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Abstract. This paper deals with the option-pricing problem. In the first part of the paper 
we study in details the discrete setting of the option-pricing problem usually referred to as 
the binomial scheme. We highlight basic differences between the old and the new 
approaches. The main qualitative distinction of the new pricing approach from either 
binomial or Black Scholes’s is that it represents the option price as a stochastic process. 
This stochastic interpretation can not give straightforward advantage for an investor due 
to stochastic setting of the pricing problem. The new approach explicitly states that the 
options price is more risky than represented by binomial scheme or Black Scholes theory.  
       To highlight the difference between stochastic and deterministic option price 
definitions note that if a deterministic value is interpreted as a perfect or fair price we can 
comment that the stochastic interpretation provides this number or any other with the 
probability that real world option value at maturity will be bellow chosen number. This 
probability is a pricing risk of the option. Thus with an investor’s motivation of the 
option pricing the stochastic approach gives information about the risk taking. The 
investor analyzing option price and corresponding risk makes a decision to purchase the 
option or not. 
        Continuous setting will be considered in the second part of the paper following [1]. 
A significant conclusion can be drawn from the new approach. It is shown that either 
binomial or Black-Scholes solutions of the option pricing problem have serious 
drawbacks. In particular, the binomial scheme establishes the unique price for a stock  
that takes two values and strike price K, Sd < K < Su. According the binomial scheme this 
‘fair’ price does not depends on real probabilities. Thus two options with that promise 
fixed income at maturity with probability close to 1 or 0 do have the same price. This of 
course does not have any sense. From this follows that there is no sense in using either 
neutral probabilities or ‘neutral world’ in options applications for valuation interest rates 
or credit derivatives either theoretically or numerically.  
Recall that Black Scholes’ approach was introduced in [2] and then later the binomial 
scheme was published [3]. Here we first represent discrete scheme. In several examples 
we discuss two-period plain vanilla option valuation. Note that the scheme can be applied 
for arbitrary states of a security over one step market. Then we extend the discrete 
scheme over an application to exotic option-pricing referred to as a compound option. 
The compound option in Black Scholes setting was first studied in [4] and then in [5,6]. 
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Discrete time option valuation. 
 
To achieve proper perspectives in studying the option pricing let us begin by reviewing a 
discrete form and then we comment the risk-neutral probability construction. In two 
periods economy let us denote the current date by 0 and the maturity date by 1. The 
payoff to the European call option is defined as 
 

$ max ( S ( 1 ) – K , 0 ) 
 
where constant K is a strike price. To begin with option pricing, we first specify the 
meaning of  an “option price ”. 
When underlying security is supposed to be stochastic two questions may arise 
concerning the binomial scheme. It should be clear that the method of an option price 
should not depend on either values of the underline security nor the distribution 
of underlying security. What do depend on these parameters are the option values 
which have to be calculated.  
Let us specify an option pricing framework. Suppose a security can only move up or  
down; the price is then designated as  Su  and  Sd  respectively. If the security price goes  
up the call option has a value Cu; if it goes down, the call option has a value  Cd . The  
value of the call option if the security rises is Cu  = max {  Su – K , 0 },  and if the security  
falls, the value is Cd  = max {  Sd – K , 0 }. Suppose the investor is going to construct a  
hedge position such as the payoff B stays the same no matter which way the security  
moves. The initial position would be to hold the security, plus h units of the call option: 
 

Bo = So  +  h C 
 

The hedge ratio, h is chosen so that the ending payoff, or value B is the same no matter 
which way the security price moves. We establish the relationship that allows to find a 
unique value of  h  that will give a fixed payoff. Thus, the ending payoff is  
        
   B  =  Su  + h Cu   =  Sd  + h Cd     (1.1) 
 
The hedge position creates a less risky payoff. Solving the equation for h , the value: 
    

h  =  - [  Su  -  Sd  ] [Cu  -  Cd  ] 
- 1    (1.2) 

 
One other important thing should be noted about the hedge position. Because the ending 
payoff is fixed, or certain, it must be related to the annualized riskless rate r and maturity 
T. This is the present value of the ending payoff. B should be equal to the investment 
made to construct it: 

 
   Bo  =  (  1  +  r t ) – 1 B   
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Thus,  
 

   C =  (  1  + r t ) – 1 [ π Cu   + ( 1 – π )  Cd ]    (1.3) 
 

where  0  ≤ π  ≤ 1  and  
 

   π  =  [  So (  1 +  r t )  -   Sd  ]  [  Su  -  Sd  ] 
– 1   (1.4) 

 
If the option is worth less than this amount, the investor could make a greater return than 
on the risk free rate. In the case where the interest rate is continuously compounded  
the value (  1 + r t  )  should be replaced by  exp r t. The expression (1.3) is what is 

referred to as risk-neutral pricing and probabilities π  and    ( 1 – π ) are often referred to 
as risk-neutral probabilities or  equivalent martingale probabilities. We examine the 
option pricing formula (1.3) from the two points of view. Let’s recall option pricing 
problem solution. We introduce a construction of the European call option problem using 
the Black-Scholes approach. 
Let w ( t )  be one-dimensional Wiener process and stock price S ( t ) is the solution to the 
equation 
 

   d S ( t ) =  µ S ( t ) d t  +  σ S ( t ) d w( t )   (1.5) 
 
The European Call option on security   S ( t ) over a given interval  [ t , T ] is an 
agreement of buying shares at  $ max ( S ( T; t, x ) – K ,  0 ) at maturity  T , which is also 
known as the expiration date. Constant K  is a pre-established strike price. The European 
Put option gives the buyer the right to sell shares at  $ max ( S ( T; t, x ) – K ,  0 ). Here  
S ( T; t , x ) is the solution  of (1.1 ), such that  S ( t; t, x ) = x. The act of making this 
transaction is referred to as exercising an option. Black and Scholes gave the definition of 
the European call option price. By definition it is a nonrandom function that is equal to 
the value of the portfolio containing a certain number of stocks and bonds. In B&S 
interpretation, a bond is a financial instrument that is governed by equation 
 
   d B ( t ) =  r B ( t ) d t      (1.6)  
 
where  r  is a known constant interest rate. 
In the simple deterministic example below we show that popular derivatives pricing 
models, including Black Scholes' lead to arbitrage opportunity and therefore can not be 
used. Then we show that the mathematical derivation of the Black Scholes equation is 
also incorrect. The solution of the Black Scholes equation (BSE) 
 
 ∂ t C ( t , x ) +  r x  ∂ x  C ( t , x )  +   ½ σ ² x ²  ∂ x x  C ( t , x )  =  0  (1.7) 
 
with the boundary condition  
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    C ( T , x ) = max ( x – K , 0 ) 
 
represents the value of the European call option contract on a common stock,  which 
price is governed by the equation (1.5). Using probabilistic representation of the solution 
for the parabolic Cauchy problem, the Black Scholes equation solution can be written in 
the form 
 
 C ( t , x ) = E exp – r ( T – t ) max ( η ( T ; t , x ) – K , 0 )    (1.8) 
 

where  η (  l ; t , x  ),  l > t  is the solution of the Ito equation 
 

    d η ( l ) = r η ( l ) d l  + σ  η ( l ) d w ( l )    
 
such that  η ( t  ) =  x.    
It seems instructive first to examine correspondence of the Black-Scholes formula (1.8) 
to the binomial scheme represented above. The time values are  t = 0, T  = 1. Then 
continuous random variable w ( 1 ) - w ( 0 ) should be replaced by a random variable  δ  
that assumes only two possible values. Let  So  be the value of the stock at time 0 and  Su ,  
Sd   are the stock values at time 1. In conforming with the stock model  (1.5) we put  

 
S1  = So + � So + σ So δ 

 
Assume that the random variable S ( 1 ) takes values Su ,  Sd  with probabilities pu ,   
pd  =  1 -  pu ; the mean and the variance of the random variable δ  is 0 and 1 respectively. 
So  is a nonrandom then 
 

E S1 = Su pu +  Sd  pd   = So + � So 
 
Solving equation for � we obtain  
 

� =  [ Su pu +  Sd  pd   - So ] So 
- 1 

 
From the other hand of the equation 
 

E [ S1 - E S1 ]  2  = ( σ So )
 2 

 

has a unique solution for σ. Let  r ≥ 0  be a risk free interest rate. Then risk-neutral 
security price is  
 

η1   = So + r So +  σ So δ 
 
Then the values of the option price given by the formulae (1.3), (1.8) are different.  
By construction, the risk-neutral probabilities are independent of the real world 
probabilities. Therefore they hold their values when the real probability of the states  
Su  ( Sd )  tends to be 0 or  1. One can easily discover that in this case the state Su or Sd  
can be eliminated from consideration by making the real probability of the state, say  Sd                      
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equal to 0. The straightforward conclusion is that the binomial method of the option 
valuation (1.3) does not make sense.  
We scrutinize the Black-Scholes design and show that their option pricing solution 
admits arbitrage opportunity. This arbitrage arises when one compares rates of return on 
an option to an underlying security.    
Let S ( 0 ) = $10, S ( 1 ) = $16, and  K = $15,  r = 0. Applying formula (1.8) we can see  
that the Black-Scholes option price is 
 
C ( t , x ) = E exp – r ( T – t ) max ( η ( T ; t , x ) – K , 0 ) = max ( 10 – 15, 0 )= 0 
 
Indeed, the deterministic stock price implies that  σ = 0. On the other hand we can 
establish the option price by comparing the rates of return on two investment 
opportunities. These opportunities are stock or option investments. Thus,   
 

S ( 1 ) / S ( 0 ) χ { S ( 1 ) > K } = C ( 1 , S ( 1 )) / C ( 0 , S ( 0 ))  (1.9) 
 
or 
 

16 / 10  =   ( 16  -  15 ) / C ( 0 , S ( 0 )) 
 
Therefore,  
 

C ( 0 , S ( 0 )) = $0.625 
 
This price differs from Black - Scholes's price. In this basic example the Black and 
Scholes' solution provides a different rate of return on stock and its option and therefore 
could not be accepted as a definition of the option price problem.  
Here we highlight the main difference among the two option pricing approaches. Assume 
that a call option is at-the-money, the current security and strike prices are equal to $75. 
When security moves it will either go up to Su = $100 or down to Sd = $80. The risk-free 
rate of interest is not involved in calculations and should be assumed to be equal to r = 0. 
It can also be a chosen arbitrary if an investor follows a binomial scheme. The binomial 
approach first establishes the hedge ratio h. It can be found solving the equation  
 

  Su  - h Cu   =  Sd  - h Cd   
 
Thus Su  -  hCu   = Sd  -  hCd , where  
 

Cu  =  max { Su  -  K , 0 } = 25,  Cd  =  max { Sd  -  K , 0 } = 5 
 
Solving the equation for h, we get h = 1. As far as r = 0 then the future value of the 
portfolio Su  -  hCu   =  Sd  -  hCd = $75 should be equal to its present value at date 0. 
Therefore, 75 – C = 75 and C = $0. This example of the binomial scheme is a benchmark 
of an option valuation and it was represented in any college handbook. On the other hand 
in this particular framework it is possible to establish the option price that perfectly 
replicates the stock return. Indeed, let us introduce the elementary events 
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ω u = { S( 1 )  = 100 } ,  ω d = { S( 1 )  = 80 } 
 
Then the equation 
 

S ( 1 ) / S ( 0 )  =  C ( 1 ) /  C ( 0 ) 
 

results that C ( 0 ) = C ( 0 , ω ), where ω ∈  { ω u ,  ω d } and  
 

   18.75,  when ω  =  ω u  

 C ( 0 , ω ) =  { 

   4.6875, when ω  =  ω d   
 
The binomial scheme states that the call option price is 0, and therefore there is no reason 
to buy it. The new interpretation of the option price shows that investing in call option 
results the positive profit and will be beneficial regardless of the stock value at 
expiration. The drawback of the option price represented by binomial scheme is quite 
evident.   
Remarkably, the discount factor has not been involved. The risk free interest rate 
generated by the Treasury bond does have an effect on derivatives pricing, but not in the 
way as it was performed in the Black-Scholes theory.  
Let us consider the rolling dice example that can serve as an example of the stochastic 
stock price. Let  t = 0  be the initial time and   t = 1  an expiration date of the option. The 
set { 1, 2..., 6 } represents the set of all the possible values of the stock. The probability 
of the event { S ( 1 )  =  x ; x = 1, 2, ... 6  } does not depend on x and is equal to 1 / 6. We 
are trying to avoid some technical difficulties that will arise in the case when the payoff 
at maturity admits the value 0.  
The option price is a random variable which values are defined such that its rate of return 
replicates the return of the underlying security. Therefore the current option price is a 
function depending on the stock values at expiration. Note that if the option payoff 
admits the value 0 that is if the probability of the event { S ( T = 1 ) = 0 } is strictly 
positive then the current value of the option is assumed to be equal to 0.  
Letting K = $0.8, S ( 0 ) = $2  and applying equation (1.9) we arrive at the option price  
C ( 0 , 2 ) = C ( 0 , S ( 0 ) = 2 )  
 
Table1.1  Two time periods economy t = 0 , T = 1, S ( 0 ) = 2, K = $ 0.8 

S (  1  ) 1 2 3 4 5 6 
    C ( 1, S ( 1 ) ) 0.2 1.2 2.2 3.2 4.2 5.2 

       C ( 0 , 2 )  0.4 1.2 1.47 1.6 1.68 1.73 

 
Each entry in the third row of the table has the same probability of 1/6 as the 
correspondent value S (1). The calculation represented in the Table 1 is quite simple and 
cover the case when the option’s return can perfectly replicates the stock return. In a 
general case, when the possibility to replicate stock return by the option perfectly is 
impossible, we suppose that K  = $ 2.5. The payoff at the maturity is C ( 1 , S ( 1 ) ) = 
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max  ( S ( 1 ) – K ,  0 ) and then the correspondent call option price can be calculated on 
the equal rate of return basis as follow  
 
Table 1.2  Two time periods economy  t = 0, T = 1, S ( 0 ) = 2, K = $ 2.5  

S  (  1  ) 1 2 3 4 5 6 
  C ( 1 , S ( 1 ) ) 0 0 0.5 1.5 2.5 3.5 

    C ( 0 , 2 ) 0 0 1/3 3/4 1 7/6 

 
One can see that in this example the option payoff admits value 0. It occurs when stock 
price at maturity is equal to 1 or 2. The probability of such event equal 1/3. Since the 
option price in this case can not perfectly replicate the stock return we introduce a 
portfolio that does perfectly replicate underlying equity. Let P be a portfolio value which 
value at date  t = 0  is  
 

   P ( 0 , S ( 0 )) =  S ( 0 ) χ { S ( 1 ) ≤ 2.5 }  + C ( 0 , S ( 0 )) χ { S ( 1 ) > 2.5 } (1.10) 
 
At maturity date T = 1 the value of the portfolio is  
 

P ( 1 , S ( 1 )) =  S ( 1 ) χ { S ( 1 ) < 3 }  + C ( 1 , S ( 1 )) χ { S ( 1 ) ≥ 3 } 
 
and therefore the portfolio’s rate of return coincides with the stock return. Indeed, 
 

P ( 1 , S ( 1 )) / P ( 0 , S ( 0 )) = χ { S ( 1 ) < 3 } [ S ( 1 ) / S ( 0 ) ]  + 
 

+  χ { S ( 1 ) ≥ 3 } [ C ( 1 , S ( 1 )) / C ( 0 , S ( 0 )) ] = 
 

=  χ { S ( 1 ) < 3 } [ S ( 1 ) / S ( 0 ) ]  +  χ { S ( 1 ) ≥ 3 } [ S ( 1 ) / S ( 0 ) ] = 
 

=  S ( 1 ) / S ( 0 )  
 

Thus stock and the established portfolio offer the same rate of return for an arbitrary 
outcome associated with the stock value at maturity. Note that the portfolio at date t = 0 

contains random portions χ { S ( 1 ) < 3 } and  χ { S ( 1 ) ≥ 3 } of stocks and the call 
options respectively and replacing these random variables by its estimates such as their 
probabilities involves the risk. This is the risk that the owner of the portfolio meets when 
the portfolio return is below the return of underlying security.    
The next important problem of the option pricing is the uniqueness of the option price. 
This issue one should not mix with an amount an investor agrees to pay for the option. 
Note that an investor can also name it option price. By paying a certain premium for the 
option the investor can specify the return accepted in the deal and the risk associated with 
the event that the return occurs below than it is initially specified.  
To justify the uniqueness of the option price definition in stochastic environment consider 
two steps of economy t = 0, 1. Assume that the stock at maturity T = 1 holds two values  
Sd  < Su with probabilities pd, pu respectively. Assume for instance that K < Sd. Then the 
call option price is a random variable that has admitted two values 
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Note that option price is monotone decreasing function of the stock price. Let a one who 
does not accept stochastic option price definition wish to represent deterministic pricing 
solution. Here we need to recall the risk neutral pricing model arguments that had been 
used above. In addition to the above comments note that any non-random option price 
can not reconstruct underlying stock values. Therefore in the transition from the real 
world events describing stock values and deterministic option value some significant 
information is lost. On the other hand the stochastic portfolio with random portions of the 
stocks and options represents the same information as the underlying security itself.  
Now let us consider the most important real-world problem. How much an investor 
should pay for an option. There are two sides of the problem. Let an investor pays $M for 
the call option. How describe this investment position and how to compare two option 
prices to chose optimal price. Note that the term ‘optimal’ should be clarified.  
Return to the dice example which solution is presented in the Table 1.2. Let the investor 
thinks that the price of C# ( 0,  2 ) = $1/2 is the fair price for the call option. Then the 
average loss of this choice is  
 

1/6 [ 2 × ( - 1/2 )  +  ( 1/3 - 1/2 )  +  ( 3/4 -  1/2 )  +  (  7/6 – 1/2 ) ] =  - 1/24 
 
We can also calculate other statistical characteristics of the price C# ( 0,  2 ). Thus any 
option price implies the certain risk characteristics that represent risk exposure of the 
investor’s choice. This exposure can be expressed either in profit / loss terms or as return 
form. For instance using the above example the return representation of the risk means 
the calculation of the probability  
 

P { C ( 1,  S ( 1 )) / C# ( 0,  2 )  <  δ  }  
 

for any δ > 0. The other problem that we outlined above is how to find optimal option 
value Copt ( 0,  2 ). Note that meaning of the term optimal is not unique. One example of 

the optimal choice can be defined as follow. For given 0 < α, δ < 1 the optimal choice is 
the minimum number Cαδ (0, 2) such that 
 

P { C ( 1,  S ( 1 )) / Cαδ ( 0,  2 )  >  α  } > 1 -  δ 
 
Note that in the dice option problem the random variable C ( 1,  S ( 1 )) admits exactly 6 
different values and therefore the distribution of the random return  
C ( 1,  S ( 1 )) / Cαδ ( 0,  2 ) is a stepwise function.   
On the other hand it is possible to introduce another fair price. That is the expected value  
of the C ( 0, 2 ). Let us find this expected value for the dice problem. The values C ( 0, 2 ) 
are given in the Table 2. Therefore Cavg ( 0, 2 ) =  E C ( 0, 2 ) =  1/6 [ 1/3 + 3/4 + 7/6 ] = 
=  $3/8. In contrast with the price Cαδ ( 0, 2 ) which was constructed based on given risk 

characteristics the value Cavg ( 0, 2 ) specifies probability 1 -  δ for any given α.   

)S(
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  C,)S(
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Now, let us focus on the pricing problem over three time periods. This is more complex 
problem that highlights new factors that impact on the pricing.   

Denote 0 , 1 , T = 2 the current , intermediate, and maturity moments of time. Let 
us consider the example in which rolling dice is a model of the stochastic security. 
Assume that events { S ( j ) = q j } for  j = 1, 2 are mutually independent, q j = 1, 2, … 6 
and put K = $2.5, and S ( 0  ) =  $2. Applying equation (1.9) over the interval [ 0 , 2 ] we 
see that the call option price holds the same values as above in Table 1.2. Therefore the 
perfect portfolio should be taking in the form (1.10). This follows from the fact that cost 
of borrowing money is assumed to be equal 0. Now let us look at the intermediate 
moment of time t = 1. At this moment the stock price q takes values from 1 to 6. The 
probability of the event { S ( 1 ) = q }, q = 1, 2,…6  is independent on the value S ( 0  ), S 
( 2 )  and equal to 1 / 6. Thus the option price at time 0 is “double” random. It depends on 
two random variables S ( 1 ) , S ( 2 ) that form the trajectory of the security price over the 
interval [ 1 , 2 ]. We examine the possibility to exercise an option at a date 11 when the 
stock offers upper return than at maturity. This early exercise possibility suggests a 
higher option premium. Next table represents the option price when early exercise does 
not possible. 

 
 Table 1.3    Three periods economy  t = 0 , 1,  2 ; T = 2 , S ( t0  ) =  $2, K = $2.5 

S  (  2  ) 1 2 3 4 5 6 
C ( 0 ,  2 ) 0 0 1/3 3/4 1 7/6 

 

The Table 1.4 the stock values enclosed in the first column and the first row. The k×j-th 
entry in the Table 4 represents values of the call option C ( 11 , S ( 1 )) when S ( 1 ) = k  
and S ( 2 ) = j. The probability of the such entry is 1/36 for any k and j. 
 
 Table 1.4        Three time periods economy  t = 0 , 1, T = 2, S ( 0  ) =  $2, K = $ 2.5  

                   S (2) 
   S ( 1 )              

 
1 

 
2 

 
3 

 
4 

 
5 

 
 6 

1 0 0 1/6 3/8 1/2       7/12 
2 0 0 1/3 3/4 1 7/6 

3 0 0 1/2 9/8 3/2       7/4 
4 0 0 2/3 3/2 2       7/3 
5 0 0 5/6 15/8 5/2      35/12 
6 0 0 1 9/4 3        7/2 

 

Let at date t = 0 an investor assumes that S ( 1 ) = 5. The return on stock over interval  
[ 0 , 1 ] is equal to 2.5 per dollar and therefore the option’s return is the same. Indeed, the 
option’s return over [ 0 , 1 ] is C ( 1, 5 ) / C ( 0, 2 ) and therefore 
 
Table 1.5 

S  (  2  ) 1 2 3 4 5 6 
    C ( 1 , 5 ) 0 0 5/6 15/8 5/2 35/12 

C ( 0 ,  2 ) 0 0 1/3 3/4 1 7/6 

C ( 1, 5 )/C ( 0, 2 ) 0 0 5/2 5/2 5/2 5/2 
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From Table 1.5 it follows that with the dice-security example we do not have a chance to 
adjust option price by exercising it earlier than maturity. This unimproved setting stems 
from the fact that the stock price model is a random process with independent values at 
each dates t = 1,2 and with the same uniform distribution.    
Owner of the portfolio that replicates stock return should restructure the portfolio at 
future moments. To specify these changes we first form a portfolio that perfectly 
replicates stock at time t = 1. Thus, if S ( 1 ) = 5 then portfolio’s value at  t = 1 is 
 

 P ( 1 , 5 ) =  5 χ { S ( 2 ) ≤  2.5 } + C ( 1 , 5 ) χ { S ( 2 ) > 2.5 }  (1.11) 
 
In order to perform the portfolio reconstruction from the state P ( 0 , 2 )  to the state  
P ( 1 , 5 )  one needs to solve the equation   
 

P ( 0 , 2 )  + X  = P ( 1 , 5 ) 
or 

   X  =  P ( 1 , 5 )  -  P ( 0 , 2 ) =  3 χ { S ( 2 ) ≤ 2.5 }  + 
 

+ [ C ( 1 , 5 ) - C ( 0 , 2 ) ]  χ { S ( 2 ) > 2.5 } 
 
The value of  X  represents growth in value of the portfolio at time  t = 1. One can remark 
that the increment of the option price [ C ( 1 , 5 ) - C ( 0 , 2 ) ]  is a random with values of   
 
Table 1.6 

C ( 1 , 5 ) - C ( 0 , 2 ) 0 0 1/2 9/8 3/2 7/4 

 
As far as each value of the random variable C ( 1 , 5 ) - C ( 0 , 2 ), depends only on the 
value of  S ( 2 )  then the probability of the event is 1/6. Thus, expected expenses on 
reconstruction the hedge portfolio over [ 0 , 1 ] is  

 

E [ P ( 1 , 5 )  -  P ( 0 , 2 ) ]  =  3 P { S ( 2 ) ≤  2.5 }  + 
 

+ E [ C ( 1 , 5 ) - C ( 0 , 2 ) ]  χ { S ( 2 ) > 2.5 } = 5 7/8 
 
It is also of interest to the investor to display the difference between European and 
American types of the options. Considering three periods in economy we are able to 
compare the portfolio profitability for both option types. Let us consider the American 
option evaluation using the example that was represented above. Recall the prevailing 
opinion that in the case where the underlying asset pays no dividends, it is never optimal 
to exercise an American call option early. The equal rate of return rule for the economy 
with more than two periods can be studied in the similar form as for the two-periods 
European counterpart 
 

 S ( t ) / S ( 0 ) χ { S ( 2 ) > K }  = C( t , S ( t ) ) / C( 0 , S ( 0 ) )   (1.12) 
 
t = 1, 2. The only difference between two options are the values of the options at 
intermediate time t = 1 that effects the option price at date 0. The scheme of the European 



 11 

valuation along with the perfect replication portfolio was established by the formula (11) 
and presented numerically by the Table 1.5. American option can be exercised at any date 
t and its payoff is  

 
max  {  S ( t )  -  K ,  0  } 

       
Denote CA ( t , S ( t ) ; T ) the American option price at t when the stock price is S ( t ) 
and maturity date T. Then 
 

CA ( 0 , S ( 0 ) ; T = 2 )  =   CE ( 0 , S ( 0 ) ; T = 1 ) ) χ { S ( 1 ) ≥ S ( 2 ) } × 
           (1.13) 

× χ { S ( 2 ) > K } + CE ( 0 , S ( 0 ) ; T = 2 ) χ { S ( 2 ) > S ( 1 ) } χ { S ( 1 ) > K }   
 

Note, for example, that when the event { S (1) ≥ S (2) } is true then the rate of return on 
stock over the period [0, 1] is higher than the stock return over the [0, 2]. By the option 
price construction this conclusion also remains true for the option return. The formula 
(1.13) can be easily extended on the n-steps economy.   
There exists a class of contingent claims in which underlying securities are either options 
or other types of derivative instruments. Recall that options European or American or 
their combinations of the four basic option strategies: long call, long put, short call, short 
put are referred to as plain vanilla options. Any option that is not a regular plain vanilla  
is called exotics. 

Let’s consider a model example in which the underlying instrument is an option. 
This class is also called compound or split free options. Possible specifications are a call 
on a call or a put, and put on a call or a put options. Let C ( t, S ( t )) = C ( t, S ( t ); T, K ) 
denote the value of a plain-vanilla call option at date t  with maturity T  and  strike price K 
written on a security S (·). First consider option on a call option. The buyer of a 
compound call-call option at date t has the right to buy underlying call option with 
maturity date T at a fixed premium Cc ( Tc ) on a fixed date Tc > t in the future. 
We denote the price of the compound call on call option at date t with maturity Tc ,  

 t  ″ Tc  < T with strike price Kc  by  
 

  Cc ( t , S ( t ))  =  Cc ( t , S ( t ); Tc , Kc ; T, K ))  
 
Then payoff of the compound call-call option with strike price Kc and maturity Tc  is a 
delivery of a plain call option with a strike price K and an expiration date T. Note that the 
lifetime of the compound option is [ t , Tc ]. Thus  
 

Cc ( Tc )  =  Cc ( Tc , C ( Tc , S ( Tc ); T , K ); Tc , Kc ) =   
 

=  max { C ( Tc , S ( Tc ); T , K ) –  Kc , 0 }. 
 
Here we perform a discrete scheme to illustrate numerical calculations needed to 
establish the price of this exotic instrument. Let Kc  =  0.6,  Tc  = 1, K = 3,  T = 2. The 
data in the table 
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Table 1.7             

t = 0 t = 1 t = 2 
    S(2) = 6       p( 5, 6 ) = 1/4      

 S(1) = 5     p( 4, 5 ) = 2/3    S(2) = 5       p( 2, 5 ) = 1/8    

S(0) = 4  S(2) = 4       p( 2, 4 ) = 1/4 
 S(1) = 2      p( 4, 2 ) = 1/3    S(2) = 3       p( 5, 3 ) = 3/4 

  S(2) = 1       p( 2, 1 ) = 5/8 
  
represent evolution of the underlying security price over three periods of time t = 0, 1, 
and 2, along with the correspondent transition probabilities. From the table one can see 
that the security price at time 0 is $4, then at time 1 it can be either $5 or $2 with 
probabilities 2/3 and 1/3 respectively. At the event S (1) = 5 security can go either to the 
state $6 with probability 1/4 or to the state $3 with probability ¾. If at date t = 1,  
S (1) = $2 then security can move either to $5, $4, $1 with transition probabilities 1/8, 
1/4, 5/8 respectively. All transitions from one state to the other are assumed to be 
mutually independent The problem is to establish the value of the compound call-call at 
date t = 0 given Kc = 0.6, Tc = 1; K = 3, T = 2. We start evaluation from the date Tc = 1. 
Denote C (1; 5, 6 ) =  C (  t = 1; S (1) = 5, S (2) = 6 ) the value of the plain call option at 
time 1, given S (1) = 5, S (2) = 6. Note that the unique opportunity to avoid arbitrage is to 
put C( 1; 5, 6 ) = $2.5. Indeed, underlying security return over the interval [1, 2 ] is then 
equal to 1.2. Therefore the option return can replicate the security return for this 
particular event. Note that there is no other way to prescribe an option’s value. Indeed, 
the option pricing does not depend on distribution and one can admit that the probability 
of the event { S (1) = 5, S (2) = 6 } is close to 1 and therefore the joint chance of other 
states can be neglected. Then from the equation ( 6 – 3 ) / C ( 1; 5, 6 )  =  6/5 follows the 
established price. The same way of calculations bring us to the prices:  

 
C ( 1; 5, 6 ) =  2.5,    C ( 1; 2, 5 ) =  0.8,  
C ( 1; 2, 4 ) =  0.5,     C ( 1; 5, 3 ) = C ( 1; 2, 1 ) = 0.  

Thus,  

   2.5 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  5 , S ( 2 )  =  6 } 

     0.8 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  5 }            (1.14) 

   C ( 1; ⋅ ) = {   0.5 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  4 }  
      0  , otherwise 
 

 The random variable C ( 1; ⋅ ) represents a price of the underlying plain call option at 
date t = 1. Note that from (14) follows that  

    2 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  5 , S ( 2 )  =  6 } 

      1.6 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  5 }             

   C ( 0; ⋅ ) = {    1 , when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  4 }  
       0 , otherwise 
 

Note that E C ( 0; ⋅ ) = 2/6 + 1.6 /24 + 1/12 = 5.8/12,  E C ( 1; ⋅ ) = 2.5/6 + 0.8/24 +  

+ 1/24 = 5.9/12, E C ( 2, ⋅ ) = 3/6 + 2/24 + 1/12 = 8/12 = 2/3. This calculation performs 
the fact that optimal average strategy does suggest to buy the plain option for  
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$5.9/12 = $0.492 at t = 1 and exercise it at T = 2 because E C ( 2, ⋅ ) > E C ( 1, ⋅ ). The 

return on expected option values over [ 1, 2 ] is [ E C ( 2, ⋅ ) ] / [ E C ( 1, ⋅ ) ]. That is 
about $1.356 at t = 2 per $1 investment at t = 1. 
The direct analysis based on the precise option pricing solution shows that average return 
on call option is  
 

E [χ {S ( 2 ) > 3} × C ( 2; ⋅ )/C ( 1; ⋅ )] = [3/2.5]/6 + [2/0.8]/24 + [1/0.5]/12 = 5.25/12.  
 
That suggests less than $1 return at t = 2 per $1 investment at t = 1. This shows that the 
option price will not increase in average over [ 1, 2 ].Nevertheless the option price at t = 1 
that bellow than $2/3 offers increase in average value of the investment. In particular the 
price $5.9/12 at t = 1 looks reasonable enough. The investor’s risk associated with the 
event when investment return billow than 1 coincides with the probability of the event to 
lose all capital is  
 

Prob { C ( 2, S ( 2 )) <  5.9/12 } = P { S ( 2 ) < 4 } =  7/24  
 
That is about 29%.  
Now let us turn back to the compound option valuation. The date Tc = 1 is the expiration 
date of the compound option. The buyer of the compound call option has the right to buy 
underlying plain vanilla option for $0.6. The compound payoff received at the date Tc = 1 
is 

$max { C ( 1 , S ( 1 ); T = 2 , K = 3 ) –  0.6 , 0 }   (1.15) 
 
Therefore at the date Tc = 1 the buyer has the right but not an obligation to pay the strike 
price of $0.6 and in return to get plain call option with strike K = 3 and expiration date  
T = 2. Let us return to the recovery of the compound premium. From (1.15) it follows 
that compound payoff is 

     2.5 – 0.6  = 1.9 ,    p = 2/3 ×1/4  = 1/6 

Cc ( 1, C ( Tc , S ( Tc ); T , K ); T, Kc )  =  {     0.8  – 0.6  = 0.2 ,   p = 1/3 × 1/8 = 1/24 
       0 ,           p = 19/24 
 
Using values Cc ( 1, S ( 1 )) we enable to establish the compound option price at date  
t = 0. Indeed, the stock return over the interval [ 0 , 1 ] is either 5/4 or 2/4 with the 
probabilities 2/3 and 1/3 respectively. If the payoff to the compound call at Tc = 1 is 
equal to 0 then the value of the compound call at date 0 is obviously equal to 0. At the 
event when payoff is positive the return on stock and on the compound option should be 
equal. Otherwise as we mentioned above one can assume that the probability of a 
particular stock value that exceeds the strike price is as close to 1 that we can ignore the 
all other values. In this case we actually arrive at deterministic stock that uniquely 
establishes option price by replicating stock return. Note that continuous distributed stock 
can also perfectly be replicated by the option. This is the case when the lowest stock 
value is higher then option’s strike price.  
One can see that the investor pays compound premium at date 0 than pays strike price Kc 
at date 1 and in return he or she obtains the plain vanilla option that cost C ( 1, S ( 1 )) = 
= C ( 1, S ( 1 ) ; 2 , 3 ). Thus 
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 S ( 1 ) / S ( 0 )  χ { C ( 1, S ( 1 ))  >  0.6 }  =  Cc ( 1, S ( 1 )) /   Cc ( 0, C ( 0, S ( 1 ))   
 
If the underlying option exists on [ 0 , 1 ] then by definition  
 
S ( 1 ) / S ( 0 )  χ { S ( 2 ))  > 3 }  =   C ( 1, S ( 1 ) ; 2 , 3 ) / C ( 0, S ( 0 ) ; 2 , 3 )) 
 
and stock return on the left hand side can be replaced by the correspondent option return. 
The compound option premium at t = 0 in both cases is equal. Thus, 
     

      4/5 × 1.9 = $1.52,     p = 1 /6 

Cc ( 0 , 4 ) =  {    4/2 × 0.2 = $0.4 ,      p = 1 /24 
0 ,       p = 19/24 

 
Note that the average value and the standard deviation of the compound call-call option 
are  

E Cc ( 0 , 4 ) =  1.52 × 1/6 +  0.4 × 1/24  =  $0.27  
   standard deviation Cc ( 0 , 4 )  =  $0.319 
 
For the practical use assume that an investor pays compound premium, say $0.5 at the 
date 0 and the compound strike of $0.6 at the date t = 1. How to represent the buyer’s 
risk? Analyzing the situation we see that the only event that suggests profit is the event 

associated with the trajectory ⋅  =  { S ( 0 ) = 4, S ( 1 ) = 5, S ( 2 ) = 6 }. Indeed, the 
investor pays compound premium $0.5 at date 0 and then compound strike of $0.6 at date 
1 that is $1.1. In return the investor receives the assets which price at date 0 is $1.52. 
Therefore the positive balance is $0.42. The probability of such event is 1/6. Any other 
possible outcome leads to the loss. Thus, the compound option risk on the investment 
associates with the return that is below than 1 and therefore it coincides with the event   
 

{ C ( 1 , S ( 1 )) / 1.1   <  1  } 
 

The probability of such an event is 1 - P { Cc ( 1 , S ( 1 )) ≥ 1.1 } = 5/6. The average loss 
of exercising a compound option price is  
 

Expected losses  =  E [ Cc ( 0 , 4 ) – 1.1 ] χ { C ( 1 , S ( 1 )) <  1.1 }  = 
 

=  [ ( 0.4 – 1.1 ) × 1/24 – 1.1 × 19/24 ] = – $0.9 
 

Expected profit is  
 

E [ Cc ( 0 , 4 ) – 1.1 ] χ { C (1 , S ( 1 )) > 1.1 } = 0.42 × 1/6 = $0.07 
 
An important investment characteristic over [ t,  T ] can serve a ratio    
 

℘ ( t ,  T ) =  Expected profit/ Expected losses × 100%     (1.16) 
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We call it risk-effectiveness. Then the risk-effectiveness of the compound call-call 

investment is ℘ ( 0 ,  1 )  =  7.78%, that might be too low to attract an investor.  
Let us consider next specification of the compound option. In this case assume that 
underlying of the compound option is a put option. Assume for simplicity that the 
security data remains the same as in the Table 7. Then underlying plain vanilla put payoff 
at its expiration T = 2 by definition is P ( 2,  S ( 2 )) =  max { K  –  S ( 2 ) , 0 }. Therefore 
 
          0,   when S ( 2 ) = 6, 5, 4, 3  

P( 2, S ( 2 ) ) = { 
           2, when S ( 2 ) = 1 
 
From the equation 

 
it follows that  
 

            0,  when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  6 } 

0,  when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  5 }  

 P ( 1, S ( 1 , � ))  =  {  0,  when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  4 }          

   0,  when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  3 } 

   4,  when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  1 } 
      
The compound call-put option payoff at Tc = 1 is then can be written as 
 

Cp ( 1, S ( 1 ))  =   =  max { P ( 1 , S ( 1 ))  –  Kp , 0 } 
 
where Kp is assumed to be equal to Kc = 0.6. Solving the equation  

 
for Cp ( 0, S ( 0 )) bring us to the compound call-put premium 
 

   13.6 ,   p =  5/24 
Cp ( 0, 4 )  =  { 

      0   ,   p = 19/24 
 
The expected value of the compound call-put option price is then ECp ( 0, 4 )  =  $2.83. If 
an investor pays a premium of $2 at date 0 and the compound strike price of $0.6 at date 
1, then the profit exists only when the outcome is { S (0) = 4, S (1) = 2, S (2) = 1 }. Thus 
the investment of $2.6 might only bring $13,6 and therefore result in $11 of the pure 
profit. The probability of this event is 5/24. The event { P ( 1, S (1) ) <  Kp } represents 
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the risk associated with this investment. Expected losses, profit, and the profitability 
(1.16) are  
 

   2.6 × 19/24  =  $2.06 ,     11 ×  5/24 = $2.29 ,       ℘ ( 0 ,  1 ) =  111.17% 
 
correspondingly. This data for the long position looks much attractive for the investor 
than for the call-call option.  
We have studied two types of compound options, call-call and call-put. Now let us take a 
look at two other types: put-call and put-put options. For the put-call option we again use 
the same data given in the Table 1.7. Put option payoff at date Tc is  
 
   Pc ( Tc , S ( Tc )) =  max { Kc   –  C ( Tc , S ( Tc ); T , K )  ,  0 } 
 
Bearing in mind values of the call option C ( 1, S ( 1 );  2,  3 ) given above in (1.15) we 
see that   

 

0.6 ,  when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  5 , S ( 2 )  =  3 } 

Pc ( 1, C ( 1,  S ( 1 ))   =    {   0.6 ,  when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  1 }   

        0.1 ,  when ⋅  =  { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  4 } 
          0 ,   otherwise 
 
where  
      
Prob { S ( 0 )  = 4 , S ( 1 )  =  5 , S ( 2 )  =  3 }  =  0.5 ,  
Prob { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  1 }  =  5/24, 
Prob { S ( 0 )  = 4 , S ( 1 )  =  2 , S ( 2 )  =  4 }  =  1/12, 
Prob { Pc ( 1, S ( 1 ))  = 0 } =  5/24     
       
In calculating these probabilities we used the assumption that all transitions are mutually 
independent. Then taking into an account the equation 

 
it follows that  the put-call compound option price Pc ( 0 , 4 ) is a random variable with  
distribution  
 

values 0 0.2 0.48 1.2 

probabilities 5/24 1/12 0.5 5/24 
 
We would like to point out an interesting moment in the above calculations. One might 
note (14) that plain vanilla call option has the same price $0.6 for two different ways at 
time 1.  S ( 0 ) = 4, and S ( 1 ) can be either 5 or 2 then return on the stock is different 
though compound put payoff along two paths holds the same value 
    
Pc { t  = 1 ; S ( 1 ) = 5 , S ( 2 )  = 3 }  =  Pc { t  = 1 ; S ( 1 ) = 2 , S ( 2 )  = 1 }  =  0.6  
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The explanation of this phenomenon is that the price C (1, S ( 1 ); 2, K ) depends on σ-
algebra F 12 events generated by the values of S (·) occurred over the time interval  

[ 1, 2 ]. Therefore when the price C ( 1 , * ) admits the same value for two different ω is 
F 12 – measurable. On the other hand compound put pricing depends on the values S (·) 
over time interval [ 0, 1 ]. The distinction in stock return on [ 0, 1 ]  results in a 
compound put pricing.  
The expected value of the put-call compound option is about $0.51. An investor who 
purchases the put-call option for $0.3 at t = 0 and pays the strike price $0.6 at date t = 1 
purchases put-call option contract for the total of $0.9. The chance that the price of the 
underlying call option at date t = 2 will be bellow than $0.9 is  
 
P{ C ( 2, S ( 2 )) ≤ 0.9 } = P{ S ( 2 ) - 3 ≤ 0.9 } =  P{ S ( 1 ) = 5 , S ( 2 ) = 3 } +  
 

+  P{ S ( 1 ) = 2 , S ( 2 ) = 1 } =  1/2 + 5/24 = 17/24.  
 

and the average value of the losses are 3 × 1/2  + 1 × 5/24 = $1.71.  
The last compound option type is put-put option. By applying the same pricing methods 
for P ( 1, S ( 1 ) ) we see that the put-put payoff at Tp = 1  
 

 Pp ( 1, S ( 1 ))  =  max { Kp  –  P ( 1 , S ( 1 ) ; T , K ) ,  0  }  
 
is a random variable, where Kp =  $0.6, K = $3, T = 2. Then using (1.16) and that  
Pp ( 1 , P ( 1, S ( 1 )) =  max { 0.6  -  P ( 1 , S ( 1 )) ,   0  } we see that 
 

  0,6 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  6 } 

      0,6 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  5 }  

Pp ( 1 , P ( 1, S ( 1,� ))  =  {   0,6 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  4 }  

       0,6 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  3 } 

      0, when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  1 } 
 
Applying equation 

 
we figure out that the compound put-put price is a random variable 
 

       0,48 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  6 } 

         1,2 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  5 }  

Pp ( 0 , 4 )  =  {       1.2 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  4 }  

         0,48 when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  5, S ( 2 )  =  3 } 

         0,   when ⋅  = { S ( 0 )  = 4, S ( 1 )  =  2, S ( 2 )  =  1 } 
 
with the distribution 
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values 0 0.48 1.2 

probabilities 5/24 2/3 1/8 
 
The expected value of put-put compound option is $0.47. An investor who managed to 
buy put-put option say for $0.21 and paid a strike price of $0.6 at date t = 1 holds the risk 
5/24 to lose complete investment.  
 
     Exotic options. 
 
In the early 1980’s, exchanges in Amsterdam, Montreal, Philadelphia, and Chicago were 
traded in standardized foreign currency options. Now, currency options are available to 
many currencies. The Security Exchange Commission regulates the options exchanges in 
the US. In addition to the exchanges there is an over-the-counter market where the 
currency options are offered by the commercial banks and brokerage firms. Unlike the 
currency options traded on an exchange, these currency options are tailored to the 
specific firm’s interests. The number of units, strike price desired, and expiration date can 
be chosen by the clients. 
   In this paper we discuss several types of standard and non-standard options contracts. 
The standard options that can be reduced to the European and American options types are 
sometimes referred to as plain vanilla options. The non-standard options types are 
commonly called exotics and they usually divide into two main classes path-depended 
and path-independent. We provide a survey of some popular exotic options and 
simultaneously introduce their valuation. 
Recall some of the main definitions. A call (put) option is a contract between two parties: 
buyer and a seller. It gives the holder the right to buy (sell) an asset at a stated price 
(strike price, exercise price) on (European) or before (American) predetermined date, 
called maturity (expiration date). The current option price is called option price or 
premium.   
Let S ( T ; t , x )  be a price of an underlying asset at a future date T, T > t so that  
S ( t ; t , x )  =  x. Denote C ( t , x ) [ P ( t , x ) ] the call [ put ] option price at date t when   
S ( t )  =  x. Formally a plain vanilla option contract is defined by its expiration  and its 
payoff at the expiration date. Next we will use T as a date of expiration. Then call and put 
values at expiration are defined as follows: 

 
C ( T , S ( T ) )  =  max { S ( T ; t , x ) – K , 0  } 

          (2.1) 
P ( T , S ( T ) )  =  max { K – S ( T ; t , x ) , 0  } 

 
where t is a current date and x is the price of an underlying asset at t.  

The problem of the option pricing is to determine the call ( put ) option price at 
any moment of time t before the expiration date T. It is clear that the option price does 

not cost anything when payoff at maturity is equal to 0, and for any particular value Ξ of 
the asset at expiration there is a unique value of the option contract that replicates 
underlying stock return. The possibility that the underlying stock in the future admits 
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different values implies stochastic setting of the problem. We simplify the scheme of the 
pricing problem. Assume that an option can only be exercised at maturity T. Such setting 
can be interpreted as a two step economy. Next, we shall indicate the price adjustment for 
the continuous time and discuss the possibility to exercise the option prior to the 
expiration date. 

Let us make a comment regarding a binomial scheme that is widely used as a 
simplified model representing an option valuation. The main drawback of the binomial 
benchmark pricing is that this method prescribes the same option price that does not 
depend on real world states probabilities. To illustrate this inaccuracy let us consider an 
example. Lets say the asset price today is $2, strike price $3, and at the expiration date 
tomorrow the asset price is either $5 or $1. Then the binomial scheme represents the 
constant call option price that is independent upon distribution. Thus, the option price 
remains the same, constant, whether the probability of the event {asset price = $5} is 
0.0001 or 0.9999. One can see that such a distribution with a high reliability can be 
interpreted as deterministic. In the first case the call option payoff is 0 and therefore 
option price must be 0. In the second case the positive payoff suggests positive call 
option price. This remark should suggest a critical revision of the modern derivatives 
pricing theory. 

We begin with a new framework of the option pricing. The pricing problem 
implies the answer to the question what price should an investor pay for the option 
contract today given a particular payoff at the expiration?  

Let an asset price today be S ( t ) =  $29 and strike K = $29. If the price at 
maturity is S ( T )  =  Q > $29, then what is the call option price today? Note that for a 
particular value Q at maturity there is a unique value of the option that represents an 
equal rate of return on stock and the option. Other possible pricing will lead us to an 
estimate of the option price that will be introduced bellow. 

Consider the table in which the first line represents specified asset values at 
maturity. The values are chosen arbitrary only to illustrate the method used for 
calculations. The second line of the table shows the values of the call option payoff at 
date T, and the third line represents current option price (premium). We use the method 
that suggests the same rate of return on asset and the specified valuable option 
 

 

 
Table 2.1     x = S ( t ) = $29, K = $29 

S ( T ) 28 28.5 29 29.5 30 30.5 

C (T, S (T)) 0 0 0 0.5 1 1.5 
C ( t ,  x )  0 0 0 0.49 0.97 1.43 

 
Though these calculations are simple algebra the only problem that makes a difference 
between market participants is the distribution that an investor prescribes to the values of 
the underlying asset. Recall that the widely popular assumption in continuous time 
investment sciences is that the stock price is log-normal. The accurate investigation of 
this assumption does not affect the problems that we are studying in this paper. Recall  
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that the log-normal assumption has been commonly applied without statistically testing it. 
Therefore the corresponding models and parameter estimates are implied. This approach 
is quite popular in the investment sciences.  
We begin with the option valuation. Applying (2.2), it follows that  
 

 
We see that the option price is a random function. It is positive for the event when payoff 
of the option is positive and equal to 0 when payoff is 0. When option price is positive 
then the rate of return on an underlying asset and its option is the same. The possibility 
that the option’s payoff may be equal to 0 represents the fact that the option is a more 
risky financial instrument than the underlying security.   

Let us consider now of a standard (plain vanilla) credit option contract. This 
contract’s underlying are the exchange rates between two currencies. Though the setting 
of the problem is quite similar to the above constructions, some peculiarities need to be 
specified. Let K be a strike price measured in $ / £ and q ( t ) denotes the exchange rate at 
time t measured in the same units. That is £1 = $ q ( t ) and therefore a £1 can be 
interpreted as an asset that can be sold or bought on the $-market. All contracts are settled 
by delivery of the underlying currency. By definition, the contract payoff at maturity T is  
N max { Q ( T ) – K , 0 }, where  N  denotes a contract’s size. For instance, the size of a 
British pound call option contract traded on PLHX is N =  £ 31,250. Equation (2.2) now 
can be rewritten in the form of: 

 
Then the $-value of the call option contract at date t is  

 
Formula (2.5) holds regardless; whether the currency exchange rate is stochastic or 
deterministic. For instance, let N  =  £ 31,250, K = $/ £ 1.50,   
q ( T ) =  $/ £1.55. Then the payoff at maturity T is equal to 
 

£ 31,250 $/ £ ( 1.55 – 1.5 ) = $ 1,562.5 
 
Now, let us consider the two periods in the currency exchange market where 
q ( t ) = K = $/ £1.50 and  
 

qu  = $1.55,  pu  = 0.25 
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q ( T ) =  { 
qd  =  $1.48  pd  = 0.75 

 
The problem is to determine the call option price at the initial date t. For simplicity we 
define the option price related to the size N = £100 and this value could be easy replaced 
by an actual contract size to represent the real option’s value. Applying formula (2.5) it 
follows;  
 

$4.84   pu  = 0.25 
C ( t , q ( t ) ) =  { 

0   pd  = 0.75 
 
The average and standard deviation of the option price are 1.21, and 1.815 respectively. 
The return on exchange rate is a random variable with a given distribution 
 

1.0333, pu  = 0.25 
q ( T ) / q ( t )  =  { 

0.9867, pd  = 0.75 
 
for which the mean and the standard deviation are 0.9983 and 0.309 respectively. The 
return on a call option is equal to 1.0333 with a probability of 0.25, and 0 with a 
probability of 0.75. Note that the positive value of the option return coincides with the 
correspondent value of the return on an underlying rate of exchange. There might be a 
speculator who wishes to make a profit, agrees to receive 1.02% return on his investment. 
Then the only event that suggests this return is the event associated with the future rate qu. 
Therefore the maximum price that the investor might pay for the option is $4.90  =   
=  (qu – K ) / 1.02. The probability of the event is 0.25 that may not be enough to accept 

such a deal. Indeed the average rate of return would be only 1.02 × 0.25 = 0.255. If the 
investor accepts 2% premium on the expected return then the upper bound of the option 

price is 0.25× 4.90 = $1.225. This is one simple illustration of the discrete method of the 
option valuation. On the other hand an investor may ask a reasonable price for the option. 

Ignoring real additional expenses the investor can consider the option price ($/ £)Ξ that 
suggests equal expected return on an option and underlying exchange rates. This setting 
leads to the equation 
 

pu × [( qu – K ) /  Ξ ]  = pu × [ qu / q( t ) ] + pd × [ qd / q( t ) ] 
 

The solution of the equation is Ξ  = ($/ £) 0.1269. 
We now apply this method to a more complex problem that also involves an intermediate 
moment of time with more than 2 states at expiration. Assume that the value of 100 
British pounds over three dates 0,1,2 are given by 
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Table 2.2             

t = 0 t = 1 t = 2 
  q(2) = 186       p(185, 186 ) = 1/4 

 q(1) = 185,    p(180, 185) = 2/3    q(2) = 182       p(178, 182 ) = 1/8 

q(0) = 180  q(2) = 181       p(178, 181 ) = 1/4 
 q(1) = 178,    p(180, 178) = 1/3    q(2) = 179       p(185, 179) = 3/4 

  q(2) = 176       p(178, 176 ) = 5/8 
 
where p ( a, b ) represents transition probability from the state ‘a’ to state ‘b’. Assume 
that all transitions are mutually independent.  
Let us consider European call option with the strike price K = ($/ £)180. We begin option 
price construction moving backward in time. Let us first consider the span period [ 1, 2 ]. 
Applying the method we used above it is easy to see that 
 

5.968,   p (180, 185, 186) = 1/6 
C ( 1 , 185 )  =  { 

0,   p (180, 185, 179) = 1/2 
 
and 
     1.956,   p (180, 178, 182) = 1/24 

C ( 1 , 178 )  =  { 0.983,  p (180, 178, 181) = 1/12 
0,   p (180, 178, 176) = 5/24 

 
Then  
 

5.807,  p (180, 185, 186) = 1/6 
C ( 0 , 180 )  =  { 1.978,  p (180, 178, 182) = 1/24 

0.994,  p (180, 178, 181) = 1/12 

0,          p ( {180, 185, 179} ∪  {180, 178, 176} ) = 

                            = 2/3 × 3/4  + 1/3 × 5/8 = 17/24 
  
Here we denote the probability of the path {q (0) = a, q (1) = b, q (2) = c } as p (a, b, c) 

and {a} ∪  {b} the union of two events ‘a’ and ‘b’. We summarize the results of these 
calculations with the help of Table 2.3 
 
Table 2.3            

C( 0, 180 ) C ( 1, ωωωω ) C ( 2, ωωωω ) p (ωωωω) 
5.807    5.968 6 1/6 
1.978 1.956 2 1/24 

0.994 0.983 1 1/12 

0 0 0 17/24 

 
The probabilities in the fourth column are related to the events in each cell in the row. 
Now let us investigate feasible investor’s pricing strategy. The average return on the 
exchange rate over [ 0, 1 ] is E q ( 1 ) / q ( 0 ) = 1.015. The investor might be interested in 
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finding the option price that suggests the average return of 1.015. This expected price is 
the solution of the equation   
 

E C ( 1 , ω ) / 1.015  =  $1.116. 
 
Then if the investor pays $1.116 for the option, then the risk of this position is the 
probability   
 

P {C (1, ω) < 1.116} =  P [{C (1, ω) = 0.983} ∪  {C (1, ω) = 0}] = 1/12 + 17/24  = 19/24 
 
This high risk results from nonsymmetrical distribution of the stochastic exchange rate. 
Note that in this example one can reach an arbitrary high average return on an option by 
choosing the option price that is sufficiently small. But the risk of any price will not be 
less than 17/24. We can use the data provided by Table 2.2; to determine put option price. 
Let us consider an European put option with the strike price of K = 182. Repeating the 
previous steps used for the call option valuation we arrive at 

 
0,    p (180, 185, 186) = 1/6 

               P ( 1 , 185 )  =  { 

(185/179) × 3 = 3.1001,  p (180, 185, 179) = 1/2 
 
and 
     0,    p (180, 178, 182) = 1/24 

              P ( 1 , 178 )  =  {     (178/181) × 1 = 0.9834, p (180, 178, 181) = 1/12 

                                              (178/181) × 6 = 6.0682, p (180, 178, 176) = 5/24 
 
Then  

       
        6.1364,     p (180, 178, 176) = 5/24 

P ( 0 , 180 )  =  {     3.0168,     p (180, 185, 179) = 1/2 
        0.9945      p{180, 178, 181}) = 1/12 

0,      p{180, 185, 186} ∪  {180, 178, 182}) =  5/24 
 

The mean and the standard deviation of the put premium are 2.8697, 2.0598 
correspondingly. Let the investor pay $1 premium for the put option. Then the risk to 
receive less funds than invested at expiration is 7/24. This risk is associated with the 
events {q (2) = 186, 182, or 181}. If an investor decides to pay $4 then the risk is  
P {q (2) = 186, 182, 181, 179} = 19/24.  

Now let us consider the nonstandard derivative contracts. Exotic option is generic 
name that refers to variations of the basic options. Options are referred to as being path-
independent if their payoff does not depend on the path during the life of the option. First 
let us examine some exotic option contracts.  

Cash-or- nothing call or put options are defined by their payoff at maturity as 
 

Ccn ( T , q ( T ))  =  X  χ { q ( T ) > K } 
           (2.6) 
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   Pcn ( T , q ( T ))  =  X  χ { q ( T ) <  K }   
 
where X is a predetermined constant and q ( t ) is interpreted as the spot exchange rate in 

dollars per unit of foreign currency at time t, t  ≤  T. Note, that in contrast to the 
continuous payoff of the standard option (2.1) the cash-or-nothing options have 
discontinuous payoff. In contemporary financial books the cash-or nothing options are 
also known as digital or binary options. In this case the constant X usually assumed to be 
equal to 1. The valuation of options contracts follows the formula  
 

where N is the contract size expressed in foreign currency, K is the strike price, q (T)  is 
the currency exchange rate at date T. Let us use a numeric example. Assume that the 
underlying security data is given by the Table 2.2, N = X = 1. Then using the same 
algebra one arrives at the table 
   
Table 2.4             

Ccn ( 0, 180 ) Ccn ( 1, ωωωω ) Ccn ( 2, ωωωω ) p (ωωωω) 
0.9677    0.9946 1 1/6 

0.989 0.978 1 1/24 
0.9945 0.9834 1 1/12 

0 0 0 17/24 

 
Each row in the Tables 2.3 or 2.4 is the path of call option for some fixed elementary 

event ωo =  { q (0, ωo), q (1, ωo), q (2, ωo) }, and therefore for the fixed ωo the option’s 
rates of return coincide with the correspondent rates of return of the underlying exchange 
rate. This remark is valid for the other exotic options of the European type. 
 

Assets-or- nothing call or put option’s payoff at maturity is defined as 
    

Can ( T , q ( T ))  =  q ( T )  χ { q ( T ) > K } 
          
   Pan ( T , q ( T ))  =  q ( T )  χ { q ( T ) < K }   
 
The pricing formulas can be found from the equation (2.4). Then 
 

Can ( t , q ( t ))  =  q ( t )  χ { q ( T ) > K } 
 

  Pan (t , q ( t ))   =  q ( t )  χ { q ( T ) < K }   
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Gap options are those contacts for which call payoff is defined to be 
 

Cg ( T , q ( T ))  =  ( q ( T ) -  R  )  χ { q ( T ) > K } 
          
where  K > R. The value of the contracts can be represented by the (2.7) where  
X = q ( T ) – R. If  K < R then payoff can be represented as 
 

( q ( T ) -  R  )  χ { q ( T ) > K } =  ( q ( T ) -  R  )  χ { K < q ( T ) ≤  R } + 
 

+  ( q ( T ) -  R  )  χ { q ( T ) > R } 
 
Note that if the buyer of the Gap call option still has the right but not an obligation to 

exercise option, it is clear that for a particular exchange rate such that K < q ( T ) ≤  R 
the investor will not exercise it.  Indeed, why would the buyer pay $( K + R )  in order to 
receive less then invested? Thus the payoff amount is actually reduced to the standard 
option 
 

( q ( T ) -  R  )  χ { q ( T ) > K } =  ( q ( T ) -  R  )  χ { q ( T ) > R } 
 
The gap-put payoff is   
 

Pg ( T , q ( T ))  =  ( R  -  q ( T ) )  χ { q ( T ) < K }   
 
where  K < R. Then the gap-put price can be performed by the formula (2.7) where 
X = R – q ( T ). 
  
Paylater options are defined by their payoff as follows 
 

Cpl ( T , q ( T ))  =  ( q ( T ) -  K - Cpl ( t , q ( t )) )  χ { q ( T ) > K } 
           (2.8) 

Ppl ( T , q ( T ))  =  ( K  -  q ( T ) - Ppl ( t , q ( t )) )  χ { q ( T ) < K }   
 
where Cpl ( t , q ( t )) ,  Ppl ( t , q ( t ))  are premiums to the options specified at date t and 
paid only on the exercise of the options. These are up-front payments paid at date t. One 
might think that paylater payoff can be negative. We show that it is impossible under the 
interpretation of the option price that is introduced in this paper. To produce the valuation 
of the problem let us look at benchmark formula (2.5). The solution to this equation is  

  
The put problem solution can be represented in the similar form. Bearing in mind that the 
payoff of the paylater option depends on its premium, we arrive at the equation  
 

))(,(
)(

)(
))(,( TqTC

Tq

tq
tqtC lplp =

)9.2(})({]))(,()([
)(

)(
))(,( KTqtqtCKTq

Tq

tq
tqtC lplp >−−= χ



 26 

 
Solving the equation for Cpl ( t ,  q ( T ) ) we get the call paylater option solution 
 

 
 
Similarly,  

 
The solution of the paylater option problem in Black-Scholes’ setting can be found for 
example in [7]. Their approach to the solution construction is different, therefore we 
make some remark to their design. In [7] the payoff of the call option was decomposed 
into sum of two terms  
 

[ q ( T )  -  K ] χ (q ( T ) > K )  -  Xc χ (q ( T ) > K ) 
 
where Xc  is an unknown constant. The first term then was interpreted as the ordinary 
option payoff. Though the value Xc was considered as a constant, the second term was 
interpreted as the binary option payoff with the option premium Xc. Bearing in mind this 
interpretation the value Xc + K was interpreted as the paylater option premium. It is easy 
to see that the correctness of this decomposition is doubtful as far as Xc relates to paylater 
option and not to the cash-or-nothing option. Furthermore, Xc is not a constant it by 
payoff definition is an unknown function in t. 
In the Table 2.5 we enclose the valuation of the paylater call option, when underlying is 
the value of foreign currency unit. Its value is given in Table 2.2. 
 
Table 2.5             

Cpl ( 0, 180 ) Cpl ( 1, ωωωω ) Cpl ( 2, ωωωω ) p (ωωωω) 
0.2.911    2.9919 3.089 1/6 
0.9944 0.9889 1.0056 1/24 

0.4978 0.4958 0.5022 1/12 

0 0 0 17/24 
 

Indeed, applying the formula (2.10′) we see that 
 

   [185 / (185 + 186)] (186 – 180) = 2.9919,    p = 1/4  × 2/3  = 1/6 
C ( 1, 185 )  =   {  

   0,      p = 3/4 × 2/3  = 1/2, 
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   [ 178 / (178 +182 )] ( 182 – 180) = 0.9889,  p = 1/8  × 1/3  = 1/24 

C ( 1, 178 )  =    { [ 178 / (178 +181 )] ( 181 – 180) = 0.4958,  p =  1/4 × 1/3  = 1/12 

   0,      p = 5/8 × 1/3  = 5/24, 
 
      2.9919,   p  =  1/6 

C ( 1, 185 )  0.9889,   p  =  1/24 
C ( 1, q ( 1 ))   =    {     =  {  0.4958,   p  =  1/12 
   C ( 1, 178 )  0,       p  =  17/24, 
 
 
   2.911,     p  =  1/6 

0.9944,   p  =  1/24 
C ( 0, q ( 0 ))   =    {   0.4978,   p  =  1/12 
   0,       p  =  17/24, 
                   186 – 180 – 2.911  =    3.089 

C (2, q ( 2 )) = [q ( 2 ) – K – C (0, 180)] χ {q ( 2 ) > K} = { 182 – 180 – 0.9944 =  1.0056 
                   181 – 180 – 0.4978 =  0.5022 
                0 
 
Note, that for the simplicity we omitted index ‘pl’ that specifies paylater option. One 
might see that the risk characteristics of the paylater call option as well as other exotics 
call option with the same strike price that have been introduced above, coincide with the 
correspondent risk characteristics of the standard European option with the same strike 
price. All these options offered the same return even though their premiums and payoffs 
are different. 
 
A collar contract payoff at maturity T is defined as  
 

I ( T ) = min { max { q ( T ) ,  K1  } ,  K 2  }}. 
 
Note, that this payoff can be rewritten in the form  
 

I ( T ) =  K1 χ { q ( T ) ≤  K1 } +  q ( T ) χ { q ( T ) ≤  (  K1 ,  K2  ] } +   
           (2.11) 

+  K2  χ { q ( T ) >  K2 } 
 
Below, we introduce the standard arguments that perform the valuation idea. Using an 
identity   
 

χ { q ( T ) ≤  K } = 1 - χ { q ( T ) >  K } 
 
one can see that 

 

χ { q ( T ) ∈  (  K1 ,  K2  ] } =  χ { q ( T ) >  K1 } - χ { q ( T ) >  K2 } 
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Therefore, 

 

I ( T ) = K1  -   K1 χ { q ( T ) >  K1 } +  q ( T ) χ { q ( T ) >  K1 }  -  
 

- q ( T ) χ { q ( T ) >  K2 }  +   K2  χ { q ( T ) >  K2 } = K1  + 
 

+  [ q ( T )  -   K1 ] χ { q ( T ) >  K1 } -  [ q ( T )  -   K2 ] χ { q ( T ) >  K2  } 
 
The right hand side of this equality is equal to a portfolio holding $K1 cash, long 

European call with the strike price K1 , and short European call with the strike price K2.  
This decomposition of the I ( T ) is not a unique representation. Indeed, it can be easily 
checked that  
 

I ( T ) =  K1  +  K2  -  q ( T ) +  [ q ( T )  -   K1 ] χ { q ( T ) >  K1 } -   
 

-  [ K2 - q ( T ) ] χ { q ( T ) <  K2  } 
 

Thus, collar payoff is equivalent now to the value of the portfolio that contains  
$( K1  +  K2 ) cash, short stock, long European call, and short European put. The price of a 
collar contract at any time prior to the expiration coincides with the price of the portfolio.   
We introduce the direct evaluation of the collar contract. From formula (2.11) it follows 
that collar payoff is a collection of three hypothetical financial instruments with payoffs   
 

I1 ( T ) = K1 χ { q ( T ) ≤  K1  }  
     

I2 ( T ) = q ( T ) χ { q ( T ) ∈  (  K1 ,  K2  ] } 
 

I3 ( T ) = K2 χ { q ( T ) >  K2  }  
 
maturity T. Then the collar contract price at date t is  I ( t )  = I1 ( t )  + I2 ( t )  +  I3 ( t ) , 
where 

 
A chooser or as-you-like option is the next exotic option type. 
A holder of this option can choose whether the option is a call or a put after a specified 
period of time. Consider a chooser option that matures at moment Tch ,  the maturity of 
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the underlying call and put denote Tc , Tp  respectively. Here  min (Tc , Tp ) > Tch . Thus, 
the values of underlying call and put at date Tch  are C ( Tch , q (Tch ) ; Tc , Kc  ) ,  
P ( Tch , q (Tch ) ; Tp, Kp  ); where  q ( t ) is the call and a put deliverable security, and K 
with subscript c and p as correspondent strike prices. To start evaluation of the chooser 
option it is necessary to establish payoff to the option. The payoff to the chooser option is  
 
co (Tch , q (Tch ))  =   max { C ( Tch , q (Tch ) ; Tc , Kc  ) ,  P ( Tch , q (Tch ) ; Tp, Kp  )  } 
 
Then 

 
Note that:  
 

C (Tch , q ( Tch ); Tc , Kc )) χ { C ( Tch , q (Tch ) ; Tc , Kc ) ≥  P ( Tch , q (Tch ) ; Tp, Kp ) } =   
 

                        = C (Tch , q ( Tch ) ; Tc , Kc )) χ { q ( Tc )  > Kc }, 
 

P (Tch , q ( Tch ) ; Tp , Kp )) χ { C ( Tch , q (Tch ) ; Tc , Kc ) <  P ( Tch , q (Tch ) ; Tp, Kp ) } = 
 

           =  P (Tch , q ( Tch ) ; Tp , Kp )) χ { q ( Tp )  < Kp , q ( Tc )  <  Kc } 
 
Therefore,  

 
The solution of the equation (2.12) can be written in the form 
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An interesting point is that a chooser option has some peculiarities that distinguish it from 
other derivatives. The payoff of the chooser option does not specify the strike price and 
therefore this contract can not be viewed as call or put options. More realistically this 
type of derivatives could be named as a forward-choice option contract. That is why it 
may be reasonable to perform its valuation.  
Let the underlying asset be the pound value described in Table 2.2. Let a call option have 
the strike price Kc = $180 and expiration at Tc = 2. The values of the call option is given 
in Table 2.3, and the put option with the strike price Kp = $183 expired at Tp = 1. Assume 
that the chooser option expiration date Tch = Tp = 1. Then the payoff of the chooser 
option at date 1 is  co ( 1 ) =  max { C ( 1, q ( 1 ) ; 2, 180 ) ,  P ( 1, q ( 1 ) ; 1, 183 ) } and 
equals to 
 
  5,    P { q ( 1 ) = 178 } = 1/3 
co ( 1 ) =   { 2.9919, P { q ( 1 ) = 185,  q ( 2 ) = 186 } = 1/6 
  0,  P { q ( 1 ) = 185,  q ( 2 ) = 179 } = 1/2 
 
Then the values of the chooser option at date 0 could be found by solving the equation 
 

or 
 
   5.0562, with probability 1/3 

co ( 0 ) =  { 2.911,  with probability 1/6 
   0,  with probability 1/2. 
 
 A cliquet or ratchet option is a series of at the money options, with periodic settlement, 
resetting the strike price at the current price level, at which the option locks in the 
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difference between the old and new strike prices and pays that difference out as the profit. 
This profit might be paid out at each reset date or could be accumulated until maturity. 
Thus a cliquet option can be thought as a series of options that settles periodically and 
resets the strike price at the spot level. Let us introduce a n-years cliquet option with k-
resets annually. Let t j, i be reset moments of time, j = 0, 1, … , n ; I = 0, 1, …k – 1 and T 
a maturity. The amount that will accumulate at maturity over the time interval [ t ,  T ] is 

 
  Here t = to. This formula covers the case when an option writer pays out reset 
differences periodically. Let us denote the underlying of the cliquet option q ( s ) =  

= q ( s ; t , x ), s  ≥  t  and C ( t , x ; T , K ) the value of the European call option at date t 
with strike price K and expiration date T. Then,  
 

 
Therefore the pricing equation for the cliquet option call can be taking in the form 
 

 
 
Then the solution to this equation is 
 

 
Let us represent the value of the cliquet call option based on the information in Table 2.2. 
The cliquet call option is a random variable, which can be calculated using the above 

formula. For example the value of the option along the path ω = {180, 185, 186} is equal 
to [( 185 – 180 ) + ( 186 – 185 )] / [( 185/180 ) + ( 186 / 185 )] = $2.9494. The probability 

of such event is p (ω) = 1/6. Next option value is equal to [ 185 – 180 ] / [ ( 185 / 180 ) ] 
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= $4.8596 and has been realized along the path ω = {180, 185, 179}. Using the same type 
of calculations we arrive at  
 
    2.9494, p ({180, 185, 186}) = 1/6 
   4.8596, p ({180, 185, 179}) = 1/6 
Cq ( 0, 180 ) = { 3.9121, p ({180, 178, 182}) = 1/24  
   2.9503, p ({180, 178, 181}) = 1/12 
   0,  p ({180, 178, 176}) = 5/24 
 
 It is possible to introduce the cliquet option put by defining correspondent stream 
payments at reset dates. Then payoff at maturity can be expressed by  

 
The value of the cliquet put option at date t is 
 

 The price formulas for the call and put options assume that the payoffs to the holder take 
place immediately at the reset dates. The value of the cliquet put option with the 
underlying is given by Table 2.2 is 
 
   0,  p ({180, 185, 186}) = 1/6 
   5.8054, p ({180, 185, 179}) = 1/6 
Pq ( 0, 180 ) = { 2.0225, p ({180, 178, 182}) = 1/24  
   2.0225, p ({180, 178, 181}) = 1/12 
   1.9777, p ({180, 178, 176}) = 5/24 
 
Couple options are almost similar to the cliquet options. Cliquet option payout to the 
holder could take place either at prespecified reset dates or at maturity. The only 
distinction between couple and cliquet is that couple options at reset dates switch its 
value to the smaller of the current spot level and the initial strike price. If payments are 
delivered to the holder at reset dates then the cash flow generated by the couple call  
option is 

 
Here, t = t 0  < t1 < … < t N = T are reset dates, min [ q ( t j ) , K ] is reset strike price. The 
price of the call and put couple options is 

}0,),;(),;({max 1,,

1

00

xttqxttq ijij

k

i

n

j

+

−

==

−∑∑

),;(

),;(

}0,),;(),;({max

),(

,

1,
1

00

1,,

1

00

xttq

xttq

xttqxttq

xtP

ij

ij
k

i

n

j

ijij

k

i

n

j

q
+

−

==

+

−

==

∑∑

∑∑ −
=

}0,],)([min)({max
1

0

1∑
−

=
+ −

N

j

jj Ktqtq



 33 

 
Based on information in Table 2.2 we see that the value of the couple call option  
K = $182 can be written as follows: 
 
Table 2.6             

Ccp ( 0, 180 )  ω  p (ω) 

4.4241 { 180, 185, 186 } 1/6 
4.8596 {180, 185, 179} 1/2 

3.9121 {180, 178, 182} 1/24 

2.9503 {180, 178, 181} 1/12 
0 {180, 178, 176} 5/24 

 
Only the first value is larger than the correspondent value of the cliquet option. Other 
values of the couple and cliquet options remain the same. 
 
A ladder option payoff is somewhat similar to a cliquet option with an exception that the 
gains are locked in when the asset price breaks through a certain predetermined rung. The 
strike price is then intermittently reset. The ladder option is also known as a ratchet or 
lock-in option. 

Let us consider the ladder option on exchange rates q ( s ) ,  s  ≥  t. An investor buys the 
ladder option with a strike price Q = Qo. Thus, a ladder start with the height Q and goes 

upwards in the step interval of  ε > 0  until the maximum rung of QN ,  Qj  = Q + jε,  
j = 0, 1, … , N. At maturity T the buyer of the ladder call would receive a payoff 
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We see that this payoff reflects the possibility to maximum value of the underlying price 
over lifetime of the option. In order to construct a solution of the ladder call option we 
used an equation  

 

 
and therefore,  

 

 
Let us consider valuation of the ladder call option based on exchange rate data given in 
Table 2.2. Putting Q = $1.78, Q1 = $1.80, Q2 = $182, Q3 = $1.84 we see for example that 
 

Clad ( 0, 180; ω1 ) = [ 180 / 185 ] × ( 186 – 178 ) × 
         

         × χ { max [ 180, 185, 186 ] ≥ 184 } = 7.7838,   ω1 = { 180, 185, 186 } 
 

Clad ( 0, 180; ω2 ) = [ 180 / 176 ] × max [ 182 – 178 , 176 – 178 ] × 
 

× χ { 178 ≤  max [ 180, 180, 179 ] < 184 } = 1.0056, ω2 = { 180, 178, 176 }. 
 
This type of calculation lead us to the representation of the option price as follows: 

 
Table 2.7             

Ccp ( 0, 180 )  ω  p (ω) 
7.7838 { 180, 185, 186 } 1/6 

1.0056 {180, 185, 179} 1/2 
4.0449 {180, 178, 182} 1/24 

4.0449 {180, 178, 181} 1/12 

4.0909 {180, 178, 176} 5/24 
 

Note for example that other modification of the ladder option can be introduced by 
performing another payoff     
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In this particular case, the payoff is really similar to the ladder and assumes a finite 
number of values 0, Q1 - Q, … , QN – Q  with the probabilities  
 

Values 0 Q1 - Q Q2  - Q QN  - Q 

Probabilities P0 P1 P2         PN 
 

where Pj  =  P{ Qj   <  max q( t ) ≤  Qj +1 }, j = 0, 1, … , N - 1, PN  =  P{ max q ( t )≥QN }.  
The purchaser of the ladder put will receive payoff at maturity of 

 
Here, Q – k  < Q – k +1 < …< Q – 1  < Q is a rung sequence. The pricing equation for the 
ladder put is 
 

 
The value of the put ladder option is  

 
Extendible options have become popular over a recent time for a volatile underlying. 
There are two types of extendible options: holder’s and writer’s extendible. A holder’s 
extendible option is the option that can be extendible by the holder of the option at 
maturity Te. An additional premium is required to do so. The holder of an extendible  
option on call or put receives at maturity Te a choice to get an ordinary call option payoff 
or by paying a predetermine premium $d to the writer at time Te , to get the call option 
with an extended maturity. This means that the payoff at Te is 

 

}Q)(max{)(}Q)(maxQ{)QQ ( N1nnn

1-N

0n

> −+≤<−
≤≤+≤≤=

∑ tqQQtq
Ttt

N
Ttt

χχ

}Q)(min{])(Q[

}Q )(minQ {})(Q,QQ{max 

K-

j-1j-j-

K

0j

≤−+

+≤< −−

≤≤

≤≤+
=
∑

lqTq

tqTq

Ttt

Ttt

χ

χ

}

{

}Q )(minQ {})(Q,QQ{max 

}Q)(min{])(Q[
)(

)(
max))(,(

j-1j-j-

K

0j

K-

≤< −−+

+≤−=

≤≤+
=

≤≤≤≤

∑ lqTq

lqTq
tq

lq
tqtP

Tlt

TltTlt
lad

χ

χ

}0,),;)(,(,)({max))(,(

}0,),;)(,(,)({max))(,(

dTKTqTPTqQTqTP

dTKTqTCQTqTqTC

eeeeeeh

eeeeeeh

−−=

−−=

})(min{
)(

)(
min

))(,(

)(
Qlq

tq

lq

tqtP

Tputpayoff

TlTlt
lad

<=
≤≤≤≤

χ



 36 

Here C ( t , x ; K , T ) ,  P ( t , x ; K , T ) are values of the European call or put options at 
date t , x  =  q ( t ) , K is the strike price, T is the European call and put options expiration 
date Te  <  T, and d is an additional premium paid by the holder for having the 
opportunity to apply the extendable option’s feature. This is somewhat a more complex 
derivative instrument than introduced above. This complexity is bounded with the fact 
that a few new factors are involved to the problem. A valuation equation can be 
represented in the form 

 
Note that the indicator in the right hand side of the equality contains a union of two 
events.  

 
Then, 
 

 
Taking this into account and solving a call option price equation we arrive at the 
premium formula 
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Another reciprocal problem can arise here. Given the option price derive the extended 
premium d. Actually, this inverse problem is more difficult than the initial one, and is not 
any less important because this extendible premium is the contract agreement provision. 
The formula for the holder extendible put option can be performed in the similar way 
 

 
 

 
 
Writer extendible option allows the seller of the option to extend the option with zero 
cost. The writer can extend the option at the maturity Te if the option is out-of-money. 
Recall that an option call or put is out-of-money if its value is equal to 0, this option is 
immediately exercised. Thus the payoffs at maturity Te of the writer extendible calls and  
puts respectively are 
 

 
 
These bring us to valuation formulas 
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where C ( t , q ( t ) ; T , K ), P ( t , q ( t ) ; T , K ) are European call and put option prices 
respectively. Note that European underlying options can also be replaced by American 
options. 
 
The Extreme or Reverse Extreme exotic options were introduced in 1996. These 
options payoff at maturity T is determined by the difference between the maximum 
values on compliment subintervals constituted the lifetime of an asset.  If t < T0  < T then 
the payoffs to the call option at maturity for the extreme and inverse extreme options are  
 

 
The payoffs to the put option at maturity for the extreme and inverse extreme options are 
 

 
We would say that associations of these derivative contracts with a well-known classical 
interpretation of the call and put options are not very obvious. The pricing formulae to 
these derivative contracts can be written in the form 
 

 
respectively. The put option formulae can be obtained from above formulae by replacing 
max operations by its min counterpart. 
Let us represent the valuation of the extreme call option using the second form. Here  
t = 0, To = 1, T = 2. Then the payoff to the option on exchange rate given in Table 2.2 is  
 

max { max ( 185, 186 )  –  max ( 180, 185 ) ,  0 } = 1, 
max { max ( 185, 179 )  –  max ( 180, 185 ) ,  0 } = 0, 
max { max ( 178, 182 )  –  max ( 180, 178 ) ,  0 } = 2, 
max { max ( 178, 181 )  –  max ( 180, 178 ) ,  0 } = 1, 
max { max ( 178, 176 )  –  max ( 180, 178 ) ,  0 } = 0 
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Though there are no ambiguities in these calculations, it probably makes sense for the 
discrete schemes to exclude from the payoff differentials of two maximums the common 
point of time. This will lead us to the different payoff and therefore a different premium. 
Having payoff values it is easy to present an option premium. 
  
Table 2.8             

Ceh ( 0, 180 )  ω  p (ω) 

0.9677 { 180, 185, 186 } 1/6 
0 {180, 185, 179} 1/2 

1.978 {180, 178, 182} 1/24 

0.9945 {180, 178, 181} 1/12 
0 {180, 178, 176} 5/24 

 
 Other path-dependent option class is Lookback options. Note that the extreme 
exotic option introduced above sometimes is considered as a subclass of lookback 
options, called extrema lookback options. Two primary forms of the options exist based 
on strike price definition. First form is defined as lookback options with a fixed strike  
price. The payoffs of the call and put options are 

 
respectively. Hence, the values of lookback options can be given as: 
 

 
 
The premium on a lookback option on exchange rate given in Table 2.2 is  
 
Table 2.9 K = 180            

Clx ( 0, 180 ) Plx ( 0, 180 ) p (ω)  ω  
5.8065 0 1/6 { 180, 185, 186 } 

5.0279 1.0056 1/2 {180, 185, 179} 

1.978 1.978 1/24 {180, 178, 182} 

0.9945 1.989 1/12 {180, 178, 181} 

0 4.0909 5/24 {180, 178, 176} 
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The lookback options with floating strike price were introduced in 1979, these can be 
settled in cash or asset in contrast with the fixed strike options in which cash settlement is 
only admitted. The payoff of the lookback call and put options with floating strike price 
are 

 
An attractive feature of the lookback options with floating strike price is that they are 
never out-of-the-money. The generalization on American options is straightforward. The 
formulae representing current options price are 

 
Asian options  are quite popular exotic options. Underlying of Asian options is the 
average price of an asset. One can see that Asian underlying has lower volatility than the 
asset itself. There are three main subclasses of the Asian options in which underlying are 
arithmetic, geometric, or weighted averages. A further specification is that the introduced 
underlying can be used either as a security or as a strike price. Therefore, the payoffs for 
Asian call options can be represented as  

 
and Asian put payoffs for average underlying and average strike price are  

 
The American style of the Asian options is also available for trade.  
The pricing formulas are   
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where q ( t j ) = q ( t j ; t , x ) , j = 0, 1, … , n. For the Asian options that involve the 
geometric or weighted averages to obtain valuation formulae one needs to replace 
arithmetic average in the above formulae by their geometric or weighted average 
counterparts. Calculations of the Asian call options based on data given in Table 2.2 
result in   
 
Table 2.10            

Cas ( 0 ) Casa ( 0 ) p (ω)  ω  
3.5484 2.2581 1/6 { 180, 185, 186 } 
1.3408 0 1/2 {180, 185, 179} 

0 1.978 1/24 {180, 178, 182} 

0 1.326 1/12 {180, 178, 181} 
0 0 5/24 {180, 178, 176} 

 
 
Compound option. 
In the first part we introduced an example that illustrates compound option valuation. 
Here we present general compound option formulas. There exists a class of derivatives in 
which the underlying securities are options or other types of contingent claims. Let an 
underlying instrument is an option. This class is called compound or split free options. 
Possible specifications are a call on a call or a put, and put on a call or a put. Let  
C ( t , q (t )) = C ( t, q ( t ); T, K ) be the value of an option at date t  with the maturity T  

and  the strike price K written on security q (*). First consider option on call option. We 

denote the compound call option price at date t with maturity t  ″ Tc  < T with strike price 
Kc  as  
 

Cc ( t , q ( t ))  =  Cc ( t , q ( t ); Tc , Kc ; T, K )).  
 
Then,   
 
Cc ( Tc , q ( Tc ); Tc , Kc ; T, K )) =  max { Cc ( Tc , q ( Tc ); T , K ) –  Kc , 0 } 
 
Having defined the compound payoff we can provide the valuation of the call on call 
option. The equal rate of return on compound call and underlying option given that the 
underlying option price is positive yields the equation 
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Substituting corresponding terms in the equation and then solving, 
 

 
Note that the price of the compound option depends on the underlying security price  
q ( t ) at three future dates t  <  Tc  <  T.  
Let us consider other types of compound option. The pricing equation for the compound 
put on European call option is       

 
Solving this equation for the current moment of time leads to the formula  
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The pricing formulae for compound call or put written on European put option can be 
obtained in a similar way   
 
 

 
 

 
Let us consider a derivative contract that admits a choice between two or more 

foreign bonds at a future moment of time. This type of the contract sometimes called 
options on maximum or minimum of several risky assets or rainbow options. 
Rainbow options get their name from the fact that there more than one exchange rate. 
Assume that at maturity T a holder of the contract has the right to choose a bond: 
domestic or foreign. It is clear that the face value of the bond contracts can not be 
arbitrary. There are two possibilities to formalize setting of the problem. First, we can 
assume that at initial moment t, the size of two contracts is the same. Let q ( t ) be the 
spot exchange rate between two currencies. That means that  
  
1 unit of foreign currency ( at date t )  =  q ( t ) units of the domestic currency ( at date t )   
 
This is referred to as a direct quotation. The indirect quotation that shows number of units 
of the foreign currency per domestic is the reciprocal value 1/q ( t ). Here we ignore the 
bid-ask spread differential. The value of  a 0-defualt and 0-coupon bond is either 
domestic or foreign at time t with the face value of 1, and is defined by the relationship  
 

1 unit currency ( at date T )  =  B ( t , T )  1 unit currency (at date t ) 
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This equation can also be interpreted as a relationship between future and current values 
of the currency. For example the domestic currency is US dollars and foreign is GB 
pounds. Then the payoff at maturity T can be established in the form 
 
max { $ 1 ( T ) ,  ₤ 1 ( T ) / q ( t ) } =  max { 1,  q ( T )  /  q ( t ) } $1 ( T )  (2.13) 
 
Other possibility is to use the forward exchange rate. In this case, at date t we suppose 
that the values of two contracts look equal. The payoff to this contract is 
 

max { 1 , q ( T )  /  q ( T ; t , q ( t ) ) } $1 ( T )   (2.14) 
 

where q ( T ; t , q ( t ) ) , T  ≥  t  is the forward exchange rate established at date t, quoted 
on T –  t period given that q ( t ; t , q ( t ) ) =  q ( t ). The price of the contracts is their 
present values of the payoff  

 
for (2.13) and (2.14) payoffs respectively. The generalization of the currency-rainbow 
option on three or more underlying currencies is straightforward. Indeed we will use  
Bi ( t , T ), i =  0, 1, .. n  to denotes bonds values at date t with maturity T. Index 0 is 
arranged for US Treasury bond. Denote q i  ( t ) the direct quotation of i-th currency with 
respect to domestic. If the payoff to the option at maturity is chosen as 
 

max { 1o ( T ) , 11 ( T ) / q 1 ( t ) , …, 1n ( T ) / q n ( t )  } 
 

Then the price of ( n + 1)-rainbow option at time t is  
 

 
Let us consider the case when n assets and cash are involved in payoff. We will see that 
the pricing formulas for the contract that deals with the maximum or minimum of several 
stocks differ from the one presented above. It follows from the fact that foreign exchange 
market instruments can be compared if they have the same currency format and therefore 
the exchange rates play a significant role in valuations.  

Let Sℑ  ( t ) ,  …,  S n ( t ) be a price of n – assets. Assume that the payoff at maturity T is 
given as: 

   max { Sℑ  ( T ) ,  …,  S n ( T ) , K } 
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where a constant K ≥0 is a cash. The reasonable price for the contract at time t is the price 
that suggests the maximum possible return among underlying instruments. Therefore, 

 
where rainbow ( t ) is the contract price at date t. The fractions on the right hand side can 
be simplified. Indeed, putting S i  ( T ) =  S i  ( T; t , S i  ( t )) and having noted the linear 
dependence of  S i  ( T ) on initial data one can see that the right hand side of the equation 
above can be rewritten in the form 
 

max { Sℑ  ( T ; t , 1 ) ,  …,  S n ( T ; t , 1 ) , B ( t , T ) } 
 
 
The linear dependence of an asset on the initial data follows from the fact that N assets 
price N S ( t ) over an arbitrary period of time is governed  by the same low as the single 

asset time N , that is  N × [ S ( T ; t , S ( t )) ] =  S ( T ; t , N S ( t )), and this observation  
does not depend on a format in which the asset price is established. Hence, 
 

 
The rainbow with minimum of n risky assets is similar to the best of n assets and 
changing the operation from max to min one can easily represent the correspondent 
formulas. 

Other type of the exotic derivatives is a spread option. The payoff for European 
calls and puts at maturity T with the strike price K can be written respectively as 

 
The generalization on n-assets in long position and m-assets in short is obvious. The price 
of the call on spread can be expressed by an equation 
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The price of the put can be written in analogous form 
 

 
Now, we will study a popular type of exotics options called a barrier option. This family 
of options is path-dependent because the value of the option at maturity depends on the 
path of the spot exchange rate over the lifetime of the option. The value of the barrier 
option is specified by an event whether or not the underlying spot exchange rate crosses a 
given barrier. There are two different ways of intersections that can be regarded as ‘in’ 
and ‘out’ and two types of the level ‘up’ or ‘down’ with respect to the initial value of the 
spot rate. A double barrier option is a barrier option with two ‘up’ and ‘down’ barriers. 
The down-and-out (knock-out) option specifies a low barrier. If the spot exchange rate 
breaches this barrier during the life of the option then the option payoff is equal to 0. In 
some cases a rebate can also be provided if the barrier is crossed. Denote d as a barrier 
level, K a strike price, d < K. The payoff to the down-and-out call option is defined as 
 

Cdo ( T, q ( T )) = max { q ( T ) – K , 0 } χ ( min q ( l ) > d , l ∈  [ t , T ] ) 
 

Let τ d denote the first moment when process q ( l ), l  ≥  t attains the level d. Then  
 

χ ( min q ( l ) > b , l ∈  [ t , T ] )  =  χ ( τ d  > T  ) 
 

with probability 1. The payoff to the down-and-out put option at maturity T is defined   
 

Pdo ( T, q ( T )) = max { K - q ( T ) , 0 }χ ( τ d  > T  ) 
 
The down-and-in (knock-in) call option exercise price at maturity T is 
 

Cdi ( T, q ( T )) = max { q ( T ) – K , 0 } χ ( τ d  ≤  T  ) 
 
And the down-and-in (knock-in) put option exercise price is defined as 
 

Pdi ( T, q ( T )) = max { K – q ( T ) , 0 } χ ( τ d  ≤  T  ) 
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Assume that exchange rate data is defined by the Table 2.2 and K = 180, d = 178. Then, 
 
Table 2.12  K = 180, d = 178           

Cdo ( 0, ω ) Cdo ( 1, ω ) Cdo ( 2, ω )  ω  p(ω) 
5.8064 5.9677 6 {180, 185, 186} 1/6 

0 0 0 {180, 185, 179} 1/2 
0 0 0 {180, 178, 182} 1/24 

0 0 0 {180, 178, 181} 1/12 

0 0 0 {180, 178, 176} 5/24 

 
Table 2.13  K = 180, d = 178           

Pdo ( 0, ω ) Pdo ( 1, ω ) Pdo ( 2, ω )  ω  p(ω) 
0 0 0 {180, 185, 186} 1/6 

1.0056 1.0335 1 {180, 185, 179} 1/2 
0 0 0 {180, 178, 182} 1/24 

0 0 0 {180, 178, 181} 1/12 

0 0 0 {180, 178, 176} 5/24 

 
Table 2.14  K = 180, d = 178           

Cdi ( 0, ω ) Cdi ( 1, ω ) Cdi ( 2, ω )  ω  p(ω) 
0 0 0 {180, 185, 186} 1/6 

0 0 0 {180, 185, 179} 1/2 
1.978 1.956 2 {180, 178, 182} 1/24 

0.9945 0.9834 1 {180, 178, 181} 1/12 

0 0 0 {180, 178, 176} 5/24 

 
Table 2.15  K = 180, d = 178           

Pdi ( 0, ω ) Pdi ( 1, ω ) Pdi ( 2, ω )  ω  p(ω) 
0 0 0 {180, 185, 186} 1/6 

0 0 0 {180, 185, 179} 1/2 
0 0 0 {180, 178, 182} 1/24 

0 0 0 {180, 178, 181} 1/12 

4.0909 4.0455 4 {180, 178, 176} 5/24 

 
Let us present a risk analysis for the investment in down-and-in call option. The average 
option price at date 0 is 0.16529 times the size of a contract. For example, the contract 
size is 1000 units of foreign currency ( £ ). Thus, the mean value of one contract of  
down-and-in call option costs $165.29. Assume that an investor wishes to compare the 
two scenarios in which the prices are a $100 or $200 that represents 0.1 or 0.2 per £. If 
the option price is 0.1 then the chance to exercise the option at expiration is when next 

union of two events are realized {180, 178, 182} ∪  {180, 178, 181}. The probability of 
such an event is 1/24 + 1/12 = 1/8. The expected rate of return is equal to 
 

( 1 / 24 ) × [ 1.978 –  0.1 ] / 0.1  +  ( 1 / 12 ) × [ 0.9945 –  0.1 ] / 0.1 = 1.5279 
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If the option price is 0.2 then the expected rate of return is about 
 

( 1 / 24 ) × [ 1.978 –  0.2 ] / 0.2  +  ( 1 / 12 ) × [ 0.9945 –  0.2 ] / 0.2 = 0.7015 
 
The break even mean price is the solution to the equation 
 

( 1 / 24 ) × [ 1.978 –  x ] / x  +  ( 1 / 12 ) × [ 0.9945 –  x ] / x  =  1 
 
That is x = 0.14693 or $146.93 per contract. The mean value analysis does not cover the 

risk exposure. For the given options price, risk is a random variable ℜ  that represents 
possible rate of return values x i , i = 1, 2, … along with correspondent distribution 

function Φ ( x i )  =  P ( ℜ  < x i ). In case when the down-and-in call option price is 0.1 
per £, then  
 

  0,    P ( ℜ  < 0.9945 ) = 21/24 

ℜ   =  {   0.9945   P ( 0.9945  ≤ ℜ  <  1.978  ) = 1/12  

1.978 P (1.978  ≤ ℜ  ) = 1/24 
 
One can note that this rate of return risk performance can be easily converted into 
currency form as it was presented in the earlier examples. On the other hand, the rate of 
return performance uses one parameter rate of return, and the currency risk form uses two 
parameters; current and future spot exchange rates that may be inconvenient.    
 Now let us look at the next type of barrier option in which ‘up’ barrier is 
specified. If the spot exchange rate goes above the ‘up’ barrier then an up-and-out option 
ceases to exist. A rebate that should be specified at initiation of the contract may also be 
provided as the barrier is crossed.  
The payoff to the up-and-out call/put options at maturity T is defined as  

Cuo ( T, q ( T )) = max { q ( T ) – K , 0 }} χ ( τ u  > T  ) 

Puo ( T, q ( T )) = max { K –  q ( T ) , 0 }} χ ( τ u  > T  ) 
 

respectively. Note that, 
 

χ ( τ u  > T  )  =   χ ( max q ( l ) < u , l ∈  [ t , T ] ) 
 
The payoff to the up-and-in call, put options at maturity T are defined as  

 

Cui ( T, q ( T )) = max { q ( T )  –  K , 0 }} χ ( τ u  ≤ T  ) 

Pui ( T, q ( T )) = max { K  –  q ( T ) , 0 }} χ ( τ u  ≤ T  ) 
 
Assuming that the underlying exchange rate given in Table 2 and putting K = 180,  
u = 185 we have 
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Table 2.16 

Cuo ( 0, ω ) Cuo ( 1, ω ) Cuo ( 2, ω )  ω  p(ω) 
0 0 0 {180, 185, 186} 1/6 

0 0 0 {180, 185, 179} 1/2 
1.978 1.956 2 {180, 178, 182} 1/24 

0.9945 0.9834 1 {180, 178, 181} 1/12 

0 0 0 {180, 178, 176} 5/24 

 
Analogously, we see that 
 
Table 2.17 

Puo ( 0, ω ) Puo ( 1, ω )   Puo ( 2, ω )  ω  p(ω) 

0 0 0 {180, 185, 186} 1/6 
1.0056 1.0335 1 {180, 185, 179} 1/2 

0 0 0 {180, 178, 182} 1/24 

0 0 0 {180, 178, 181} 1/12 
4.0909 4.0455 4 {180, 178, 176} 5/24 

 
The valuation of the up-and-in barrier option is similar to the represented above.   
Let us consider a double barrier pricing scheme for the case when K = 180, u = 185,  
d = 178. The payoff to the double-out barrier call and put options at maturity may be  
defined as  

 

Cdbo ( T, q ( T )) = max { q ( T ) – K , 0 } χ { d < min q ( l ) , max q ( l ) < u, l ∈  [ t , T ] } 

Pdbo ( T, q ( T )) = max { K –  q ( T ) , 0 } χ { d < min q ( l ) , max q ( l ) < u, l ∈  [ t , T ] } 
 
The payoff to the double-in barrier call and put options at maturity is 
 
 

Cdbi ( T, q ( T )) = max { q ( T ) – K , 0 } χ { d ≥ min q ( l ) , max q ( l ) ≥ u, l ∈  [ t , T ] } 

Pdbi ( T, q ( T )) = max { K –  q ( T ) , 0 } χ { d ≥ min q ( l ) , max q ( l ) ≥ u, l ∈  [ t , T ] } 
 
The scheme of calculations of a double barrier options is similar to the one developed 
above and therefore we can omit it. 
    

Continuous time option pricing. 
 

Now we discuss the continuous time pricing problem. Historically there are only 
two approaches to the problem in continuous time setting. We call them Samuelson-
Merton, Black-Scholes, and binomial scheme. We begin with the approach that had been 
developed by P.A. Samuelson and R.C. Merton at the end of 60’s. The main attention 
they paid to the warrant pricing that theoretically is very close but does not seem 
completely coincides with the option pricing. The final version of their studies was 
represented in [8, 9].  
As a price definition of the warrant they admitted a statement: “…under what conditions 
will everyone be willing to hold a warrant, giving the right to buy a share of the common 
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stock for an exercise price of $1 per share at any time in the next n-periods, and at the 
same time be willing to hold the stock and cash? “  
 In their paper (1965) it was postulated that the warrant must have a specified gain 
per dollar not less than the expected return per dollar invested in the common stock 
representing in this scheme underlying security.  Denote Y ( t , n )  the warrant price at 
the date  t  with  n  periods still run to maturity and let  X ( t )  be the stock price at  t. 
Then they assumed that 
 

      E { X ( t  +  T ) / X ( t ) } = exp α T              
       ( S-M-assumption) 

 E { Y ( t  +  T, n – T  ) /  Y ( t, n ) } = exp β T   
 

where  α ≤ β  if the warrant is to be held. It was arbitrary postulated that expected 

percentage gains α, β  are given data but then it became clear that these parameters can 
be derived from knowledge of the risk aversion properties of an utility function. The 
method that lead them to the construction of the warranty price is the induction with 
respect to n. For  n = 0  we have 
 

Y( t, 0 ) = max { 0 , X ( t ) - 1 } = F ( 0 , X ( t ))  
 
It follows from ( S-M-assumption) that when n  = 1 
 

       exp β T  =  E { Y ( t  +  1, 0  ) /  Y ( t, 1 ) }                
  
They put   X ( t  +  1)  = X ( t ) Z  and therefore   
 
  Y ( t  +  1, 0 )  =  max { 0 , Z X ( t ) - 1 } = F ( 0 , Z X ( t )) 
 
Let  X ( t )  =  x  and  dP( z )  be a distribution function of the random variable Z. Given 
that the warrant price Y ( t , 1 )  is the nonrandom function it follows that 
 

      exp β  =  E { F ( 0 , Z X ( t )) / Y ( t , 1 ) }  =  ∫ { F ( 0 , z x) d P( z ) /  Y ( t , 1 ) 
 
That gives us the warrant value in the form  
 

                              Y ( t, 1 )  = exp ( - β ) ∫  F ( 0 , z x) d P( z )  
 
Putting  

    

  F ( 1 , x )  =  exp ( - β ) ∫ F ( 0 , z x) d P( z ) 
 
 and then successively introducing expression F ( k , x ) for the F ( k - 1 , x ) ,  k = 2, 3,…  
as it shown above for F ( 1 , x )  and F ( 0 , x )  we arrive at the Samuelson-Merton 
pricing model.  
Now let us examine the Black-Scholes option price construction. Recall that there exist  
few ways of derivation of the Black-Scholes equation. First is the original one belonging  
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to Black and Scholes. Its modern design can be found in [10]. Then we briefly outline 
other construction following [11]. And one more method also probably deserve our  
attention is referred to as neutral martingale approach [7]. This method significantly  
uses binomial scheme and we will consider it later.  

Let us introduce some definitions. An option contract is an agreement to buy or 
sell an asset at a certain future time for a predetermine price. The party that agree to buy 
takes a long position and other party that agree to sell takes a short position in the option 
contract. The option contract is settled at maturity. The holder of short position delivers 
the asset to the holder of long position in return for the cash amount equal to the strike 
price. Let  w ( t )  be one-dimensional Wiener process. Then, the stock price S ( t ) is the 
solution of the equation (1.5).     
Following [9] we briefly outline original method of the derivation of the Black-Scholes 
equation. Imagine one's wealth can be apportioned between two assets. One of these 
assets is a risk-free bond (1.6) with a constant interest rate r. The other one is a stock, 
whose price is described by a linear Ito equation (1.5) with known constant mean rate of 

return  µ  constant volatility σ. Black and Scholes denoted the value of the portfolio over 
the given time interval as  
  
                                      Π ( t , x ) =  p ( t , x ) x  +  b ( t , x ) B ( t )                      (3.1)          
 
where functions  p ( t ,  x )  and  b ( t ,  x ) represent the amount of stocks and bonds in 
portfolio at time t respectively, when the stock price  S ( t ) = x. They also supposed that  
the value of the portfolio change along the function  S ( � ) is  
 
 d Π ( t , S ( t ) ) = p ( t , S ( t )) d S ( t )  +  b ( t , S ( t )) d B ( t ) = 
 
                = [ p ( t , S ( t )) � S ( t )  +  b ( t , S ( t )) r B ( t ) ] d t  +        (3.2)   
 
 +  p ( t , S ( t )) σ S ( t ) d w ( t )  
 
Let  f ( t,  x )  be an arbitrary nonrandom smooth function subject to constraint S ( t ) = x. 
Applying Ito formula we have 
 
 d f ( t , S ( t ) )   = { ∂ f ( t , S ( t ) ) / ∂ t  +  � S ( t )  ∂ f ( t , S ( t ) ) / ∂ x  +      
   
 
+  ½ σ ² S ² ( t )  ∂ ² f ( t , x ) / ∂ x² } d t  +   σ S ( t ) [  ∂ f ( t , S ( t ) ) / ∂ x ] d w ( t ) 
 
Black and Scholes put 
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Setting   
                   d Π ( t , S ( t ) ) =  d f ( t , S ( t ) )                                          (3.4)  
 
and taking into account (3.3), (3.4) we obtain Black-Scholes equation  
 
∂ f ( t , x ) / ∂t +  rx ∂ f ( t , x ) / ∂x + ½ σ ² x ²  ∂ ² f ( t , x ) / ∂x ²  = r f ( t , x )        (BSE) 
 
 
The solution of the Black Scholes option pricing equation with boundary condition  
 
     f ( T , x ) =  max ( x – K , 0 ) 
 
represents the value of the European call option contract (1.7) on common stock which 
price governed by the equation (1.5). Using probabilistic representation of a solution for 
the parabolic Cauchy problem the Black Scholes equation solution can be written in the 
form (1.8). Remarkably that in this construction the definition of the option price was not 
used.  
We now specify the sense of Black-Scholes’ the option price. This is the arbitrary 
nonrandom smooth function that satisfies (3.4). A substitutions (3.3) bring us to the 
equation ( BSE ). Black and Scholes called the solution of the equation the option price. 
Statement: In order to obtain BSE assumption (3.1) should be omitted. Indeed, from (1.8) 
follows 
         Π ( t , S ( t ) ) =  p ( t , S ( t ) ) S ( t ) + b ( t , S ( t ) ) B ( t )            (3.5)  
 
where p ( t , x ) ,  b ( t , x )  are given by (1.11), (1.12). Using the formula of integration 
by parts results  
  dΠ ( t , S ( t )) =  p ( t , S ( t ) ) d S ( t ) + b ( t , S ( t ) ) d B ( t ) + 
 
                +  S ( t ) d p ( t , S ( t ) ) + B ( t ) d b ( t , S ( t ) ) +                   (3.6)  
  
 + <  d p ( t , S ( t ) ) dS ( t )  > 
 
where  d p , d b  are stochastic differentials of the smooth nonrandom functions  p, b  
along the S ( t ) and using Ito formula we see that 
 

 
 
The representation (3.6) is based on the exact formula of integration by parts of the 

function  Π  and it differs from (3.6). It is easy to note that the terms not equal to 0 are 
lost. Thus, equalities (3.5) and (3.6) are mutually exclusive when the function S ( t )  is 
either random or nonrandom. This misleading situation compels reconsider the Black-
Scholes conception. We are going to specify the B&S construction. This does not mean 
that we suggest accept the Black-Scholes price definition. We will show that there exist 
other substitutions that lead us to other equation and we can not choose the best. On the 

( ) ( ) tdtStStptSdtStpd x )()(,)(,)(, 2'2σ=><
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other hand we can interpret set of the solutions of the equations as strategies but neither 
can be accepted as an option price definition.  
Assume that the change in value of the portfolio is given by the formula 
 

      dΠ ( t , S ( t )) =  p ( t , S ( t ) ) dS ( t ) + b ( t , S ( t ) ) dB ( t )                            (3.7)   
 
In this case we should express (3.1) in the following integral form. Note that only this 
integral form holds the real sense in stochastic calculus. Hence, along the  
paths S ( l ; t, x ) we have 

 
where  f  (  t , x  ) is undefined option price and therefore it still an arbitrary deterministic 
function. By definition the value f  ( T , x ) =  max { S ( T ) – K , 0 }. Let us introduce 
another example of the choice of the function (3.2) that lead to other equation that can be 
used as another option price definition. Our goal to present conditions when 'perfect 
replication' idea expressed by identity 
 

 Π ( t , x ) =  f ( t , x ) 
 
holds for all  t < T. This is new option definition. To achieve this goal we set  

 Π ( T , x ) =  f ( T , x ) and then in order to eliminate the risk term assume  

 
Comparing the integrand expressions in the ordinary integrals in (3.8) we arrive at 
identity 
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where functions b  and  f  are still unknown. If  b ( t , x )  is chosen as (3.3) then 
substituting it in the left hand side of (3.9), we arrived at the (BSE). Other choice of the 
b ( t , x ) bring us to the different equation that can be establish as an option price 
definition. This fact again confirms the logical rule that definitions should be given 
before studying their properties. Selecting 

 

we obtain a new valuation equation depending on parameter θ  ≥ 0 
 

 
with the same boundary condition max ( x – K , 0 )  at t = T. The solution of this equation 

represents definition of the option price for each θ . In particular when  θ = �  we arrive at 
Black-Scholes substitution. Other choice θ = 0 leads to the other solution g ( t , x ).  

Note that in our case it is easy to check that for all ( t , x ) , g ( t, x )  ≤   f ( t, x ).  
Indeed, using probabilistic representation one can write down that  

 
where  

 

Applying comparison theorem it follows that ζ ( l ; t , x ) ≤  η ( l ; t , x)  with probability 1.   
This inequality along with the probabilistic representation of the functions  f , g  proves 
the statement.  
Assume now that two investors are going to use these option price definitions trying to 
find out the reasonable position for the deal. The payoff is the same in both cases. The 
one who intends to take long position, i.e. buying the option wish to pay  g ( t , x )  
because he spends less money buying the option but the second investor at the same time 
is about to use value  f ( t, x ) in order to take short position, selling the option that offers 
him larger profit. This deviation in understanding of the option value suggests that the 
price concept is not logically correct.  
One may attempt to follow by Black and Scholes and apply the equation 

]
),(

),([
)(

1
),(

x

xtfx
xtf

tB
xtb

∂
∂−=

µ
θ

)),;(()(exp),(

)),;(()(exp),(

xtTfEtTrxtg

xtTfEtTrxtf

T

T

ζ

η

−−=

−−=

Tlqwdqxxtl

qwdqqdqrxxtl

l

t

l

t

l

t

≤+=

++=

∫

∫ ∫

,)()(),;(

)()()(),;(

ζσζ

ησηη

),(
),(

2

1),(),(
2

2

22 xtfr
x

xtf
x

x

xtfxr

t

xtf
θ

θθθ σ
µ

θ =
∂

∂
+

∂
∂

+
∂

∂



 55 

 
where Π  is given by (3.7). In order to find the function b ( t , x ) based on (3.2), (3.3)  
given 

 
one can note that we need to solve the equation 
 

 
The solution of this equation can not be expressed in compact form given by Black 
Scholes. 
       Now let us introduce other approach to the option price definition that also have to 

lead us to BSE. Here, we follow [11] where that approach was introduced. Let  ∆  be a 
portfolio which value is equal to 

 

In other words the portfolio ∆ contains one option in short position and  / f ( t , x ) / / x  
stocks in long position. In conformity with BS construction it was assumed that change in 
value of the portfolio over the time is given by   
 

 
In order to derive the equation for option price it was set 
 

 
where  r  is given interest rate. In order to define equation for the function  f ( t , x )  it 

was recommended first to substitute values  ∆ ( t , x ) ,  d ∆ ( t , S ( t ) )  from right hand 
sides of (3.10) and (3.11) into (3.11) and then apply Ito formula for the stochastic 
differential  d f ( t , S ( t ) ). That brings us to (BSE). The boundary condition   
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  f ( T , x )  =  max  ( x – K , 0 )   
 
directly follows from definition of the function   f ( t , x ).  Taking into account formula 
integration by parts one can easy justify that formula (3.10) and (3.11) are mutually 
exclusive. Therefore, they could not be substitute in (3.5) simultaneously. 
     One should remark that some researchers discussed mathematical arguments used by 
Black and Scholes. They attempted to make original derivation more accurate. In [12] 
were introduced arguments following by the [13]. Here we represent the referred results 
with some technical adjustments. We apply the common time direction. Let  f ( t , x ) be 
the Black-Scholes equation solution. Define stochastic processes 

 
The components p, q can be interpreted as a number of stocks and bonds correspondingly 
of the hypothetical portfolio. It easy to see identity 
 
 V ( t ) = p ( t ) S ( t )  +  q ( t ) B ( t )  
 
The timing condition for the portfolio follows from the fact that value of the portfolio at 
maturity coincides with the payoff of the option. Therefore  
 
 V ( T ) = max ( S ( T ) – K ,  0 )  
 
Then applying Ito formula and taking into account that f ( t, x ) is BSE solution , we 
obtain  
 

dV ( t ) = d  f ( t , S ( t ) ) =  p ( t ) d S ( t ) + q ( t ) d B ( t ) 
 
It seems that one of the main problem of the Black and Scholes derivation is corrected. 
On the other hand we can note that this construction proves only the statement. 
Statement. Let f ( t , x ) be the solution of the deterministic equation with partial 
derivatives (BSE). Then along the S ( t ) we have representation ( a ‘self-financing 
strategy’ ) 

dV ( t ) =  p ( t ) d S ( t ) + q ( t ) d B ( t ) 
 
One may see that this statement does not have any relation with option price definition. 
Indeed, it was prior assumed that the solution of the (BSE) is the option price that of 
course was not proved by Black and Scholes.  
Remarkably that the seeming progress in elimination of the contradiction comes from the 
assumption that f ( t , x ) is a solution of the Black Scholes equation and therefore the 
term in (3.6) that was not equal to 0 now becomes equal to 0.  
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Now if  f ( t , x )  is an arbitrary smooth nonrandom function then Ito formula confirms 
the self-financing portfolio  
 
 d f ( t , S ( t ) )   =   p ( t , S ( t ) ) dS ( t ) + b ( t , S ( t ) ) dB ( t ) 
 
where  
 
 p ( t , x )  =  ∂ f ( t , x ) / ∂ x  ,   
 
b ( t , x ) = [ r B ( t ) ] / { ∂ f ( t , x ) / ∂ t  +  ½ σ ² x ² ∂ ² f ( t , x ) / ∂ x² }  
 
without any definition of the option price. Follow interpretation of the option price one 
can use any relationship between functions p ( t , x ) and b ( t , x ) to produce own 
definition and Black Scholes approach could not specifies which one is better. 

Let us compare Black-Scholes and Samuelson-Merton models that introduced at 
the beginning of this section. Though these models are somewhat similar it may 
interesting to emphasize their distinctions. To investigate distinctions we assume that the 
stock price in Samuelson-Merton model is the solution of the Ito equation 
 

d X ( t ) =  µ X ( t ) d t  +  σ X ( t ) d w ( t )                      (3.13)                
 
where w ( t )  be one-dimensional Wiener process. The solution of the equation (3.31) can 
be written in the form  
 

X ( t + T )  = X ( t ) exp { ( µ  - σ ² / 2 ) T  +  σ [ w( t + T )  -  w( t ) ] } 
 
Letting T  = 1  we can see that the distributions of the random variable Z , where  
Z = X ( t  +  1) / X ( t ) coincide with the distributions   
 

exp { ( µ  - σ ² / 2 )   +  σ  w( 1 ) } 
 
and therefore  
 

dP( z )  = exp { (µ  - σ ² / 2)   +  σ z } exp { -   z ² / 2 } d z 
 
Now the formula for Y ( t , 1 ) can be rewritten as  
 

Y ( t , 1 ) = exp ( - β ) ∫  max ( 0 , z x - 1 ) exp { (µ  - σ ² /2 + σ z)  -  z ² /2 } dz   (3.14)         
 
It was remarked by R. Merton [9] that Black and Scholes claim that one reason why 
Samuelson-Merton did not arrive at their formula was because they did not consider the 
same model of assets. As far as risk-free bond was not involve in Samuelson-Merton 
model one can assume that the formula (3.12) or (3.14) can be obtained as a particular 
case of the Black and Scholes’ pricing formula when the risk-free interest rate equal to 0. 
Thus Samuelson-Merton omitted this factor as insignificant. Our point of view is that 
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these two models are different in sense that it is not clear what assumptions one can make 
in order to obtain (3.12) from Black-Scholes formula.  
Now we recall the idea used above for the discrete option valuations, which leads to the 
unique pricing of contingent claims. 
We show hoe Black-Scholes 'perfect replication' should be modified. We show that the 
derivative price for all possible outcomes which suggest strictly positive payoffs can be 
defined in the way that provides equal return on derivative and its underline security.  
Applying the investment principle to two alternative investment opportunities one notes 
that these opportunities should offer the same rate of return on the stock and the 
derivative over the predetermine time interval. Formally that means that 

 

where χ {A}  is indicator of an event  A. Therefore 

 
Note that indicator in the right hand side can be omitted whereas the function f ( T, S ) 

equal to 0 when S ≤ K. Let  S ( l ; t , x ) ,  l ≥ t  be a random function such that   
S ( t ; t , x ) = x. The equality (3.15) contains the function S ( T ; t , x ) in denominator and 

it can be proof that  S ( l ; t , x ) >  0 , t  ≤  l  ≤  T with probability 1. Thus (3.15) can be 
rewritten in the form 

 
Formulae (3.15), (3.16) determines option price on the stock and holds sense regardless 
of the whether the stock price S ( T ; t , x )  is random or nonrandom function. Assuming 
that S ( l ; t , x )  solution of (1.5) one can see that by definition the option price should be 

the random function measurable with respect to the family of  σ - algebras 

 
Note, that we have not supposed that there exist risk free financial instrument and 
therefore no discount factor involves in (3.16). If we assume that then the equation 
representing equal rate of return principle should be rewritten in the form 

 
and also bring us to the same equation (3.16). It may be important now to comment the 
uniqueness and stochastic nature of the option price. As far as a nonrandom function is a 
particular case of the random functions we assume that exist other random or nonrandom 

function that one may call option price. If for some event ω the alternative value is a 
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number, say A, that is not equal to f ( t ,  x ) = f ( t ,  x , ω ) then we consider 

deterministic example with the values of stock S ( T ) = S ( T ; t , x , ω ). If this value is 

larger than K and A ≠ f ( t ,  x ) then it is easy to note arbitrage opportunity. On the other 

hand if S ( T ) ≤ K then no one wish to pay for the worthless option but this will be 
profitable opportunity for a writer. This argument justifies stochastic environment and 
uniqueness of the option price definition. Here we also remark that as far as the given 
definition is unique then the possibility of the perfect replication of a portfolio containing 
option, asset and cash to any financial instrument in the market is only technical result 
that can not contradict or eliminate construction of the option price. Now we can consider 
an investor’s benefits of the stochastic price definition. At date t the investor of course 
can not pay a stochastic price and it is up to him to suppose what is the fair option price. 
Any option’s value established by the writer of the contract or the value that the investor 
willing to pay for the option calculated on the same base using equal rate of return 
principal. The only difference between two market participants is what value at maturity 
of underlying security they subjectively prescribe at date t and what is probability of such 
event. Admitting hypothetical distribution of an approximation of the security price at 

maturity in the form Σ Sj χ { Sj ≤ S ( t ) < Sj + 1 } and thinking that maximum probability  

events {ω: Sj ≤ S ( t ) < Sj + 1} occurs for the particular number jo the investor would 
specify a number from the interval [ Sj , Sj + 1 ]. Chosen number uniquely determines the 
option price Bj at date t. Along with the price the investor can calculate risk which by 

definition is associated with the probability of the event {ω : f ( t, x, ω ) > Bj }. Thus the 
risk of the option price construction is associated with factors. Assume that the stock 
price is a random process with the given distribution. Then the most probable value 
admitted by the investor at date T could be smaller value at maturity T. If at expiration 
the stock price distribution is exactly the same as it was assumed the option price is also 
random. Therefore the most probable option price given distribution of the S (T) can be 
violated. Thirdly the stock’s distribution is only hypothetical and all calculated 
probabilities are only estimates of the real probability assuming that the assumption that 
real probabilities has less risk than all enumerated factors.  
Our primary goal to study statistical properties of the function  f ( t , x ). First we 
introduce stochastic system which will specify dynamic characteristics of the option price 
function  f ( t , x ). Using Markov property of the function  S ( l ; t , x )  follows 
 

 
This identity suggests to introduce an auxiliary function 

 
Then the derivative price f can be interpreted as a contraction of the F,  
 
  f ( t , x )  =  F ( t , x , 1 ). 
 
This remark is essential for the next study. The function  f ( t , x )  does not hold the 
Markov property over one dimensional coordinate space but it actually does over two 
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dimensional coordinate space. Thus, we should first study analytic properties of the 
function F ( t , x , y )  and then putting  y = 1 we can specify them for the option value f. 
Consider the problem of finding moments of the derivatives price. Assume that f ( T , x )  
is a continuous function in x having growth not faster than a polynomial function. Then 
expectation of the derivative price m ( t , x , y ) is a classical solution of the backward 
Cauchy problem 
 

 
with boundary condition m ( T , x , y ) = f ( T , x ) / y . 
Thus the function m ( t , x ) = m ( t , x , 1 ) = E  f ( t , x ) is the mean of the option price. 
Indeed, if the function  f ( T , x )  two times continuously differentiable in  x  then the 
proof of the theorem follows from standard stochastic calculus results [16,17]. Based on 
option contract definition this function always contains irregular point  x = K  so that we 
could not apply general results. We will prove smoothness of the function m ( t , x , y )  
directly using its analytic representation. With help of Ito formula one can verify that the 
function S ( T ; t , x )  have normal distribution with mean 

 

And standard deviation σ ∉  ( T – t ). Hence  

 
where 

 
The density of the process S ( T ; t , x )  is  
 
  

 

0,0,;0),,()(
2

)18.3(

),,()(
),,(

2
2

>≥=∇+∇+

+∇+∇+
∂

∂

yxtyxtmyx

yxtmyx
t

yxtm

yx

yx

σ

µ

)()
2

(ln
2

tTx −−+ σµ

}
)(

)()
2

(lnln
{}),;({

2

tT

tTxq

xxtTSP
−

−−−−
Φ=<

σ

σµ

qd
q

y

y

∫
∞−

−
−=Φ

2
exp)2()(

2

2

1

π

)(2

])()
2

(ln[

exp])(2[),;,(
2

2
2

2

1

22

tT

tT
x

y

ytTyTxt
−

−−−
−−=

−

σ

σµ
σπρ



 61 

Having the density formula one can to find probability that the option price is not zero 
 

 
Taking into account (3.16) note 

 
By definition f ( T , x ) = max ( x – K , 0 )  and therefore  

 
 
We can check directly that partial derivatives of the first and the second orders with 
respect to x  and  y  are continuous functions for any  t < T. Here we present formulas 
only for the first order derivatives in  x , y  because expressions for higher order 
derivatives look pretty cumbersome. Thus, 
 

 

 
Using the same method one can verify that the moment of the n-th order   
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is the solution of the equation (34) with boundary condition 
  

 
In particular, standard deviations of the derivative price can be computed by the formula 

 
Assuming that the function F ( t , x , y ) is 2-times continuously differentiable in  x ,  y  
we can proof that this function is a solution of stochastic partial differential equation. 
Detailed investigation in that field can be found in [15, 16]. The correspondent 
techniques used are more complicated than standard stochastic calculus. 
Statement. Function  F ( t , x , y )  is a solution of the backward Cauchy problem 
 

 
where stochastic integral at right hand side of (3.20) is Ito backward stochastic integral.  
This equation can be rewritten in differential form 
 

 
 
Here is the short draft of the proof. Detailed techniques used in the proof can be found  
in [ 16 ]. Set 
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is a partition of the interval [ 0 , T ]. Applying Taylor's formula note 
 

 

where  P. lim •  ( h ) / h  = 0.  Putting there 

 
and taking into account that function  F ( t , x , y )  is measurable with respect to family  

σ- algebras  σ{ ∆ w ( l ),  l ≤  t  }  and substitute these into the formula (3.21) and 
observing that  

 
we find out that right hand side of (3.21) tends to (3.20) when partition becomes finer.  
     As far as the option pricing model can not perfectly replicates security we need to 
establish a portfolio that can do it. From (3.16) ensues that  
 

 
The first term on the left is strictly positive when { ω: S ( T ; t , x ) > K }. Introduce a 
portfolio which value at date t is 
 

 
At the expiration date the value of the portfolio equal to 
 

 
Thus the return of the portfolio identical to the return on stock 
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The portfolio shows how to include the option into market and avoid arbitrage 

opportunity. We can replace the theoretical portfolio Π by its approximation 

 

The amount of stocks and options in the portfolio  Ξ  can be easy calculated using the 
explicit distribution function of the random process  S ( T ; t , x ) given above. Some 

additional risk of replacing portfolio Π by the Ξ can be described by the event 

 

In this case the rate of return of the portfolio  Ξ  will be lower than the rate of  Π and 
therefore could not perfectly replicate stock rate that leads to the change of the option 
price. In more realistic option market there is a set of strike prices. Denote 
 

 
an ordered sequence of the strike prices. Applying formula (3.22) for each strike price 
one can justify that 

 
Summing up over all values of  j  we arrive at identity 
 

 
To reach perfect replication of the security rate we need to rewrite this formula 
 

 
Let us introduce the portfolio 
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The portfolio Π ( t , x )  combines random portion  

 
of stock, the portion 

 
invested in the vertical call bullspread  
 

 
and the portion  

 
invested in the option with the highest strike price. 
Now we will study a model that represents an effect of the bond. Until now we ignore 
bond as a security that can change option valuation. Nevertheless bond is an important 
factor of the market. We will show how to adjust the given option price definition. A 
generalization of the equal rate of return principle for the market with bond and stock can 
be taking in a form 

 
Then the option price at time t  is 
 

 
Then the call option price can be rewritten  
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Using this formula one can write down analytic expression for the n-th moment of the 
call option price 

 
n = 1, 2, … . The perfect portfolio now should contain the certain portions of options, 
stocks, and bonds. The structure of the portfolio at time t is 

 
Assume, for simplicity that  

 
though the general cases can also be considered. Note that as it was shown above that 

 
 Inasmuch as 
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then each term in the left hand side can be interpreted as a random portion of shares in the 
portfolio.  
Here we make a few remarks to some important for applications results widely used in 
the modern option theory. 
 Remark 1. The study of arbitrage in option pricing gave birth to the theory well known 
as put-call parity. Let us represent call-put parity based on given definitions. From the 
definition of option price follows that 

 
 

 
Therefore the corrected put-call parity can be expressed by the formula 
 

 
Note that this relationship does not depend on a security model.  
Remark 2. Here we comment the numeric method, which was applied for the calculation 
of the Black-Scholes call option price. This approach to the problem is quite important 
and used in many books.   
To calculate the theoretical value of a call option applying Black-Scholes option model 
we need to know the following: the stock price, the option striking price, the time until 
expiration, the riskless interest rate. The stock price S ( t )  is the solution of the equation 

(1.5) and has a log-normal distribution. Indeed applying Ito formula to the function S ( t )   
we have 
 
Therefore the difference [ ln S ( T ) -  ln x ]  is normally distributed with mean and 
variance  

 

correspondingly. Parameters µ  and  σ  are unknown and should be estimated from data 

given by observation. The parameter µ  is the expected rate of return. In the deterministic 
setting it follows that 
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and therefore instantaneous rate of return equal to the differential of natural logarithm. In 
stochastic setting it is wrong and we will proof it bellow. 
We first look at the explanation given in [ 11, p.231 ]. Applying Ito formula for the 
natural logarithm function they noticed that the expected continuously compounded rate 
of return over the interval [ t , T ] is  

 

Then in previous chapter  µ   was interpreted as the expected value of the rate of return in 
any short time interval. To illustrate how it can be the example was considered. We 
follow by the book and consider the example. Suppose that the following is the sequence 
of the actual returns per annum realized on a stock in five consecutive years, measured 
using annual compounding:  15% , 20% , 30% , 20% , 25% . The arithmetic mean of the 
returns is calculated by taking the sum of returns and divided by 5 give us 14%.  
However, investors would earn less than 14% if they left money invested in the stock for 
five years. The actual average return per a year earned by the investor compounded 
annually is 

 
or  12.4% per annum. This example indicates that we should expect estimate 14% to be 
greater than estimate 12.4% and the difference between 

 
how that this is the similar case. The conclusion is the expected rate of return in 

infinitesimally short period of time is µ  and the expected continuously compounded rate 
of return is  

 
These arguments show that the term expected return is ambiguous. It can refer either to   

and unless otherwise stated we will use it to refer to µ  throughout the book. 
Now we will explain the paradox. Let us recall the algebraic inequality 
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valid for non negative numbers. Letting  

 
we will get the proof the phenomenon. Also this algebraic inequality does not have any 

connections to the stochastic structure of the Ito equation where parameter σ is involved. 

From the general stochastic calculus follows that if  σ ≠ 0 then  

 
and therefore d ln S ( t )  an not be referred to as expected rate of return and there are no 
ambiguous with the stock rate of return. 
Now we introduce more general construction of the option price problem. Let  B ( t , T*)  
be the bond price at time  t , T * stands for maturity, and the face value of such bond is 
$1, i.e. B ( T* , T*  ) = $1. We also assume that T > T*, where T denotes option maturity. 
Next idea provides a new more secure method of derivatives pricing.  
Assume that an investor decides to buy ‘covered’ call. A covered call means a portfolio 
with long call option and long underlying stock. In such case it is reasonable to find the 
option price which guarantee the portfolio the same rate of return as the stock. This price 
can be found by solving equation 
 

 
where  q is a constant. Remarkably that this equation makes sense for any elementary 
event not only when  S ( T ) > K. 
Consider a contract which contain one call option and  q ,  q = 0, 1, 2, ... shares of bond.  
The payoff of such contract is  max ( X – K , 0 ) + q B ( t , T * ) ,  where X  is the stock 
price at time T , and K  is the option strike price. Our goal is to find the fair price of such 
derivatives contract. The equal rate of return on the derivatives contract and stock lead us 
to the equation 
 

 
Here, G denotes the option price in the derivatives contract. Note that the numerator in 
left-hand side does not equal to 0. Therefore the denominator is also strictly positive. 
Thus, if the bond price is the solution of the equation (1.6) with boundary condition  
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B ( T , T ) = $1  then the call option price is that  

 
Remarkably, that G ( t ,  x )  can be positive or negative signs nevertheless the value of 
the derivatives contract is always positive. 
More general model comes into the existence if the rate of return of the derivatives 
contract we used above considered against the stock portfolio consisting from the stock 
and  p  shares of bonds. Here  p , p > 0 ,can be equal or not to q. In this case equal rate of 
return on two investment opportunities can be expressed by the equation 
 

 
Then the value G ( t , x  )  of the call option in the such contract is 

 
Thus we show the way in which variety of option price strategies can be produce. Every 
solution has particular properties depending on the parameters p and q. These parameters 
may also be functions depending on time. This, in turn, gives possibility more closely to 
meet a particular investor's interest. 
Now we introduce the other fundamental option type called American option. American 
call option gives a buyer the right to exercise it at any moment of time within its lifetime. 
American option is very popular and traded on numerous exchanges all over the world. 
The American option feature is often embedded in various financial instruments. For 
instance, US T-bonds , corporate bonds often contain provision similar to American call 
option. Convertible bonds can be converted into common stocks after a given period of 
time, implying that the option is initially European and then American. Recall well-
known strategy stems from the American option-pricing model on no dividend common 
stock. It does not recommend exercising an American call option early. This can be 
interpreted that by waiting an investor saves the interest that he would lost by paying 
strike price earlier than maturity. For put option on no dividends stock it may be optimal 
to exercise early because the potential gains are bounded by the strike price. 
Here we develop another model of American option pricing based on idea of equal rate of  
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return represented above for European option. It is obvious that the base of the known 
strategy ensues from Black and Scholes interpretation and it is irrelevant to our  
construction. 

Let S ( l ) ,  l∈  [ t , T ] be the stock price governed by the equation (1.5). The American 
call option on stock is the right to buy shares at 

 

at any moment at  l∈  [ t , T ]  of the lifetime of the option. American put option is aright 
to sell shares at  
 

 

at any moment  l∈  [ t , T ]  within its lifetime. The American option pricing problem is to 
determine fair option price at time t. The advantage of American type with respect to its 
European counterpart is that the American option can be exercised at any moment  

l∈  [ t , T ] that in turn suggests higher rate of return than European. Therefore American 
option price should be greater. We will show how these intuitive arguments can be 
formally expressed by mathematical formulas. 
The main pricing principle that suggests equal rate of return on option and underlying 
stock in case when option payoff is greater than zero makes it possible to reach maximum 

theoretical return during the option's lifetime. At any  l∈  [ t , T ]  the return on stock is 

 
Thus maximum return on stock can be written as 

 

Denote random time τ ( ω )   by the formula 

 

It can be proved that τ ( ω ) is a random variable and this random variable is not a 

Markov moment of time because the realization of the event  {ω : τ (ω)  >  u }  can not 
be justified based on observations of the stock price until the moment u. Thus it is 
impossible to apply powerful theory of Markov processes to get optimal return on stock. 

Nevertheless having distribution of the τ (ω)  we can estimate risk that predetermine 
return will be reached over the lifetime of the stock. In this scheme the first passage time 
of the chosen level of return can be considered as a reasonable approximation of the  

τ (ω). First find an explicit formula for the distribution function of the random variable S.  
Without loss of generality we put t = 0. The solution of the equation (1.5) with the initial 
condition S ( 0 ) = 1 can be written in the form 
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Then 
 

 
Applying Girsanov’s theorem to the right hand side of this equality we arrive at 

 

where  w,  E  are a Wiener process and the expectation with respect to the probability 
measure  

 
Next, for brevity, we wll omit upper 'bar' symbol in (3.24). To calculate mathematical 
expectation in the right hand side of the equality (3.24) we need the auxiliary theorem.  
 
Theorem [ 16 ] ( Bachelier ). For any  q > 0, 
 

 
 

where  d 2 q = max ( d , q ), and   
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This formula we use to perform the density with respect to variable d. Putting d = c + ∆ c  

where ∆ c  > 0 is infinitesimally small the first integral in the right will be equal to  
 

 

Here, ∆ c > 0 was chosen such small that if  c < q then c + ∆ c < q. The second integral 
on the right hand side of (3.25) we then represent as 
 

 
With the help of these calculations the formula (3.25) can be rewritten as 

 
 

where lim  o ( ∆ c ) / ∆ c = 0. Now we will apply formula (3.25) to compute the 
expectation in the right of the (3.25). Denote 
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Let us calculate integrals in the right hand side.  
 

 

where  Φ ( y )  is the standard Gaussian distribution  function.  
Then  

 
Thus we arrive at the formula  
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where  S ( l ; 0, 1 ), l ∈  [ 0 ,  T ] is the solution of the equation (1.5) such that  
S ( 0 ; 0, 1) = 1.  Using (3.27) it is easy to compute statistical characteristics of the 

random variable S. Then the chance that the stock price touches the barrier L, L > K over 
time interval  [ 0 , T ] is 

 

As it was indicated the random time τ ( ω ) is the optimal exercise time of the  

American option and τ ( ω ) is not the Markov stopping time. Therefore an investor who 
wishes to receive maximum return need to collect the stock quotes over lifetime span  
[ 0 , T ]. This circumstance makes it difficult the practical realization of the maximum 

return strategy. On the other hand an investor can establish reasonable barrier  ν,  ν > K  
such that if stock crosses this barrier then the investor exercises the option. Others 

strategies may also be reasonable. Let ν be the chosen barrier and  

 

be the correspondent risk the investor willing to hold while the stock return hits level ν. 
Note that this risk-probability can be also expressed by the formula 
 

 

Denote τ  = τ x ( ν x )  the first passage time of the barrier ν x by the random process   

S ( l ; 0 , x ). Then one can note that  τ = τ 1 ( ν ). The equal rate of return principle 
applied to the Markov stopping time yields  

 

where c Λ d = min ( c ,  d  ). By definition we also put  f ( t , x ) = 0  for  
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Then the option price at initial time t = 0  is 
 

  
The formula (3.29) represents American-barrier call option pricing solution in analytic 

form and this solution for the given level ν can be treated as an approximation general 
American option pricing problem. The investor’s portfolio 
 

 
perfectly replicates stock rate return.  
The modern stochastic calculus provides elegant way to describe statistical properties of 

the first passage time moments. Let  δ > 0  be a small number and introduce the first 
passage time  
 

 
if the set in the braces is empty. The important condition that should be fulfilled is that 
diffusion coefficient must be nondegenerated. Though the diffusion coefficient of the 
equation (1.5) is equal to 0 when x = 0 nevertheless bearing in mind Lemma we can 
conclude that this level is not accessible by the solution of the equation (1.5).  
Theorem [17]. The first and the second moments {  u (  x  ) , v (  x  )  } of the random 

moment τ ( δ , ν ) are the solution of the system 
 
 L ( x ) u (  x  )  =  - 1 
 

  L ( x ) v (  x  )  =  - 2 u  (  x  ) ,      x ∈    ( δ , ν )    , (3.30) 
 

with 0-boundary conditions. 

Corollary. The solution of the system (3.30) depends on parameter δ. Using analytical 
form of the solution of the system it is possible to prove that there exist limit of the 

solution when δ tends to zero and therefore we can obtain the statistical characteristics of 

the moments τ 1 ( ν ). This theorem helps to estimate average waiting time until 
exercising the derivative instrument. 
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