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Abstract

We study an economy in which the rate of change of population depends on pop-
ulation policy decisions. This requires population as well as capital as state variables.
By showing the algebraic relationship between the shadow price of the population and
the shadow price of the per capita capital stock, we are still able to depict the optimal
path and its convergence to the long-run equilibrium on a two-dimensional phase di-
agram. Moreover, we derive explicitly the expression of genuine savings in our model
to evaluate the sustainability of the system.
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1. Introduction

This paper extends the analysis of Arrow, Dasgupta, and Mäler (2003), who study a one-

sector model of an economy with exogenous non-exponential population growth. Arrow et al.

(2003) provide an analysis of the role of varying population in the measurement of savings.

This is accomplished by recognizing population as another form of capital and formulated

as a state variable of the system in its optimal control formulation.

Subsequently, Arrow, Bensoussan, Feng, and Sethi (2007) has provided a thorough anal-

ysis of the problem formulated in Arrow et al. (2003). By showing that the co-state of

the population is only algebraically related to the co-state of the capital stock, they de-

velop a two-dimensional phase diagram of the problem. Monotone properties of the optimal

trajectories and a computation algorithm are also discussed in that paper.

Our objective in this study is to extend the analysis in Arrow et.al (2007) to an econ-

omy where population change is endogenous. We do this by introducing population policy

measures as decisions in addition to consumption/investment decisions over time. While our

main purpose is to develop a methodology of analysis, we do this in the case of a country

with naturally declining population. We should mention here that population is already

declining in Japan and Germany, and other countries such as Italy and Spain are expected

to soon follow suit. Now imagine that the country under consideration is interested in en-

couraging indigenous population growth by such measures as education and baby bonuses.

We will term such expenditures as population policy expenditures. Thus, in our model, the

output at each instant needs to be optimally allocated between consumption, population

policy measures, and investment.

Even though the population change is endogenous in our model, we continue to follow

the tradition of “total utilitarianism” articulated by Henry Sidgwick and Francis Edgeworth

in the 1870s. Thus, we maximize the integral of the total societal consumption utility over

time. We are well aware of the ethical issues it raises. In particular, it leads to the view

that, if the costs of encouraging population growth is low, then the ideal can be a very large

population with very low per capita consumption. A contemporary philosopher, Derek Parfit

(1984) has termed this the repugnant conclusion. But Parfit also raises a similar argument
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against average utilitarian standards. According to him, it may also lead to absurd results.

In this paper, we try to avoid the repugnant conclusion of Parfit by putting an upper bound

on the population growth rate. It is even possible to choose a zero growth rate as the upper

bound.

We use dynamic programming approach to solve the problem. A steady state analysis

is conducted, which represents a nontrivial extension of the analysis in the classical case of

the exponential growth of the population (see Arrow and Kurz 1970). The analysis involves

a study of a system of differential equations in capital and its co-state as a function of

the population. We show that it is not the population itself, but its rate of growth that

reaches a steady state. Of course, this rate may be negative, positive, or zero depending

on the parameters of the problem. Using the algebraic relation between the co-states of

the population and the capital stock, we are able to analyze the optimal trajectory in a

two-dimensional phase diagram involving only the capital stock and its co-state. Our phase

diagram reveals a similar structure to that in the classical model of Arrow of Kurz (1970).

Furthermore, we show that both the optimal expenditure on population policy and the

optimal consumption increase with the capital stock. The co-state of the population also

increases with the capital stock.

The plan of this paper is as follows. In Section 2, we develop the notation and the model.

Here the state variables are aggregate capital and population. The control variables are

consumption and population policy expenditures. The objective is to maximize the present

value of the society’s utility of consumption over time. The model is transformed to per capita

variables in Section 2.1. In Section 3, we use dynamic programming to study the problem.

The steady state analysis is carried out in Section 4. We perform a phase diagram analysis in

Section 5. In Section 6, we relate our analysis to the maximum principle formulation of the

problem. We also obtain the expressions for genuine savings and conditions for sustainability.

Section 7 concludes the paper.

2. Model Description

We introduce the following notation used in the paper:

K(t) : total stock of capital: a state variable;
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N(t) : population: a state variable;

k(t) : per capita stock of capital: a state variable;

c(t) : consumption per capita: a control variable;

m(t) : population policy expenditure per capita: a control variable;

M : upper bound on the rate of population policy expenditure,M > 0;

F (K,N) : production function, concave with constant returns to scale;

u(c) : utility of consumption, u(0) = 0, u′(0) = ∞, u′(c) > 0 and

u′′(c) < 0 for c > 0;

δ : population decay rate;

r : discount rate

g(m) : population change rate, g′(m) > 0, g′′(m) < 0, g(M) > δ;

f(k) : per capita production function, f(0) = 0, f(k) > 0, f ′(k) > 0,

and f ′′(k) < 0 for k > 0; f ′(0) > r and f ′(∞) < r.

We consider a one-sector economy in which the stock of capital K(t) and population

N(t) are two state variables. We do not distinguish between population and labor force for

convenience in exposition. The output rate F (K,N) of the economy depends on the capital

stockK and the population, or labor force, N . Let c(t) be the rate of individual consumption,

assumed to be same for all. We will refer to it simply as the per capita consumption rate.

We also use m(t) to denote the per capita expenditure on population policy measures. Then

the capital stock dynamics is

K̇ = F (K,N) −Nc−Nm, K(0) = K0, (1)

It is important to note that the population N enters the dynamics in a nontrivial way.

As for the evolution of population over time, we assume that it is affected by population

policy expenditure m and that it is independent of consumption c. Specifically, the popu-

lation N is assumed to grow at the rate of g(m) − δ. Then g(0) − δ is the natural change

rate of the population without population policy expenditure. Thus the population change

equation is

Ṅ = [g(m) − δ]N, N(0) = N0. (2)
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In this paper, we assume g(0) < δ so that the natural rate of population change is negative.

We should mention, however, that this is not a mathematical requirement, and the results

derived in the paper go through without this assumption.

For each individual in the society, the rate of utility for consuming c units per unit time

is u(c). In the tradition of total utilitarianism, which argues for treating people more or less

equally, the objective becomes one of maximizing the total utility of the society given by

J(c(·), m(·)) =

∫ +∞

0

e−rtNu(c)dt. (3)

Note that in (3), we have weighted people by their futurity (discounting) but not according

to number of their contemporaries.

The problem is to select c(t) > 0 and 0 6 m(t) 6 M , t > 0, so as to maximize

J(c(·), m(·)), subject to the condition that K(t) > 0, t > 0.

2.1 Per Capita Model

Let k denote the per capita capital stock K/N. Since we have assumed that the production

function F (K,N) is concave with constant returns to scale, we have

F (K,N) = NF

(

K

N
, 1

)

= NF (k, 1)
∆
=Nf(k).

Notice that

k̇ =
K̇

N
−K

Ṅ

N2
= f(k) − c−m− k[g(m) − δ].

Then the state equations (1) can be rewritten as follows:

k̇ = f(k) − k[g(m) − δ] − c−m, k(0) = k0 = K0/N0, (4)

We use dynamic programming for our analysis. As is standard, we shall let k(0) = k

and N(0) = N. We shall also assume M = ∞ for ease of exposition. Then we can write the

value function as

v(k,N) = max
c(·)>0

m(·)>0

∫

∞

0

e−rtN(t)u(c(t))dt, (5)

subject to

k̇ = f(k) − k[g(m) − δ] − c−m, k(0) = k, (6)
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Ṅ = N [g(m) − δ], N(0) = N. (7)

The initial conditions k and N are of course positive. We expect k(t) > 0, ∀t. We need to

impose the restriction that c(t) = 0 and m(t) = 0 when k(t) = 0. But it is known that since

u′(0) = ∞, we must have c(t) > 0. This implies that k(t) > 0. Note that

v(k,N) = N max
c(·)>0
m(·)>0

∫

∞

0

e−[r+δ−g(m(t))]u(c(t))dt. (8)

In the classical exponential growth case g(m)− δ = ν, a constant, the condition r > g(0)− δ

is required for the value function to be finite. In the absence of this condition, the discount

rate is less than or equal to the rate of the population growth, and the value function v(k,N)

becomes infinite for k > 0, N > 0. The generalization of the condition r > ν in our case is

the condition that

∫

∞

0

e−rtN(t)dt <∞, (9)

where N(t) is the solution of (7).

3. Bellman Equation

The dynamic programming (DP) or the Bellman equation corresponding to the optimal

control problem (5), (6) and (7) is

rv = vk[f(k) + kδ] − vNNδ + max
c,m

{vk[−kg(m) − c−m] +Nu(c) + vNNg(m)}. (10)

From the expression (8), we look for a solution of the form

v(k,N) = NW (k), (11)

where W (k) is called the per capita value function (independent of N). Then we have

vk = NW ′(k), vN = W (k). (12)

Substituting (11) and (12) into (10) and dividing by N gives

(r + δ)W (k) = W ′(k)(f(k) + kδ) + max
c

{u(c) − cW ′(k)} (13)

+ max
m>0

{g(m)[W (k) − kW ′(k)] −mW ′(k)}.
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It is easy to see that the optimal control ĉ(k) and m̂(k)satisfy

u′(ĉ) = W ′(k), (14)

g′(m̂)[W (k) − kW ′(k)] −W ′(k) = 0. (15)

Since we expect Wk to be finite, we have ĉ > 0 on account of our assumption that u′(0) = ∞;

see, e.g., Karatzas et al. (1986) for explanations. In turn, we expect k(t) > 0. Note, however,

that if k(0) = 0, then the optimal consumption is ĉ(t) = 0 for t > 0.

Dividing (15) by W ′(k) and rearranging terms, we obtain

k +
1

g′(m)
=
W (k)

W ′(k)
. (16)

Relations (14) and (16) suggest the definitions of the adjoint variables

p(k) := W ′(k) = u′(c), (17)

ψ(k) :=
W (k)

W ′(k) = k +
1

g′(m)
. (18)

In view of the Envelope Theorem1, we can differentiate the Bellman equation (13) with

respect to k, and obtain the adjoint equation

p′(k)[f(k) + kδ] + p(k)[f ′(k) + δ] − (δ + r)p(k) − cp′(k) − g(m)kp′(k) −mp′(k) = 0, (19)

which can be written as

p′(k) =
p(k)[r − f ′(k)]

f(k) − k[g(m) − δ] − c−m
. (20)

Furthermore, differentiating (18) with respect to k and using (17), (18) and (20) gives

ψ′(k) =
W ′(k)2 −W (k)W ′′(k)

W ′(k)2
= 1 − ψ(k)

p(k)
p′(k) (21)

= 1 − ψ(k)[r − f ′(k)]

f(k) − k[g(m) − δ] − c−m

=
ψ(k)[f ′(k) − r] + f(k) − k[g(m) − δ] − c−m

f(k) − k[g(m) − δ] − c−m
.

Next we show that p(k) and ψ(k) are linked by an algebraic relation. To see this, we

substitute (17) and (18) into (13) to obtain the relation

p(k) =
ψ(k)p(k)[r + δ − g(m)] − u(c)

f(k) − k[g(m) − δ] − c−m
. (22)

1See Derzko, Sethi and Thompson (1984) for a proof of the theorem. This theorem is often used on
economics, see, e.g., Arrow and Kurz (1970).
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Dividing both sides of (22) by p(k), we obtain

f(k) − k(g(m) − δ) − c−m− ψ(k)(δ + r − g(m)) + L(c) = 0, (23)

where

L(c) =
u(c)

u′(c)
=
u(c)

p(k)
. (24)

The quantity L(c) is interpreted as value of life; see Section 6 for explainations.

From (21) and (23), we get

ψ′(k) =
ψ(k)[f ′(k) + δ − g(m)] − L(c)

f(k) − k[g(m) − δ] − c−m
. (25)

In (17), we express c in terms of p. Since ψ(k) is related to p(k) algebraically, we can also

express m in terms of p. In fact, we can use (17) and (18) in (23) to obtain

m+
r + δ − g(m)

g′(m)
= f(k) − rk − c+ L(c) (26)

= f(k) − rk − u′−1(p) + u(u′−1(p))/p.

4. Steady State Analysis

The initial condition is obtained at the steady state for which the numerator and the de-

nominator of the right-hand side of the differential equation (20) vanish. In doing so, we

must also observe the maximization conditions (17) and (26). These provide us with four

equations in k, p, c and m. By bringing in the condition (18), we can rewrite the steady state

relations as follows:

f ′(k) = r, (27)

f(k) − (g(m) − δ)k − c−m = 0, (28)

u′(c) = p, (29)

pψ(g(m) − δ − r) + u(c) = 0, (30)

ψ = k +
1

g′(m)
. (31)

(32)

If there exists a solution of these equations, then this solution, denoted as k̄, c̄, m̄, ψ̄,

and p̄, represents the steady state values of the per capita capital, the consumption rate,
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the population policy expenditure rate, and the marginal valuations p and ψ. Note that the

population N(t) does not have a constant value in the steady state. Rather, it grows at the

constant rate of g(m̄) − δ.

We now attend to the question of the existence of a solution to the system of steady

state relations (27)-(31). This analysis will also provide us with the conditions required for

existence. We shall treat two cases: M = 0 and M > 0.

4.1 The Classical Model of Exponential Population Growth and

No Population Policy: The Case M = 0

With M = 0, equation (7) reduces to

Ṅ = [g(0) − δ]N, N(0) = N0.

The usual assumption is that r > g(0)−δ, so that the objective function J remains bounded.

In this case, only (27), (28) and (29) are relevant with m = 0. These relations reduce to

f ′(k∞) = r, f(k∞) − [g(0) − δ]k∞ − c∞ = 0, u′(c∞) = p∞,

where k∞, c∞ and p∞ are the equilibrium values of per capita capital stock, per capita

consumption, and the costate variable associated with the capital.

The analysis of this classical economic growth model is well known (see, e.g., Arrow and

Kurz (1970)), and will not be repeated here.

Next we study a model with population policy measures. We introduce assumptions that

simplify the exposition. More general cases can also be analyzed; their analysis is similar

but tedious.

4.2 The Model with Population Policy: The Case M > 0

This is a case with M > 0. From (27) and the conditions on f(k), we obtain

k̄ = f ′−1(r) > 0. (33)

From (29) and (31), we can obtain p̄ and ψ̄ in terms of k̄, c̄ and m̄, if c̄ and m̄ exist. Thus

we need to study only the existence of c̄ and m̄.
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Let us define the function

c(m) = f(k̄) + k̄δ − k̄g(m) −m. (34)

corresponding to (28). Using (24) and (31) in (30), we obtain

L(c(m)) = [δ + r − g(m)]

[

k̄ +
1

g′(m)

]

, (35)

which is an algebraic equation for m. From (8), it is desirable to have δ + r − g(m) > 0

at the equilibrium so that the value function is bounded. Thus, we look for solutions such

that the right-hand side of (35) is positive, which implies L(c(m)) > 0. In view of c > 0 and

therefore u′(c) > 0, this condition on L implies u(c(m)) > 0. Thus define c > 0 such that

u(c) = 0, so that c(m) > c.

Remark 4.1 For u(c) = cγ, 0 < γ < 1, we have c = 0. For u(c) = ln c, c = 1.

Substituting from (34) into (35), we get

L(f(k̄) + k̄δ − k̄g(m) −m) = [δ + r − g(m)]

[

k̄ +
1

g′(m)

]

. (36)

This is an algebraic equation that yields m̄ and c̄ = c(m̄). To solve (36), define

φ(m) = L(f(k̄) + k̄δ − k̄g(m) −m) − [δ + r − g(m)]

[

k̄ +
1

g′(m)

]

. (37)

Then,

φ′(m) = −[k̄g′(m) + 1][L′(f(k̄) + k̄δ − k̄g(m) −m) − 1] + [δ + r − g(m)]
g′′(m)

g′2(m)
. (38)

In view of (8) and (9), if r + δ − g(m) 6 0 in the steady state, the optimal value

function in (8) becomes infinite. Thus, we focus on the case when r + δ − g(M) > 0 so that

r + δ − g(m) > 0 for 0 6 m 6 M .

We can now prove the following result.

Theorem 4.1 Assume

r > g(0) − δ, c(M) < c, (39)

φ(0) = L(f(k̄) + k̄δ − k̄g(0)) − [δ + r − g(0)]

[

k̄ +
1

g′(0)

]

> 0. (40)
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Then there exists a unique m̂ < M , such that

c(m̂) = f(k̄) + k̄δ − k̄g(m̂) − m̂ = c. (41)

Assume r+ δ− g(m̂) > 0. Then there exists a solution (k̄, c̄, m̄, ψ̄, p̄) of (27)-(31). Moreover,

c̄ > c > 0, 0 < m̄ < m̂, p̄ > 0 and ψ̄ > 0. Furthermore, in the interval [0,m̂], m̂ is uniquely

defined and the other steady state values are also unique.

Proof: From (39) and (40), we can easily conclude that u(c(0)) > 0. Hence, c(0) > c. But

c(M) < c and c′(m) = −k̄g′(m) − 1 < 0. Therefore, m̂ > 0 is uniquely defined.

Using the definition (24) of L(c) we have

L′(c) = 1 − u(c)u′′(c)

u′2(c)
. (42)

Substituting (42) into (38), we obtain

φ′(m) = −[k̄g′(m) + 1]

[

−u(c(m))u′′(c(m))

u′2(c(m))

]

+ [δ + r − g(m)]
g′′(m)

g′2(m)
.

Since δ + r − g(m) > 0 for 0 6 m < m̂ by assumption, and g′′(m) < 0, we have φ′(m) < 0

for 0 6 m < m̂.

From (41) and the definition of c, we have

u(f(k̄) + k̄δ − k̄g(m̂) − m̂) = 0. (43)

Since c(m̂) = c and c′(m) < 0, we can conclude that for 0 < m < m̂, we have c(m) > c > 0

and, therefore,

u(f(k̄) + k̄δ − k̄g(m) −m) > 0, 0 < m < m̂. (44)

From (24), (37) and (43), we have

φ(m̂) = −[δ + r − g(m̂)]

[

k̄ +
1

g′(m̂)

]

< 0. (45)

From (40), (45) and φ′(m) < 0, there exists a unique m̄, 0 < m̄ < m̂, such that φ(m̄) = 0.

Furthermore, c̄ = c(m̄) > c, and p̄ and ψ̄ obtained uniquely from (29) and (31) satisfy p̄ > 0

and ψ̄ > 0. �
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The condition r + δ − g(m) > 0 for 0 6 m < m̂ means that the population under

these population policy measures grows slower than the discount rate, so that the value

function remains bounded. Condition (40) is a bit harder to interpret. However, we can

provide the following insight into this condition. One can see that with c = c, φ(0) > 0 ⇒
f(k̄) − (g(0) − δ)k̄ − c > 0, which in turn implies that k̇ > 0 at k̄ with m = 0 and c = c.

Thus, per capita capital increases with the reduced consumption c and no population policy.

Finally, the condition r + δ − g(m̂) > 0 allows us to have a steady state which is not

explosive. This does not preclude a better solution, where m̄ > m̂ and the objective function

is infinite.

Finally, we note that it is quite possible that m̄ is such that g(m̄)− δ < 0, in which case

the population decreases to zero as t→ ∞.

Thus, we see that the conditions imposed in Theorem 4.1 argue for the steady state

population policy expenditure to be between 0 and m̂.

4.3 An Example

Consider a model of Section 4.2 with g(m) =
√
m and u(c) = ln c. Then c = 1. The condition

(40) becomes

φ(0) = [f(k̄) + k̄δ] ln(f(k̄) + k̄δ) − [δ + r]k̄ > 0. (46)

This needs f(k̄) + k̄δ > 1. Since we can rewrite (46) as

φ(0) = (f(k̄) + k̄δ)[ln(f(k̄) + k̄δ) − 1] + f(k̄) − rk̄,

and since f(k̄) − rk̄ > 0 from (27) and the concavity of f(k), we obtain φ(0) > 0, if for

instance f(k̄) + k̄δ > e.

In this case, using (41), we can define m̂ to be a solution of

f(k̄) + k̄δ − k̄
√
m̂− m̂ = 1. (47)

Since (47) is a quadratic equation in
√
m̂ and since we are assuming k̄ to be large enough

for (46) to hold, the equation has two real roots. However, we want g(m̂) =
√
m̂ > 0, so we

choose the positive root for
√
m̂. This gives

√
m̂ =

√

k̄2 + 4(f(k̄) + k̄δ − 1) − k̄

2
> 0. (48)
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Let us now assume that k̄ is such that
√
m̂ < r + δ. Then from Theorem 4.1, we have a

steady state population policy expenditure m̄ such that 0 6 m̄ < m̂.

5. Phase Diagram Analysis

In this section we analyze the phase diagram of the problem. We first derive the range of

the solutions in Section 5.1. Then we determine the optimal trajectory of p(k) by discussing

the corresponding differential equation in Section 5.2. In Section 5.3, we define the curves

k̇(t) = 0 and ṗ(t) = 0. A numerical example is presented in Section 5.4 to illustrate the

results.

5.1 Range of Solutions

From (26) and (17),

Ψ(m) := m+
r + δ − g(m)

g′(m)
= f(k) − rk − u

′
−1(p) +

u(u
′
−1(p))

p
. (49)

Note that

Ψ′(m)mp = −u(u
′
−1(p)))

p2
, (50)

Ψ′(m)mk = f ′(k) − r, (51)

Ψ′(m) = − [r + δ − g(m)]g′′(m)

[g′(m)]2
. (52)

We are interested in a solution m satisfying r + δ − g(m) > 0. In this case, we have the

following properties.

Lemma 5.1 If there is an m(k, p) ∈ [0, g−1(r + δ)] that solves (49), then

Ψ′(m) > 0,

mp(k, p) 6 0,






mk(k, p) > 0 for k 6 k̄,

mk(k, p) < 0 for k > k̄.

Since Ψ(m) increases on 0 6 m 6 m̃ = g−1(r + δ), the corresponding (k, p) must satisfy

Ψ(0) 6 f(k) − rk − u′−1(p) +
u(u

′
−1(p))

p
6 Ψ(m̃). (53)
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Under the condition (53), there exist a unique solution m(k, p) to (22).

Now define

H(p) =
u(u

′
−1(p))

p
− u′−1(p).

Since H(p) is decreasing in p, the inverse of H exist. Thus, the requirement of (53) is

equivalent to

H−1(Ψ(m̃) − f(k) + rk) 6 p 6 H−1(Ψ(0) − f(k) + rk). (54)

5.2 Optimal Trajectory p(k)

Substituting the solution m(k, p) of (22) into (20) together with the steady state values (k̄, p̄)

define the optimal trajectory p(k). Note that both the denominator and the numerator in

the right-hand side of (20) vanish at the steady state. In order to determine the curve p(k),

we also need to derive the value p′(k̄).

Let

χ(k, p) := f(k) + kδ − u
′
−1(p) −m− kg(m).

Then,

χk = f ′(k) + δ − g(m) − (1 + kg′(m))mk,

χp = − 1

u′′(u′−1(p))
− (1 + kg′(m))mp.

For (k, p) in the neighborhood of (k̄, p̄), we have

χ(k, p) ≈ χk(k̄, p̄)(k − k̄) + χp(k̄, p̄)p
′(k̄)(k − k̄)

=
[

(r + δ − g(m̄)) − p′(k̄)[− 1

u′′(u′−1(p̄))
+ (1 + k̄g′(m̄))mp̄]

]

(k − k̄).

In deriving the last equation, we have used the fact that mk̄ = 0.

By a perturbation argument, we have

p′(k̄) =
−p̄f ′′(k̄)

r + δ − g(m̄) − p′(k̄)
[

− 1
u′′(u′−1(p̄))

+ (1 + k̄g′(m̄))mp̄

] . (55)

That is,

−
[

1

u′′(u′−1(p))
+ (1 + k̄g′(m̄))mp̄

]

(p′(k̄))2 + (r + δ − g(m̄))p′(k̄) + p̄f ′′(k̄) = 0.
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It is easy to see that the above equation has one positive root and one negative root. We

take the negative solution of p′(k̄) because of the following consideration. With the negative

solution, we can prove that the ODE (20) has a smooth solution such that p′(k) < 0. This

is discussed in Theorem 5.1.

Theorem 5.1 The optimal trajectory p(k) defined by (20) is decreasing in k within the range

(54). Moreover,






f(k) − k[g(m(k, p(k))) − δ] − u′−1(p(k)) −m(k, p(k)) > 0 for k < k̄,

f(k) − k[g(m(k, p(k))) − δ] − u′−1(p(k)) −m(k, p(k)) < 0 for k > k̄.

Proof. We first prove the result for k < k̄. Define

π(k) = f(k) − kg(m(k, p(k))) + kδ − u′−1(p) −m(k, p(k)).

Since p′(k̄) < 0, we have p(k̄ − ε) > p(k̄) for a small positive ε. Also since p̄ > 0 and

f ′′(k) < 0, equation (55) implies

π′(k̄) = f ′(k̄) + δ − g(m̄) − p′(k̄)

[

− 1

u′′(u′−1(p̄))
+ (1 + k̄g′(m̄))mp̄

]

< 0.

Therefore the derivative p′(k) at k − ε is well defined and p′(k − ε) < 0. We can proceed as

long as

π′(k) = f ′(k) + δ − g(m̄) − p′(k̄)

[

1

u′′(u′−1(p))
+ (1 + kg′(m))mp

]

+(1 + kg′(m))mk < 0. (56)

This implies f(k) − k[g(m(k, p(k))) − δ] − u′−1(p(k)) −m(k, p(k)) > 0 and p′(k) < 0.

Suppose there is a point k̃ < k̄ with π(k̃) = 0. Since π(k̃+ ε) > 0, we have π′(k̃) > 0. On

the other hand, π(k̃) = 0 in (20) implies p′(k̃) = −∞, which, in turn, implies π′(k) = −∞
in (56). This leads to a contradiction. Thus, we have proven the result for k < k̄.

The result for k > k̄ follows in a similar way. The details are omitted here. �

Corollary 5.1 Along the optimal trajectory p(k) defined by (20), the optimal population

policy expenditure rate m(k, p(k)) satisfies

dm(k, p(k))

dk
> 0.

Moreover, the co-state of the population ψ defined in (18) is also increasing in k.

14



Proof. From (50), (51) and (20), we have

dm

dk
= mk +mpp

′(k)

=
f ′(k) − r

Ψ′(m)
+
u(u′−1(p))/p2

Ψ′(m)
· p(f ′(k) − r)

f(k) − k[g(m) − δ] − u′−1(p) −m

=
f ′(k) − r

Ψ′(m)
· f(k) − kg(m) + kδ −m− u′−1(p) + L(u′−1(p))

f(k) − k[g(m) − δ] − u′−1(p) −m

= − p′(k)

pΨ′(m)
[f(k) − kg(m) + kδ −m− u′−1(p) + L(u′−1(p))].

From Theorem 5.1, we have p′(k) < 0. We also have Ψ′(m) > 0 and p = u′(c) > 0. We need

to show that the term inside the parenthesis is positive. By (49),

f(k) − kg(m) + kδ −m− u′−1(p) + L(u′−1(p))

= f(k) − rk − u′−1(p) + L(u′−1(p)) + k(r + δ − g(m)

= m+

[

1 +
1

g′(m)

]

(r + δ − g(m)).

Under the condition (54), we have r + δ > g(m). Hence, we conclude that dm/dk > 0.

Also from (18), we deduce that

dψ

dk
= 1 +

−g′′(m(k, p(k)))dm
dk

(g′(m))2
> 0.

This concludes the proof. �

5.3 Curves k̇(t) = 0 and ṗ(t) = 0

Along the curve χ(k, p) = 0, we have k̇(t) = 0. Differentiating with respect to k, we obtain

χk + χpp
′(k) = 0.

Thus, the curve k̇(t) = 0 is defined by

p′(k) =
f ′(k) + δ − g(m) − (1 + kg′(m))mk

1
u′′(u′−1(p))

+ (1 + kg′(m))mp

with the boundary p(k̄) = p̄. Note that χ(k, p) increases in p. Thus, k̇(t) > 0 for any point

above the curve, and k̇(t) < 0 for any point below the curve.

The curve ṗ(t) = 0 is defined by k = f ′−1(r) = k̄. We have ṗ(t) < 0 for k < k̄ and

ṗ(t) > 0 for k > k̄.
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5.4 Examples

Consider the example in Section 4.3 with g(m) =
√
m, f(k) =

√
k, and u(c) = ln c. The

curves k̇(t) = 0 and ṗ(t) = 0 are defined as

p′(k) = −p2 1/(2
√
k) − r + (r + δ −√

m)(
√
k/(4m) − rk/(2m) + 1)

1 + (1/
√
m+ k/(2m))(δ + r −√

m) ln p
,

k = 1/4r2.

The optimal trajectory is given by

p′(k) =
p[r − 1/(2

√
k)]√

k − k[
√
m− δ] − 1/p−m(p(k), k)

,

where m(p, k) is the solution of

m+ 2
√
m[r + δ − g(m)] =

√
k − rk − 1/p− ln p

p
.

In Figure 1, we plot the phase diagram for the example with r = 0.25 and δ = 1. In this

particular example, the steady state values are (k̄, c̄, m̄, ψ̄, p̄) = (4, 2.925, 0.435, 1.819, 0.342).

Since g(m̄) − δ = −0.34 < 0, the population keeps decreasing exponentially at the steady

stage. In Figure 1, we also plot the classical curve for which the population grows at a

constant rate −0.34 with no population policy expenditure. The steady state of the classical

curve is at (k∞, p∞) = (4, 0.298) with a consumption rate of c∞ = 3.356 > c̄.

In this case, m̃ = (δ + r)2. The range defined in (53) is

−
√
k + rk 6 − ln p/p− 1/p 6 (δ + r)2 −

√
k + rk

Note that −∞ < − ln p/p− 1/p 6 0 for 0 < p 6 1 = u′(c). In Figure 2, we plot the bounds

of the optimal path and the optimal population policy expenditure of the previous example.

In Figures 3 and 4, we provide an example with a positive population growth rate of

0.118 at the equilibrium. In this example, the steady state values are (k̄, c̄, m̄, ψ̄, p̄) =

(11.111, 1.349, 0.700, 9.450, 0.741). We note that the curve k̇ = 0 is not monotone in k.

The optimal trajectory p(k) is at its lower bound and m = m̃ = 0.723 for k > 11.66. We

also observe that the classical curve with no population policy is well below the optimal

trajectory p(k).
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Figure 1: The phase diagram when r = 0.25 and δ = 1.
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In Figures 5 and 6, we provide an example with the population level saturated at the equi-

librium. In this example, the steady state values are (k̄, c̄, m̄, ψ̄, p̄) = (4.725, 1.951, 0.223, 2.906, 0.513).

Since
√
m̄− δ = 0, the population level stays constant once the equilibrium is reached. We

note that the curve k̇ = 0 is not convex for k < k̄ and concave for k > k̄. The optimal

trajectory p(k) is at its lower bound and m = m̃ = 0.493 for k > 6.78.

6. Genuine Savings and Relationship to the Maximum

Principle

Economists often use the maximum principle for studying optimal control problems like

(5)-(7). It would therefore be useful to relate our analysis to multipliers that arise with the

application of the maximum principle to the problems (5)-(7). We formulate the Hamiltonian

(see, Sethi and Thompson 2000)

H = Nu(c) + λ[f(k) − k(g(m) − δ) − c−m] + µN [g(m) − δ], (57)
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Figure 2: The example with r = 0.25 and δ = 1.

✻
p

✲
k2 3 4 5 6

0

0.2

0.4

0.6

0.8

1.0

Lower Bound

Upper Bound

p(k)

✻
m(k, p(k))

✲
k2 3 4 5 6

0

0.2

0.4

0.6

0.8

1.0

where the adjoint equations satisfy

λ̇ = (r − f ′(k))λ+ λ(g(m) − δ), (58)

µ̇ = rµ− u(c) − µ(g(m) − δ). (59)

It is known that λ and µ provide marginal valuations of k and N, respectively, i.e., λ = θk

and µ = vN . From (12) and the definitions of p and ψ in (17) and (18), we can relate λ and

µ to p and ψ as follows:

λ(t) = vk(k(t), N(t)) = N(t)p(k(t)) and µ(t) = vN (k(t), N(t)) = ψ(k(t))p(k(t)). (60)

Furthermore, the necessary optimality conditions Hc = 0 and Hm = 0 give rise to the

same conditions as (14) and (15), respectively.

We should mention that we did not use the maximum principle formulation for our

analysis of the steady state, since in our problem the population does not settle down to a

stationary value. Rather, it is the rate of change of the population, g(m)− δ, that reaches a

steady state. Another thing we should mention is that the optimal consumption must satisfy

u′(c) = λ/N = p, and it is λ/N that must remain bounded. Likewise, it is µ/p = ψ that

must remain bounded. One can then see that the steady state equations (27)-(31) obtained

in Section 4 correspond to k̇ = 0, d(λ/N)/dt = 0, d(µ/N)/dt, Hc = 0 and Hm = 0 in the

maximum principle framework.

Genuine savings (see, Arrow et al. 2003) in our model can be defined as

v̇ =
dv

dt
=

∂v

∂k
k̇ +

∂v

∂N
Ṅ
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Figure 3: The phase diagram when r = 0.15 and δ = 0.7.
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= λk̇ + µṄ = Npk̇ + ψpN(g(m) − δ). (61)

Here we have used the relations

∂v

∂k
= Np and

∂v

∂N
= ψp, (62)

obtained from (7), (12), (16), (17), and (18).

If we divide (61) by p, we get the genuine savings expressed in commodity terms. Dividing

further by N, we get the expression for per capita genuine savings in commodity terms as

1

Np

dv

dt
= k̇ + ψ(g(m) − δ). (63)

Since we can write the value function in terms of K and N as

V (K,N) = v(
K

N
,N) = v(k,N),

it is easy to see that

∂V/∂K = vk/N = p

and

∂V

∂N
= −v

k
· K
N2

+ vN ,
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Figure 4: The example with r = 0.15 and δ = 0.7.
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= − λ

N
· k + µ,

= −pk + pψ,

which gives

ψ = (∂V/∂N)/p + k = q + k, (64)

We can now see that per capita genuine savings in commodity terms given by (63) is the

same as the expression (14) in Arrow et al. (2003).

Furthermore, an optimal path is sustainable at time t in the sense of Pezzey (1992), if

and only if,

k̇(t) + ψ(k(t))(g(m(t)) − δ) > 0. (65)

Let us define

ρ(t) = e−
∫

t

0
[f ′(k)+δ−g(m)]ds. (66)

Then,

ρ̇ = −ρ[f ′(k) + δ − g(m)], ρ(0) = 1. (67)

Furthermore, let ϕ(t) = ψ(k(t)) and consider

d(ϕρ)

dt
= ρϕ̇+ ϕρ̇. (68)
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Figure 5: The phase diagram when r = 0.23 and δ = 0.472036.
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But from (25),

ϕ̇ = ψ′(k)k̇ = ψ[f ′(k) + δ − g(m)] − L(c).

Therefore, (68) reduces to

d(ϕρ)

dt
= −ρL(c). (69)

As t→ ∞,

f ′(k) + δ − g(m) → r + δ − g(m̄) > r + δ − g(m̂) > 0.

Therefore, ρ(∞) → 0. So we can solve (69) as

ϕ(t)ρ(t) =

∫

∞

t

ρ(s)L(c(s))ds. (70)

From (66), ρ(t) > 0. So from (64) and (70), we have

k(t) + q(t) = ϕ(t) =

∫

∞

t

ρ(s)

ρ(t)
L(c(s))ds > 0, (71)

provided u(c) > 0, which we could assume, as is natural, to be positive in the relevant range.

Many standard utility functions even satisfy u(c) > 0 for c > 0. Note from Section 4.1 that
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Figure 6: The example with r = 0.23 and δ = 0.472036.
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u(c̄) > 0 in equilibrium. Also if the net population growth is positive at least in equilibrium,

then from (65) we see that genuine savings exceed increases in per capita capital.

Arrow et al. (2003) interpret L(c) as value of life. To see this, let σ be the probability of

survival. At any moment of time, the individual enjoys satisfaction u(c) in case of survival

and 0 otherwise, so that expected satisfaction is σu(c). A constant value of this expression

defines an indifference curve between probability of survival and consumption. Then the

marginal willingness to pay in consumption for an increase in survival probability is given

by the negative of the slope of the indifference curve, that is,

−dc/dσ = u(c)/σu′(c). (72)

If we start from a situation of certain survival, i.e., σ = 1, then in view of (24) and (72),

dc = −L(c)dσ is the increased consumption (dc > 0) that would compensate for a decrease

of dσ (dσ < 0) in survival probability. The quantity ϕ(t) = k(t) + q(t) is the value of life

discounted at the marginal productivity of the capital adjusted by the population growth

rate.

In comparing (71) to the relation (15) obtained in Arrow et al., we note that if we define

R(t) = e−
∫

t

0 FK(K(s),N(s))ds,

Q(t) = e
∫

t

0 (g(m(s))−δ)ds,

then q(t) = R(t)Q(t). Hence,

ϕ(t) = q(t) + k(t) =

∫

∞

t

R(s)

R(t)
· Q(s)

Q(t)
L(c(s))ds.
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Note that φ = ψ(t) > 0 does not mean that the population itself is good. That depends

on the sign of q, which may be negative. From (60), we know that the shadow price of

the population µ = ψp. Population is certainly good if µ > 0, i.e., if p > 0, since we know

ϕ = ψ > 0 from (71).

7. Concluding Remarks

We have studied a one-sector model of an economy with the population changing at an

exponential rate affected by the population policy in effect. This rate can be positive,

negative or zero. We use dynamic programming for our analysis. We also show briefly how

our analysis is related to the maximum principle.

By showing that the co-state of the population is only algebraically related to the co-state

of the capital stock, we are able to develop a two-dimensional phase diagram of the problem.

The phase diagram analysis is very similar to the classical model (Arrow and Kurz 1970)

with an exponentially growing population with a positive constant growth rate, even though

the controlled growth rate may be negative in our model.

As a topic for future research, it is interesting to consider a more general model in which

the population growth rate depends on both the current population and the population

policy expenditures, i.e., Ṅ = N(g(N,m) − δ).
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