribution could lead us to
stochastic hazard rate.

Now let us return to the risky bond valuation. There are several types of recovery
rates were presented above. In the case when recovery rate is a fixed portion of the face
value of the bond it is easy to display statistical characteristics of the risky bond. For
example assuming that default time is govern by the Poisson process we see that the first
two moments of the risky bond price are equal to

ERi1(t, T;0)=B(t, T)P(t>T) + AEB(t,t)yx(t1< T) =

:B(t,T)exp-jx(s)ds + A jB(t,s)x(s)ds

T T
ER2(t,T,0)= Bz(t,T)exp—jk(s)ds + A sz(t,s)x(s)ds
t t

The second case is in general similar to the presented above. In order to estimate the
default time distribution we need a realistic assumption regarding the bond price
evolution. The Poisson approximation of the default time implies that the corporate bond
spread suggests that the probability of default should increase over time. Note that if the
spread volatility does not increase over time the Poisson distribution of the default time
might be fail. If recovery rates are chosen in the form of 3) then risk and other statistical
characteristics can also be easy calculated.

A risky coupon bond pricing model in continuous time.

Assume that the default can occur at any time within time interval (t, T ]. Denote ti,
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1=0, 1, ..., N the dates of the coupon payments. As it was emphasize the long and short
positions are not perfectly symmetric. Assume that the bond issuer pays coupon $c to the
bond buyer at the dates t i . Then the bond seller remains a holder of the $c during the
period [0, ti). On the other hand bond buyer would own this amount starting from the
date t i until maturity or default which one comes first. The present value at the date t of
the cash flow that represents seller’s commitment can be written in the form

RY(t,T;0) = i w(t_, <1< ti){i cB(t,t;)+B(t,1)A B (1,T)} +
+x(r :T)[Ni cB(t,t;)+ B(t,T)A(F+c¢) ]+ (1.15)

+X(r>T)[icB(t,tj)+B(t,T)F]:ABEC)(t,r)x(tST)+B£°)(t,T)x(t>T)

Note that the pricing in the formula (1.15) depends on Treasury 0-default coupon bond
and the random default time. The buyer price at the date t is also a present value of the
accumulated cash flow taking at Tt AT =min ( T, 7). The periodic interest payments at
the moments of its delivery are invested immediately at risk free 0-coupon bond with the

same maturity at T. Then at the t A T the cumulative sum should be discounted by the
risk-free bond over the interval

[t,TAT]. Hence

RV (t,T; 0) = ix(ti_l£t<ti)B(t,t){[i_Z1 cB7'(t;,1)] +

+ABY(T, T)) + (1 =T)B(t,T)[§ ¢cB™'(t;,T) +A(F+c¢c) ]+

+ X(t>T)B(t,T)[icB’l(tJ,r) + F]

This formula can be rewritten in a more compact form
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RO(t,T;0) = ABY(t, 1) 2(t<T) + BO(t,T) z(1>T)

Using (1.15), (1.16) the risky bond can be evaluated for different hypothetical default
time and the bond forward price distributions.

The Reliability Theory uses several popular stochastic models that could be
adopted for default events. The most popular model of the default time is the exponential
model we introduced above. Bearing in mind stochastic interpretation of the event of
default we can note that exponential distribution is reasonable when default occurred
‘unexpectedly’. If a credit event results in ‘gradually’ internal deteriorated changes of the
debt-equity structure of a firm then it might make sense to use a normal approximation of
the default time. Denote
0 =E tand c = D 1. Then we see that conditional probability of the ‘no default prior T’
event given that there is no default until t can be represented in the form

P(t,T) =P{1t(@)>T|t(w)>t }=1-Q(t,T) =

1 T-0
1-d(—

\/ﬁ[ ((s ) 1
1 t—0
1-®d(——

where @ is the Gaussian cumulative distribution function.

There are other types of distributions that might be applied in capacity of an
approximation of the default time are Gamma and log-normal distributions. Recall that a
particular choice of the distribution parameters of the Gamma distribution reduces it to
the exponential or chi-squared distributions. It is also a possibility to use approximation
of the default time by the Weibull distribution which density is

Lo x“ 'exp(=Ax*), when x >0

f(x) =1

0 , elsewhere

The mean and variance of the Weibull distribution can be expressed by the simple
formulas using the Gamma function.

Floating rate risky bond valuation.
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Let us first consider a risk free floating rate bond contract. Beside the popularity of this
type of contracts it also can be applied to valuation of the interest rate swap. The
valuation method introduced below is based on the scheme presented in [3f].

Lett=to< t1 <...<tnx=T be interest rate reset dates and assume that value

A= tj-1 - tj does notdepend onj. Leti(tj,tj+ d)be the a floating rate at t;
which is applied for floating leg transaction at the time t j+ 1. For writing simplicity
assume that notional principal of the bond is $1. Otherwise all transactions should be
proportionally changed. The floating interest rates that would be applied for payments
from buyer to seller are represented in the table

Dates to t1 2 tN=T

Floating flow | -1 1(to,to+0) i(ti,t1 +93) l+i(tn-1,tN-1F9)

From the table one can see that one-dollar at date t n-1 is equal to
$1(tn-1) = SI(T)[1+i(tn-1,T)]
Hence in particular
$I(tn-1)i(tn,tn1)+ S(T)[1+i(tn-1, T)] = $I1(tn-1) [1+i(tn2,tN1)]

Therefore cumulative cash flow to the bond buyer over [ t, T ] is calculated backward in
time from T to t yields

$(t1)i(to, i)+ $(t2)i(ti,2)+. . +$(T)[1+i(tn-1, T)]=
= $(t1)i(to,t1)+ $(t2)i(ti,t2)+ .. +$(tn-1)[1+i(tn2tNn1)]=...
E () [1+i(te,t1)]=S1(t)
These calculations prove that $1 at date t is the price of the floating rate bond. Thus the
bond buyer paying $1 at t will receive equivalent cash payments over the period (t, T ].

The variability of the interest rate does not effect on valuation. The issuer of the floating
bond will receive equivalent cash flow with opposite sign. That is

Dates to t1 t2 tn=T

Floating flow | 1 | -i(to,te+8) | -i(ti,tt +8) |...| - [1+i(tn-1,tn-1+8)]

This floating rate bond valuation uses the present value reduction to justify pricing
model. The seller of the floating bond receives $1 at the date to = t. Investing it in
exchange of the sequence of $i (t«k-1,tx )attk,k=1,2, .., N— 1 payments and paying
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at the bond maturity T the amount of $(1 +1 (t n-1, t n )) would exhausted the up front
funding. Note that this construction actually does not depend on N and value 6.
On the other hand buyer estimates the future value of the contract using formula

FI(T) = i i(t,,,t,) B (t,,T)+ 1

j=1

This formula presents the date-T value of the floating bond payments and the A-
compounding interest rate formula should be applied for the bond value at T. To avoid
arbitrage one might expect that the floating bond and the 0-coupon bond issued by the
Government should provide the same rate of return. That implies in particular that

FI(T)/FI(t) =1/ B(t,T)

The solution of this equation is

FI(t) = B(t, T)[ i i(t_,,t;)B(t,,T)+ 1

j=1

As far as theratesi(tj-1,tj),j> 1 are unknown at the date t =t o it could be interpreted
as a sequence of random variables. Let

FB(s,[t,T];A)= ii(tH, t)xl{s=t}+1yxis=T}

j=1

A={ti;j=1,2,...,N} denote the cash flow generated by the sequence of payments
i(tj-1,tj)paidatt;,j=1,2,..,N—-2and 1 +1(t~-1,t~n)paidat T. Then by
definition the present value at t of the cash flow PV { FB (s, [t, T];A) } is equal to
$1(t) for any values A , t and T.

Now let us take a look at a risky floating bond contract. A seller of the risky
floating bond pays A-reset floating interest rate payments until default or maturity which
one comes first. At the default date that by an assumption can occur only at a reset date
the bond seller would pay to the bond holder a specified ratio 0 < A < 1. In return the
bondholder pays $s at initiation of the contract. The pricing problem is to derive the value
of ‘s  given the nonrandom recovery rate A and the distribution of the default time. The
bond buyer pays up front $s and receives from bond seller the cash flow until default or
maturity which one comes first. Thus
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s, = 2 (=t Y B(LE)I(E . 1)} +B(L,1)A]

i=1

This is the price that we used to call “seller” price. As far as valuesi(tj-1,t;),j>1are

unknown at t then any market price <s > implies the risk associated with the default time
distribution and deviation real i (t;j-1,t j ) from the model estimates of the corresponding
values. On the other hand the “buyer” price is

Se = 2 X(rztj)B(t,tj){[Z_:B_l(ti,tj)i(ti,ti)} +A]
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