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ABSTRACT 

The design of randomised controlled trials (RCTs) entails decisions that have 

economic, as well as statistical implications. In particular, the choice of an individual or 

cluster randomisation design may affect the cost of achieving the desired level of 

power, other things equal. Furthermore, if cluster randomisation is chosen, the 

researcher must decide how to balance the number of clusters, or "sites", and the size 

of each site. This paper investigates these interrelated statistical and economic issues. Its 

principal purpose is to elucidate the statistical and economic trade-offs to assist 

researchers to employ RCT designs that have desired economic, as well as statistical, 

properties. 
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INTRODUCTION 

In the design of randomised controlled trials (RCTs), a fundamentally important 

technical consideration is the statistical power (1-β) that will be produced, given the 

specified critical difference (dc) of interest, and the chosen level of significance (α). 

These statistical issues, however, are not usually considered in isolation. Rather, as 

Selvin points out "...a choice of an acceptable...[level of] statistical power is usually 

made on nonstatistical grounds" [1, p.102). While clinical or other technical 

considerations are most likely to govern the selection of the effect size, economic 

considerations are likely to be central to the choice of power and significance levels. 

This paper outlines a process whereby the resource constraints to which 

researchers are usually subject, may be considered during the sample design process. In 

particular, the paper illustrates how researchers can minimise the cost of producing a 

given level of statistical power, other things equal (i.e. given the specified null and 

alternative hypotheses, dc and α levels); or, equivalently, how power can be maximised 

given a specified budget. 

This optimisation problem has apparently not been explored, in any depth, in 

the existing literature on cluster randomisation. That is not to say that the matter of 

cost-effective sample design has been ignored in that literature; monographs and 

journal articles on cluster randomisation routinely refer to the matter of cost-effective 

sample design. A method for systematically determining the optimal combination of 

sites and site size has not, however, previously been elucidated. The focus of the 

current paper is on the statistical and economic trade-offs between the number and the 
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size of sites chosen that arise in cluster designs. Its objective is to provide an 

appropriate framework for the construction of economically-efficient samples that 

have the desired statistical properties. 

 

RCT DESIGN AS AN ECONOMIC PROBLEM 

The problem of sample design may be conceived as an economic, as well as a statistical 

problem. The problem for the RCT designer is typically to develop a study design that 

not only satisfies the statistical requirements of the investigators, but also conforms to 

some budget constraint. As such, the task of sample design may be viewed as a classic 

economic production problem. 

Economists consider the problem of production as one that is of a "dual" 

nature. That is to say that production problems can be viewed from two, analytically 

equivalent, perspectives, viz. as (i) that of minimising the cost of producing a specified 

level of output; or (ii) that of maximising the output produced with a specified budget. 

(For both (i) and (ii) it is understood that the quality of the output under consideration 

is to be constant when cost minima and output maxima are considered. For a more 

detailed statement of duality theory, see, e.g. [2].) When a production process satisfies 

the condition described by (i) and (ii), it said to be "technically efficient". 

For RCT design, the economic problem may be cast in the following "dual": (i) 

maximise the statistical power of the test, given a specific resource constraint (and the 

required level of precision); or (ii) minimise the cost of producing a specific level of 

statistical power (and the required level of precision). Why might researchers be 



 

 3

interested in finding an accurate solution to this optimisation problem? The reasons 

become clear when the consequences of economically-inefficient sample designs are 

considered. An economically-inefficient sample design, by definition, produces less 

power than a cheaper alternative to it, other things equal. Expressed differently, when 

an inefficient sample design is chosen, the power produced by it is lower than the 

power that could have been produced with the same budget. Thus, since an efficient 

sample design produces more "power per dollar" than an inefficient one, an optimal 

solution to the design problem can lower the cost of an RCT (for the same level of 

power), increase the power of the statistical test (for the same total cost), or do both. 

Economic production theory can be applied to resolve the optimisation 

problem just described. In this paper, the conceptual basis of the optimisation solution 

is outlined and an illustration of its application is provided. The purpose of the paper is 

to illustrate how this solution can be used to balance the size and number of sites used 

in cluster designs in an optimal way. 

 

THE EXISTING LITERATURE ON OPTIMAL DESIGN 

The modern literature on optimal experimental design has largely been concerned with 

methods for computing optimal regression designs, and can be traced to a seminal 

paper by Elfving [3] and, subsequently, Keifer [4], (also see [4] for a useful review of the 

early literature.) In the late 1960s, Conlisk and Watts [5] produced an influential paper 

in which, amongst other things, considered the problem of "budget minimization" for 

"a pre-selected maximum admissable error" in the context of optimal regression 
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experimental designs. Conlisk [6] subsequently extended this work by illustrating the 

impact of uncertainty about the functional form of a relationship on the optimal design 

problem. 

The 1970s (particularly the late 1970s) witnessed a flurry of activity on 

problems of optimal design, including emphases on cost-control. Interest in the field no 

doubt owed something not only to the relaxation of mechanical constraints on 

computation, but also to numerous, large, inherently expensive, social experiments 

(e.g., the Graduated Work Incentive Experiment [7], the Rand Health Insurance 

Experiment (HIE) [8], and negative income tax experiments [6]) that were conducted 

during that period. A shift in emphasis from considerations of exclusively statistical 

dimensions of optimality (see, e.g. [4]), to those that involving economic 

considerations, is evident in the following statement by Conlisk  (in which constant 

returns to sampling expenditures are implicitly assumed): 

 

Since the criterion F is a variance magnitude, this ratio is a relative efficiency 
measure in the usual variance sense. In dollar terms if one design has 0.5 
efficiency relative to another, it means that a doubling of the budget would be 
needed to bring the one design up to the accuracy level of the other. 
 
[E]fficiencies can vary widely; hence efficiency questions in multi-million 
dollar...experiments...are quite important in dollar terms [6, p.649]. 

 

Economic considerations led Morris [9] to extend the Conlisk-Watts [5] approach to 

asymmetric sample applications with a finite population. His so-called "Finite Selection 

Model" (FSM) was developed to assign families enrolled in the Rand HIE to insurance 
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plans "according to the general design goals of optimality (i.e., precision), balance and 

robustness" [9, p.44] and involves a sequential (approximate) optimisation process. 

At the same time, Aigner [10, 11] considered optimal design issues in the 

context of electricity load control and pricing experiments, as well as providing a useful 

overview on matters of optimal design [12]. Aigner and Balestra [13] have also 

extended, in the context of error components models, the analysis of optimal 

experimental design to include considerations of inter-temporal controls (an idea 

proposed originally proposed by Hausman [14]). More recently, Aigner and Schönfeld 

[15] have shown how optimal design can be approached in the complex circumstances 

associated with direct-metering multiple appliances, in a sample of households, to 

measure electricity end-uses. 

More recently still, several papers have been concerned with matters of design 

and efficiency. However, recent papers that have been concerned with efficiency (e.g., 

those by Cohen and Yu [16], Cohen and Machlin [17], Howes and Lanjouw [18], Van 

Praag, Kloek and De Leeuw [19]) have focused explicitly only on the statistical 

dimensions of efficiency. That economic issues have, once again "taken a back seat" in 

the literature on sample design is not at all surprising - much of what can be said about 

optimal sample design has, in the context of experiments designed to enable parameter 

estimation, apparently already been said. However, consider the distinction drawn by 

Aigner [12. p.7] in the following statement about sample design: 

 

The main principle that guides "good" experimental design is straightforward 
enough: Given either parameter estimation or hypothesis testing as the 
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ultimate purpose to which the data are to be put, one attempts to utilize a given 
number of observations in order to maximize the precision of estimation or 
the power of a test. 
 

This distinction between parameter estimation and hypothesis testing is important. 

The existing literature on optimal design is dominated by a concern with the precision 

of parameter estimation, rather than with hypothesis testing per se. Furthermore, with 

one exception, those studies cited above that are expressly concerned with both the 

economic and statistical dimensions of efficiency are either (i) concerned exclusively 

with simple random or stratified random samples; or (ii) assume away any effects of 

clustering, albeit implicitly, in their treatment of design issues. Aigner and Schönfeld 

[15] are the only authors to give a conceptual treatment consider of an effect that might 

be considered a "clustering" effect, viz. "the correlation between the disturbances when 

the same households are used for purposes of direct metering". See also the empirical 

work of Fiebig, Bartels and Aigner [20], in which this issue is explicitly acknowledged. 

Notwithstanding, [15] and [20] are chiefly concerned with matters of parameter 

estimation and precision. 

Thus, this paper fills a somewhat surprising, and important, gap in the existing 

literature on optimal design. It provides a conceptual account of an approach to 

optimal design that can be applied in the context of cluster sample experiments that are 

designed for hypothesis testing. The analysis not only fills a conceptual void, but also 

addresses an issue that is of practical economic importance to sample designers.  

 

SAMPLING, AS PRODUCTION 
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The relationships between inputs and the quantity (and quality) of output they 

produce is fundamental to the economic analysis of any production process. An 

understanding of such relationships demands a clear definition of the relevant inputs 

and outputs. In this regard, it is important to distinguish between the concepts of 

interest and the relevant measures of them. The choice of an appropriate measure of 

output is not always straightforward. For example, consider the production activities 

of hospitals. A range of conceptions of hospital output exists (e.g., changes to health 

status, treatment of a case), along with a variety of output measures (e.g. number of 

occupied bed-days, number of admissions, number of live discharges, number of 

treated cases). A detailed statement on the correspondence between such concepts and 

their measures, in relation to hospitals, is provided in [21]. 

Conceptually, the output of an RCT may be viewed as "information". For the 

purposes of this paper, though, statistical power is arguably a useful proxy measure of 

this output:  the reliability of the information produced by an RCT is directly related 

to its power. Furthermore, it is more useful for analytical purposes to treat power, 

rather than dc, as the objective function, since the relevant effect size is typically 

determined exclusively on non-economic (e.g., clinical) grounds. 

It is useful to conceive of the inputs in the production process as the number of 

subjects or, in the case of cluster designs, the "number of clusters" (or "number of 

sites") and the "number of subjects per cluster" (or the "size per site"). These inputs 

could be disaggregated further into, e.g. labour, capital and land. While this primary-

level disaggregation is not initially useful for the purpose of this paper, the problem of 
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primary input selection is considered later on. The primary focus of the paper is, 

however, on trade-offs between the number and size of sites employed in cluster 

designs. 

Attention is now directed to a discussion of the specific characteristics of the 

production relationship between these statistical inputs and the (power) output of 

RCTs. 

 

INPUT SUBSTITUTION AND PRODUCTION 

In sample design, the researcher often is faced with a choice between several approaches 

that will fit the purpose of the study. First, the study designer can often choose 

between simple random sample and cluster designs. Then, if cluster sampling is 

considered, a variety of statistically-equivalent combinations of site size and the 

number of sites usually exists. In order to understand the role economics can play in 

the choice of an optimal combination of site numbers and size, the technical 

characteristics of the production relationship must be appreciated. Indeed, the 

substitutability of sampling inputs is a fundamental consideration in the process of 

selecting the optimal input mix in any production process. Thus, the statistical 

properties of cluster samples are central to the economic analysis. 

Cluster samples are generally subject to larger standard errors than simple 

random samples (for a given sample size n): subjects in a given cluster tend to be more 

alike than are subjects drawn, at random, from a population [22]. This source of power 

loss has important statistical implications for the calculation of the sample size that is 
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required to produce a given level of power. One measure of the magnitude of this loss 

of precision is the so-called "design effect" (DE), which is measured as 

srs

cl

Var

Var
DE =  (1), 

where Varcl is the variance of the estimate based on a cluster sample and Varsrs is the 

variance of the estimate calculated on a simple random sample of individuals. When 

Varcl >Varsrs, a loss of power is associated with the cluster, relative to the simple 

random sample. The response is typically to increase n, at the design stage, in order to 

compensate for the power loss associated with the cluster design. A detailed empirical 

study of these effects was provided by [23] recently, in this Journal. 

Notwithstanding the larger n that is generally required when a cluster design is 

chosen, the economies achieved by sampling in clusters may more than offset the cost 

of increasing n. In such cases, the cluster design is more cost-effective than the simple 

random sample. It is worth emphasising that the possibility for resource conservation 

arises due to the technical (or statistical) substitutability of these sample types. 

Substitutability, however, extends beyond that of substituting one sample method for 

another. 

When cluster designs are considered, it is the substitutability of the site numbers 

and site size that becomes important. Since the design effect is directly related to the 

size of the clusters sampled, site size and the number of sites are, themselves, statistical 

substitutes. To select the economically-efficient combination from those available, 

information about the statistical relationship between sites and site size must be 
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considered alongside information about the costs of increasing the number, or the size, 

of study sites. The analysis below demonstrates how these data can be wedded to select 

the economically-efficient combination(s) of sites and site size. 

The statistical example used by Kerry and Bland [24] is employed here to 

illustrate the central principles. These authors were concerned with a two-sample test 

of means, and their purpose was to illustrate the statistical features of cluster samples. 

(The choice of a test of means is, for the purposes of this paper, somewhat arbitrary. 

The economic principles illustrated here are equally applicable to sample design for 

tests of proportions.) The authors were interested in a behavioural intervention, 

performed in general practices, that was designed to lower blood cholesterol 

concentrations. The minimum clinical difference of interest was a change of 0.1 

mmol/l (i.e., dc=0.1), to be tested at the five per cent level of significance, with power 

of 90 per cent. The required n for this study (for each group, in this two-sample test of 

means) was thus  

2

2

2/
2)(2

d

sZZ
n βα +

= =
2

221

d

s
 (2), 

where s2 is the variance of the outcome measure. 

For randomised cluster samples, the relationship between statistical power and 

sample size is complicated by the need to account for two types of dispersion, viz. 

inter- and intra-cluster variance. Thus, for example, the total number of clusters, c, 

required to achieve 90% power, at 5% significance is calculated as 

 
2

22 )/(21

d

mss
c wc +=  (3); 
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where c is the number of clusters, sc
2  and sw

2 are the inter- and intra-cluster variances, 

respectively, of the outcome measure, and m is the number of subjects per site.  

Equations (2) and (3) describe statistical production relationships: that is, they 

describe the relationship between inputs (clusters, subjects per cluster, and subjects) and 

statistical power, or significance for specified effect or "difference". The economic 

production function itself may be written, more generally, as follows: 

 ),( mcfPower =  (4). 

 

SITE NUMBERS, SITE SIZE AND THE PRODUCTION OF POWER 

The optimisation problem of interest in this paper is, strictly speaking, an integer 

programming problem. However (paraphrasing [5, p.151]) "practically speaking, little 

will be lost in practice by treating [c and m] as continuous in solving [the optimisation 

problem] and then rounding off." Invoking this conception of the problem along with 

a simplifying assumption employed throughout this study, i.e. that mi=c/n for all i, 

consider the relationship between the statistical output, Power, and the inputs c and m.  

It is useful to employ the economic concept of the "marginal product" (MP) of each 

input in this context. The MP of an input is the additional output that is produced by 

adding an extra unit of that input, while holding all other inputs constant. For c and m, 

these are 

cc f
c

MPPowerM =
∂
−∂== )1(

)(
β

 (5a) 

and 
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mm f
m

MPPowerM =
∂
−∂== )1(

)(
β

 (5b), 

where MPc is the marginal physical product of "clusters" and MPm is the marginal 

product of "number of subjects per cluster". The second-order partial derivatives of (4) 

may be written as follows: 

 0
)1(

2

2

<=
∂

−∂=
∂

∂
cc

c f
cc

MP β
 (6a) 

and 

 0
)1(

2

2

<=
∂

−∂=
∂

∂
mm

m f
mm

MP β
 (6b). 

The characteristics described in (6a) and (6b) indicate that the statistical production 

process is subject to "diminishing marginal returns" with respect to both "clusters" and 

"subjects per cluster". In other words, increasing c or m while holding all other inputs 

constant increases output at a decreasing rate. It is worthwhile to note that diminishing 

marginal returns are not imposed by the solution but are a natural property of this 

and, indeed, many other production processes.  

The marginal products of inputs are important in production inasmuch as these 

provide information about the impact, on output, of a change in one input quantity. 

More usefully, though, this information can be used to determine which combinations 

of two inputs can be used to produce any given level of output. Mathematically, 

 β−== 1),( mcfPower  (7) 

Equation (7) is an isoquant for a given level of power: it represents all combinations of 

the inputs c and m that produce the 1-β level of statistical power (/significance). 
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(Literally, “isoquant”, means “same quantity”.) Along any given isoquant, the technical 

possibilities for substitution are derived by setting the total differential of the 

production function (4) equal to zero, and hence we may write: 

β−

−==
1dc

dm
MRTS

MP

MP
cm

m

c  

 (8) 

where MRTScm is, literally, "the marginal rate of technical substitution of clusters for 

subjects per cluster". Expressed more intuitively, this is the rate at which an increase in 

the number of clusters can be met with a decrease in the number of subjects per cluster 

(or vice-versa), without affecting the power of the design. It is equivalent to the ratio of 

the marginal product of "clusters" to the marginal product of "subjects per cluster" 

because this ratio also indicates the quantity of c that must be foregone for a given 

change in m in order to hold power constant. Finally, that the greater (smaller) is the 

marginal product of m, relative to c, the greater (smaller) the quantity of c that must be 

foregone to offset the output change that results from increasing m. For this reason (i.e. 

that of diminishing marginal returns), the MRTScm varies along the length of the 

isoquant. Indeed, the slope of the isoquant is simply the -MRTScm. (Note that, according 

to this discussion, equation (2) can be viewed the isoquant for the 90 per cent power 

and five per cent significance levels for the study referred to in [24].) 

The practical importance of the discussion highlights an important 

characteristic, not only of the production of statistical power in cluster samples, but of 

most production processes. Namely, a variety of combinations of inputs can usually be 
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used to produce a desired level of output; but the productivity, and hence 

substitutability, of each input depends on its relative quantity. 

This rather simple observation can be used to economic advantage: although 

different combinations of clusters and subjects can be used to produce an identical 

statistical result, these combinations are unlikely to have identical costs. Subsequently, 

it will be shown that equating the MRTScm to the sampling costs associated with 

subjects and clusters yields the optimal economic choice from the technical possibilities 

available. First, we employ an example from the literature to illustrate the relationships 

introduced so far. 

 

AN ILLUSTRATION WITH DATA 

To cement concepts, we now consider an example from the literature in the context of 

production theory. Kerry and Bland [24], in their note on cluster randomisation 

describe a trial to study the effect of a behavioural intervention, undertaken in general 

practice (GP), to lower serum cholesterol values. In this study, the intervention group 

was provided with an intensive, behavioural, dietary intervention by practice nurses, 

while the control group received usual (GP) care. The outcome measure in this study 

was to be the mean cholesterol value for patients in each group, one year later. The 

minimum clinical difference of interest in the study was a change of 0.1 mmol/l (i.e., 

dc=0.1) to serum cholesterol levels. 

Table 1 presents data that were calculated using the difference (dc=0.1), variance 

(sm
2=1.28 sc

2=0.0046), and power (1-β=0.90) and significance (α/2=0.05) levels adopted 
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in [24]. Column (i) presents the number of patients per cluster (or practice) (m) and is 

subject to an upper bound of 500 – which represented the maximum size of the general 

practices in the population of interest. The chosen values of m are somewhat arbitrary, 

but are useful for the purposes of illustration. Column (ii) presents the standard 

deviation, and accounts for both inter- and intra-cluster deviations, where relevant. 

Column (iii) contains the number of clusters (c) that is required to achieve the desired 

power level given the number of patients per practice chosen in column (i). (The data 

in column (iii) were calculated by applying equation (3), above, to the data in columns 

(i) and (ii).) The data in column (iv) are twice the product of the data in columns (i) and 

(iii), i.e. column (iv) gives the total number of subjects (2n) required for this two-

sample study. Column (v) provides the calculated design effect, (1); column (vi) 

contains Arabic labels for each (c,m) combination, and column (vii) provides the 

MRTScm, calculated, according to equation (8), for -dm=1.  

 

[TABLE 1 ABOUT HERE] 

 

Each of the combinations in Table 1 produces (approximately, due to rounding) 

the same level of statistical power and significance. That is, Table 1 provides isoquant 

data and shows that there is input (c and m) substitutability in the production of 

statistical power. The data in column (vii) also show that the inputs are imperfect 

substitutes, i.e. MRTScm≠1 for all c and m combinations. Rather, the MRTScm is an 

increasing function of m because, all else equal, the MPm falls as m increases. A 



 

 16

comparison of the data in columns (v) and (vii) also reveals that there is a direct 

relationship between the DE and MRTScm. 

A more complete depiction of the isoquant described in Table 1 is provided, 

geometrically, by the curve 1-β10 in Figure 1. The combinations labelled A to I in Table 

1 appear on the isoquant depicted in this figure. Note, though, that all combinations of 

c and m that lie on 1-β10 also produce the same level of statistical power, viz. 90 per 

cent. Statistically, these combinations are perfect substitutes. Recall that the slope of 

the isoquant at any point = -MRTScm. It is also noteworthy that a "special case" of 

cluster randomisation, in which m=1 and c=2682, constitutes (one outcome of) a 

simple random sample. 

 

[FIGURE 1 ABOUT HERE] 

 

It should also be noted that the isoquant depicted in Figure 1 is one of an infinite 

population of isoquants. Specifically, an isoquant may be drawn for any desired level of 

statistical power and the lower (higher) is the level of statistical power, the closer 

(farther) the isoquant will be from the origin. It is also noteworthy that each of these 

isoquants will be convex to the origin (because the marginal products of c and m 

change according to their relative quantities) and will not cross one another (since, for 

a specified dc, any combination of c and m produces a unique level of statistical power). 

A more detailed statement of these general properties of isoquants may be found in 

[25], for example. 
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ECONOMICALLY-EFFICIENT SAMPLE DESIGN 

As Figure 1 illustrates, the sample design possibilities are not limited to those shown in 

Table 1. Indeed, at least 500 different designs are available to the researcher in this 

example, including 499 different combinations of c and m, and the simple random 

sample. How is the least cost design to be chosen, from those available? 

To solve the optimisation puzzle, we frame the problem as that of a trade-off 

between the "number of subjects (n)" and the "number of clusters (c)" and write: 

 ),( ncfPower =  (9). 

Recall, too, that the technical trade-offs that result from setting the total differential of 

the production function to zero were described as follows: 

β−

−==
1dc

dn
MRTS

MP

MP
cn

n

c  (8). 

Table 2 provides the MRTScn for the combinations that were described in Table 1. 

Figure 2 depicts the isoquant from which the combinations in Table 2 are taken. 

 

[TABLE 2 ABOUT HERE] 

 

The relationship between sample design and cost can now be considered by 

introducing a total cost function or "budget constraint": 

nPcPTC nc +=  (10), 
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in which Pc is the price per cluster and Pn is the price per subject. Thus, the total cost of 

the sampling exercise depends on both the number of clusters and the number of 

subjects chosen, along with their unit prices. In practical terms, Pc may be thought of as 

the fixed cost of establishing each separate cluster for the trial. It could include, for 

example, the cost of corresponding with and training of personnel at cluster locations. 

Pn may be conceived as the additional cost that is incurred each time an additional 

subject is included in the trial. For simplicity, and without loss of generality, it is useful 

to assume initially that Pc and Pn are constants.  

The first order conditions for the cost minimisation problem, given 

101),(1 ββ −==− ncfi , can be derived by setting up the Lagrangean:  

)]1(),([ 10βλ −−++= ncfnPcPL nc  (11). 

For a proper relative minimum, it is necessary that 

0=
∂
∂−=

∂
∂

c

f
P

c

L
c λ  (12a) 

0=
∂
∂−=

∂
∂

n

f
P

n

L
n λ  (12b) 

0)1(),( 10 =−−=
∂
∂ β
λ

ncf
L

 (12c); 

Or, dividing (12a) and (12b), that 

cn
c

n MRTS
cf

nf

P

P =
∂∂
∂∂=

/

/
 (12d) 

Equation (14d) produces the following, general result: the cost-minimising design can 

be found by equating the marginal rate of technical substitution of the two inputs with 

the ratio of their prices. 
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Consider, for example, the (hypothetical) case in which Pc=$31.25 and 

Pn=$10. Pn/Pc =3.125, and the design that has an MRTScn closest to this price ratio is 

that for which n=3,000 and c=30 (and MRTScn=3.127). Thus, the optimal number of 

clusters is 30 and, since m=n/c, the optimal size of each cluster =3,000/30=100. (See 

Table 2.) Given the input prices, the minimum total cost per sample is 

TC=$31.25(30)+$10(3,000)=$30,437. (Since the study referred to here involves a two-

sample test of means, the minimum budget required would thus be $60,874.) 

This solution is depicted in Figure 2 by the point of tangency, B, between the 

isocost (literally “same cost”) line, ZW, and the isoquant, 1-β10. The isocost ZW depicts 

all combinations of c and n that cost $30,437. It has a slope of -Pn/Pc., i.e. the slope is 

determined by the relative prices of the inputs. Notably, no other combination of c 

and n that is depicted on ZW produces as much statistical power as B. Rather, all other 

combinations on ZW produce 1-βi < 1-β10. For a more detailed discussion of the 

general properties of isocost curves see, e.g. [25]. 

The cost-minimisation problem just explored is, of course, also amenable to 

analysis as an output-maximisation problem, given a specified budget constraint (such 

as ZW). Once again, the solution to the problem is provided by (14d), viz. given a 

specific budget, the power of the sample is maximised by selecting the combination of c 

and n so that the ratio of their prices is equal to the MRTScn. 

 

EMPIRICAL COMPLICATIONS: FIXED COSTS, ECONOMIES OF SCALE 
AND UNCERTAINTY 
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It was assumed, above, that Pc and Pn are constants. By implication, this means that the 

prices of inputs are independent of the quantities employed. This assumption, while 

perhaps not unrealistic, may not be appropriate for some studies. For example, the unit 

cost of n may not be constant: for an increasing m, the unit cost per subject could 

decline (the case of scale economies) and/or increase (the case of scale diseconomies). 

Alternatively, or additionally, the price per cluster Pc might not be a constant, but 

could increase or decrease over particular values of c. 

Scale effects of this kind can give rise to non-linearities in the isocost curve and, 

as a result, the cost-minimisation/output-maximisation problem may not have a unique 

solution. That is, several statistically-equivalent sample designs may also be equally 

economically-efficient. In practice, this complication may be dealt with by calculating 

the price ratios produced by the expected unit costs for c and m as their magnitudes 

change, to identify the optimal design(s). 

Another implicit assumption that was invoked, above, is that Equation (10) is 

an exhaustive account of all relevant inputs and their prices. This assumption may also 

be too simplistic, in practice. For example, some plant, infrastructure and 

administrative costs may be unrelated to the quantities of c and m that are chosen. In 

such cases, the budget constraint may be written as  

nPcPFCTC nc ++=  (13), 

where FC is the fixed cost of sampling and is independent of quantities of c and m 

chosen. 
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The existence of fixed costs does not, however, complicate the problem of 

optimal sample design: these costs are independent of the chosen input combination, so 

the cost-minimising (or output-maximising) design is determined in the manner 

outlined above, and summarised in (12d). 

The analysis presented here does not deal explicitly with the optimal selection 

of primary inputs (e.g., labour, land, capital). However, it should be noted that, if the 

combination of these inputs for the production of "clusters" and "number of subjects 

per cluster" is sub-optimal, the chosen quantities of c and m are also likely to be sub-

optimal. That is, condition (12d) is a necessary, but not a sufficient condition for the 

design of an efficient cluster-randomised study. Rather, to guarantee technical 

efficiency, the ratios of prices and the rates of technical substitution between all 

primary inputs must also be equal. This is, however, a general requirement for 

productive efficiency and accessible accounts may be found in most texts in 

microeconomics, including [25]. 

A further matter that may concern practitioners is the problem of uncertainty 

regarding the true magnitudes of the intra- and inter-cluster variances, since these are 

central to the calculations performed above. The resulting problem of power 

miscalculations is not, of course, only economic. However, a typical economic 

responses to this kind of uncertainty might be either to (i) estimate the costs and 

benefits of underestimating these variances; or (ii) test the sensitivity of the study’s 

power and costlineness to the expected range in which these are considered likely to 

fall. Generally, the costs of overestimating statistical power are considerable in trials. 
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Thus, the result of a systematic economic approach to this particular issue is unlikely 

to yield any real additional benefits over the conservative approach to power 

calculations adopted by convention. 

Finally, it should be noted that the complications introduced by multi-stage 

cluster sampling, stratification, and so on, have not been addressed explicitly here. For 

a recent discussion of the statistical implications of the simultaneous occurrence of 

these phenomena, see [18]. 

 

PRACTICAL IMPLICATIONS AND CONCLUSION 

The practical importance of resource conservation hardly requires emphasis in the 

context of clinical trials. As practitioners well know, the resources available to conduct 

trials are typically limited and are therefore usually subject to considerable scrutiny 

from one or more of the players in the game, i.e. funders, investigators, facilitating 

organisations, subjects. For this reason, the costs and consequence of alternative 

scenarios, such as those that involve different numbers of clusters and cluster sizes are 

commonly weighed in practice. 

The contribution of this paper is to place such considerations in a framework 

that has a strong theoretical pedigree in economics. While the elucidation of this 

framework has been detailed, it is worth emphasis that the general result does provide 

practitioners with a practical and relatively non-technical way of simplifying the search 

for an optimal trial design. Via a straightforward application of the optimisation rule – 

presented as (12d), above – the search for an optimal combination of clusters and 
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cluster sizes can be simplified considerably. Furthermore, an application of this 

systematic approach to cluster design may reassure funders that not only will a given 

trial design produce important clinical information, but also do so at least cost. This 

may be a particularly important exercise in large and expensive trials.  

At the same time, it is worth recognising that the systematic approach described 

in this paper will not always produce large efficiency gains over the types of aggregate 

costs comparisons that the architects of clinical trials are apt to consider anyway. If the 

number of alternative designs is strictly limited by, for example, institutional factors – 

and the limit case is that in which is where there is only one possible design – 

economics could have little, or nothing, to offer the trial architect. In less restrictive 

circumstances, though, the economic approach outlined here may be useful.  

Finally, it is worth noting that a number of issues, which have not been 

addressed in this paper, provide opportunities for extensions to the work. The joint 

economic and statistical impacts of problems of attrition, multi-stage sampling, sample 

stratification, and so on, might usefully be considered in extensions of this work. 
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TABLE 1 
TRADE-OFFS BETWEEN THE NUMBER AND SIZE OF CLUSTERS 

No. of 
Subjects per 

Cluster 
(m) 
(i) 

Standard 
Deviation 

 

(S.D.) 
(ii) 

No. of 
Clusters, 
Given m 

(c) 
(iii) 

Total no. 
of 

Subjects 
(2n) 
(iv) 

Design 
Effect 

 
(DE) 
(v) 

Label 
 
 
 

(vi) 

MRTScm 

 

 

 

(vii) 

Individual 

randomisation 

0.0046 - 5,364 1.000 - - 

 

10 0.3641 279 5,580 1.040 A 0.033 

30 0.2174 100 6,000 1.119 B 0.324 

50 0.1738 64 6,400 1.193 C 0.911 

100 0.1319 37 7,400 1.380 D 3.683 

150 0.1146 28 8,400 1.566 E 8.315 

200 0.1049 24 9,600 1.790 F 14.807 

300 0.0942 19 11,400 2.125 G 33.371 

400 0.0883 17 

 

13,600 2.532 H 59.375 

500 0.0846 16 16,000 2.983 I 92.820 

Notes: (a)  The calculations of c, m and n, contained in this table, are based on  dc=0.1, 

 α=0.05, β=0.10, and sm
2=1.28 sc

2=0.0046. 
 (b) Data on the number of clusters, indicated in column (iii), have been 

 rounded to the next higher integer. Data in columns (iv) and (v) were 

 calculated from the rounded data. 

(c) Data in columns (ii), (v) and (vii) were been rounded to three decimal 

places. 

(d) MRTScm is the marginal rate of technical substitution of 'number of clusters' 

for 'number of subjects per cluster' and is calculated for unit changes in m at 

10.0=β  (cf. Equations (8) and (9)). 
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FIGURE 1 
TRADE-OFFS BETWEEN THE NUMBER OF CLUSTERS (c) AND THE 

SIZE OF CLUSTERS (m) 
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TABLE 2 
TRADE-OFFS BETWEEN THE NUMBER OF CLUSTERS AND THE NUMBER 

OF SUBJECTS 
No. of 

Subjects per 
Cluster 

(m) 
(i) 

No. of 
Clusters, 
Given m 

(c) 
(ii) 

No. of 
Subjects 

 
(n) 
(iii) 

Label 
 
 
 

(iv) 

MRTScn 
 

 

 

(v) 

10 279 2,790 A 0.323 

30 100 3,000 B 3.127 

50 64 3,200 C 8.805 

100 37 3,700 D 35.578 

150 28 4,200 E 80.320 

200 24 4,800 F 143.031 

300 19 5,700 G 322.359 

400 17 6,800 H 573.563 

500 16 8,000 I 896.641 

Notes: (a)  The calculations of c, m and n, contained in this table, are based on  dc=0.1, 

 α=0.05, β=0.10, and sm
2=1.28 sc

2=0.0046. 
 (b) Data on the number of clusters, indicated in column (ii), have been 

 rounded to the next higher integer. Data in columns (iv) and (v) were 

 calculated from the rounded data. 

(c) Data in column (v) have been rounded to three decimal places. 

(d) MRTScn is the marginal rate of technical substitution of 'number of clusters' 

for 'number of subjects' and is calculated for unit changes in n at 10.0=β . 
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FIGURE 2 
TRADE-OFFS BETWEEN THE NUMBER OF CLUSTERS (c) AND THE 

NUMBER OF SUBJECTS (n) 
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