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The credit risk along with the credit derivatives is a modern area of the financial
business. In recent years this field becomes the most successful innovation, which
accumulates significant cash flows as well as the highest attention within financial
community. In this notice we present some general comments concerning mathematical
techniques used for the credit risk modeling. We will not discuss here specific forms of
the credit derivatives.

Unfortunately looking at the progress in this area one might note that it has been
achieved using somewhat inaccurate modeling techniques. We highlight several
drawbacks related to the benchmark models that in turn imply a problem of using
correspondent software.

Next example illustrates an error of the benchmark plain-vanilla option price
definition using a very simple algebra.

Let S (t),t=1, 2 be a security price at date t and K a strike price. Assume for
simplicity that S(1) = K = $2 and there are two hypothetical securities value at the date t
= 2 which is also an option maturity date

$4 with probabilities 0.99
Si(2,0)={
$1 with probabilities 0.01

$4 with probabilities 0.01
$2(2,0)={
$1 with probabilities 0.99



The average return on the first security is equal to 98.5% and - 48.5% on the second
security. The volatility in both cases is the same 0.0891. One can easily to recall that the
binomial scheme suggests the same call option price C = 2/3 for either security. Thus, for
investors the binomial scheme suggests the option price that does not take into account
the real expected return on underlying security. Indeed one can see that the call option on
the first security in 99 cases out of 100 promises positive payoff and only in 1 case a loss.
With the second security the situation is opposite. Nevertheless in both scenarios
binomial scheme suggests the same price. We also note that there is a significant
difference in expected option returns. The expected rate of return on the call option for
the first security is about 197% =[ (4 —2)*0.99 —2/3 1/ ( 2/3 ) and for the second
security is - 97% = [ (4 —2)*0.01 —2/3 ]/ (2/3) that explicitly demonstrates failing of
the option pricing method. Indeed the present value of the future cash flows is different
but their spot prices are equal. This observation contradicts the understanding of the price
itself.

Recall that one of the basic interpretations of the spot price is the present value of
the future cash flow. In stochastic setting it means in particular that if the volatility of two
instruments is equal and expected returns are different then the spot prices of the two
instruments should be different otherwise the price is not correct. Sometimes using the
arbitrage argument as a necessary condition of the fair pricing could be helpful vehicle to
identify incorrect pricing. On the other hand an incorrect pricing does not automatically
leads to the arbitrage opportunity. More details could be found in [2].

There is a discrete space-time approach used for derivatives valuation. For the 0-
default options it is the binomial scheme. The above example is a simple one of the
binomial scheme. In a case when the chance of default could not be assumed equal to 0
the binomial approach was implemented by Jarrow and Turnbull, see for instance [7].
The core of the model is the risk neutral probabilities prescribed to the risky bond. Recall
that risk neutral (martingale) probabilities were first developed for the option valuation in
discrete space-time setting. In the above example we demonstrated that the risk-neutral
option price construction does not have any sense it looks also reasonable to highlight its
application to default studies. In the equity case presented above the security value S (1)
= 2 is known at t = 1. The value of S (2 ) is random with given probability distribution.
Risk neutralization replaces real world probability distribution by so-called martingale
probabilities. This transformed instrument used then for derivatives valuation only. That
is if an investor ask about the security price thenitis S (t), t = 1,2 supplied by the
original probability distribution. In risky bond evaluation the mistaken approach was
extended. The same risk neutralization framework was applied for risky bond valuation.
Follow [7] let v ( 1, 2 ) denote the value at t = 1 a zero-coupon bond issued by the firm.
The only date when the risky bond might default is assumed to be the bond’s maturity
t =2. The value of the risky bond at t =2 is a random variable. This variable admits two
values 1, if no default and 6 € [ 0, 1 ] if default occurred at t = 2. The value 6 is known
as the recovery rate. Having these two value at t = 2 and deterministic value at t = 1 one
can easy to construct “risk-neutral” probabilities. As it follows from the binomial scheme
the real world probability distribution of the states { 6, 1 } does not have any effect on
risk neutral probabilities, i.e. the risk neutral price at t = 1 is the same for either risky
bonds



1 with probability 0.001
vi(l,2) = |

0 with probability 0.999

1 with probability 0.999
va(1,2) = |

0 with probability 0.001

that in turn contradict the company ratings. It would be good if the rating companies have
not used risk neutralization in their business. In this comment we somewhat simplified
original reduced form approach by separating two different issues. The first one is the
interpretation of the default in the simplest discrete time case and the second one is the
interpretation of the default with the help of Poisson random process. In this case the
probability [ 1 -A (1) A ]is prescribed to the risk neutral probability of the

0 default scenario and A (1) A if default occurred at t = 2. Here the time interval

A =2 —1=1. These transformations make it possible to interpret the time of default as
the time of the first jump of the Poisson process. Starting from this point the well
developed mathematical techniques have been adjusted for the reduced form approach to
the credit derivatives valuations.

Now let us take a look at a credit derivatives structural model. The primary results
were introduced in [4-6]. In these papers a new canonical distribution was used to
describe losses of the large debt portfolio. This distribution plays now a key role in the
structural models as well as for CreditMark product of the Moody’s KMV. In the New
Basel Accord the regulatory capital of a Bank should be calculated using Internal Rating
Based method. Under this method the canonical distribution must be applied for
regulatory capital calculations.

Follow [4] we assume that Wiener Z ; processes are equally correlated and

E[AZ; (t)]>=At, EAZ;(t)AZ;(t) =pAt, 1#]
where AZ; (t) =Z; (t +At) - Z;(t),i=12,...n.

Statement 1. [4]. The Wiener processes Z i (t ) admit representation

Zi (1) =Jpx (1) +/1-p &, (1) M)

where x (t)ande; (t),1=1,2,...n are mutually independent Wiener processes. The
idea of the proof is presented bellow follows Vasicek’s private communication.

Let U (t) be a Wiener process independent on the given Wiener processes
Zi(t),1=1,2,...n. Putting

X(1) = a Y Z,(0) + BU o), ei(t)=ﬁ(z,-(r) — x()p)



where

\/; and b 1-»

I+(n-1)p it (n-1)p

one can check that x (t)and ei (t),1=1,2,...n are independent Wiener processes.
There are several pitfalls here that we wish highlight bellow.

Remark. It is clear that the proof of the statement 2 should be refined. Indeed the
decomposition used in the statement 2 is correct when and only when the assumption
regarding the Wiener process U ('t ) is true. If the Wiener process U ( t ) did not exist
then stated decomposition for the given system { Z 1 (t) } fails. In [6] it is stated that (1)
is not an assumption but a property of the equicorrelated normal distributed system. This
statement does not correct and does not correspond to the real situation. Also note that all
terms in (1) are depend on the number n by the construction.

Thus the main result [4,5] regarding existence of the limit distribution of the large loan
portfolio is subject to the assumption that for any system of Wiener processes

Z ={Zi(t),i=1,2,...n }(nis an arbitrary number) there exist a Wiener process

U( t) independent on the system Z. Here the Wiener process U( t ) might depend or
independent on n.

A new approach that at some degree is close to the structural model was
introduced in [3]. In this paper the presentation (1) is used indirectly in order to describe
joint defaults on underlying loans. Thus the problem that related to the construction of the
process U ('t ) does not exist in such model.

We comment that construction. Let M and Z; ,i=1, 2, ..., n be independent
random variables with mean 0 and variance 1. Define random variables X ; ,1=1,2,...,n
with a help of equality

X, =a, M + 4l1-a’ Z

where the constants a ; satisfy a condition: |a;| < 1. Let t; be the time of default of a i-th
obligator and Q ; is the cumulative distribution function ( cdf') of the random time t; and
H;i(x)isthecdfofZ;. Then

P{X, <x|M}=P{aM+.1-a’Z <x|M}=

(2)
X —a;m x —a,M
= P{Zi< —}lpou = H (/=)
1 —a; 1 —a;
Let F ; ( x ) denotes the cdf of the random variable X ;. Define mappings
x = F'(Q (1), t=Q(F(x)) €)



Hence x =x (t)and t =t (x ). Then from (3) it follows
Conclusion [3]. Conditionals on M defaults are independent. Indeed

F(0(1) —a, M |

4
o @)

This conclusion would follow from the fact that H ; are cumulative distribution functions
that independent on variables Z ; .

One could see that the link between (3) and (4) does not mathematically accurate. Indeed
the equality (3) deals with unconditional probabilities and left-hand side (4) relates to the
conditional probabilities. It is not difficult to present an example that shows that from
equality unconditional expected values of two random processes does not follows the
equality their conditional expected values. Indeed the Wiener processes w ( t ) and the
constant 0 have the same expectations equal to the 0 nevertheless the unconditional
expectation of and E { w (t) | F\" } =w (t)=0where F;\"=c {w(s),s<t}. Note
also that by the definition the random variables t ; and M do not have any relationship
between them. Therefore the derivation [3] leading to the equality (4) is correct for either
when the random variables X j and t ; are independent or when they are dependent. Hence
it follows that the construction introduced in [3] rather incorrect.

There is another approach to the credit risk modeling referred to as to the reduced
form of the credit risk [1]. This approach deals with the statistical data regarding the
default events ignoring structural parameters such as firm’s equity and debt costs.
Statistical data is used to help providing analysts by probabilities of credit events. In a
simple setting the default time is associated here with the first jump of the counting
process N ('t ). The Poisson process or its generalization can be considered as a model
example of the Process N (t). If1 = 1 ( ®) is a random time associated with a default
event then reduced form interprets it as

Qi(t|M):P{ti<t|M}:Hi{

T=min {t>0: N(t)=1}
The hazard rate A ( t) is defined with a help of conditional probability
P{t<t+ At|t >t} =A(t)At +to(At) (5)

With the reduced form models we can make two comments regarding to approach
rather than to the problems solution. The first comment is related to the notorious risk
neutral world and risk neutral probabilities. As it was shown above the Black Schloes
option price definition is incorrect and as a conclusion the risk neutral interpretation is
irrelevant for the derivative pricing. Therefore the reduced form approach interprets the
credit risk in the risk neutral environment and therefore is inappropriate. In addition recall
that the risk neutral setting has been used for the modeling of the stochastic short interest
rates.

The second comment relates to the drawback of the construction of the doubly
stochastic hazard rates that is the essence of the reduced form models. In these models the
stochastic intensity A (t) is assumed to be in the form



A(t) = A(X(t)),

(6)
dX (t) = p(X(t))dt + o (X(t))dw(t)

where A ( x ) is a nonrandom appropriate function. Our remark relates to the informal
substitution of the random process X ( t ) at the right hand side (5). Indeed it is clear that
it makes sense to consider first the case when the function X( t) is equal to the constant
scalar or vector x. It implies in turn that the default time t ( ® ) is also a function on x,
Thus on the first step of the modeling one should introduce the parameter x and explain
the way how it effects on default time. On the next step we need to justify the substitution
x = X (t) into both sides of the equality (5). On the right hand side of (5) this
substitution is correct when for example the function A ( x ) is a Borel measurable
function with respect to x (i.e. B -measurable). On the left hand side of the equality (5)
the corresponding substitution would be correct if the conditional expectation on the left
hand side of (5) is measurable with respect to c-algebrac { X (t) } X B. This comment
shows that setting of the model should be done more accurate. Besides that it looks
possible that some additional assumptions on the counting process N( t ) might be taking.
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