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Abstract

In Hart and Kurz (1983), stability and formation of coalition structures has been
investigated in a noncooperative framework in which the strategy of each player
is the coalition he wishes to join. However, given a strategy profile, the coalition
structure formed is not unequivocally determined. In order to solve this problem,
they proposed two rules of coalition structure formation: the γ and the δ models.

In this paper we look at evolutionary games arising from the γ model for situa-
tions in which each player can choose mixed strategies and has vague expectations
about the formation rule of the coalitions in which is not involved; players deter-
mine at every instant their strategies and we study how, for every player, subjective
beliefs on the set of coalition structures evolve coherently to the strategic choices.
Coherency is regarded as a viability constraint for the differential inclusions de-
scribing the evolutionary game. Therefore, we investigate viability properties of the
constraints and characterize velocities of pairs belief/strategies which guarantee that
coherency of beliefs is always satisfied. Finally, among many coherent belief revi-
sions (evolutions), we investigate those characterized by minimal change and provide
existence results.

Keywords: Coalition formation; coherent beliefs; differential inclusions; viability theory; minimal

change belief revision.

1 Introduction

As recognized by von Neumann and Morgenstern (1944) in their seminal work, the problem
of coalition formation plays a central role in game theory. A significative topic in the theory
of coalition formation is the investigation of mechanisms and processes which determine
how individuals choose to partition themselves into mutually exclusive and exhaustive
coalitions, that is, into a coalition structure. It has been shown that in many situations

1Part of the results in this paper have been presented at the XVII European Workshop on General
Equilibrium.
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the payoffs of the players belonging to a coalition S depend also on the way players outside
S are organized in coalitions and, as a consequence, the strategic choices of the agents
depend on the whole coalition structure (see for example Greenberg (2002)). In the context
of classical TU characteristic form games, such a point of view has been taken into account,
for instance, by defining “power indexes” deriving from the coalition structure formed or
by considering “characteristic functions” depending on the whole coalition structure (see
also Owen (1977), Hart and Kurz (1983) or Myerson (1978)).

Stability of coalition structures has been analyzed via concepts of equilibrium in asso-
ciated strategic form games. The key feature for this approach is that the strategy set of
each player j is the set of all subgroups of players containing j and his choice represents
the coalition he wishes to join. However, given a strategy profile (i.e. a coalition for each
player), the coalition structure formed is not unequivocally determined. So, different rules
of coalition structure formation can be considered, namely, functions associating to every
strategy profile a coalition structure. In Hart and Kurz (1983) the following rules are
proposed: the so called model γ in which a coalition S forms if and only if all its members
have chosen it; the other players become singletons. The model δ in which a coalition S
forms if and only if it is a maximal coalition in which all its members have chosen the
same coalition T (which might be different from S); the other players become singletons.
Note that, given a strategy profile, the γ and the δ rules determine whether each coalition
forms or not and consequently determine a unique coalition structure.

A fundamental assumption in the Hart and Kurz model is that each player j makes his
choice knowing not only the strategies of every other player, but also the formation rule
of coalitions in which is not involved. However, in many situations it happens that the
formation of a coalition is the outcome of private communication within the members of
the coalition (see Moreno and Wooders (1996) and references therein). Hence, differently
from the previous literature, in this paper, we consider the case in which each player has
vague expectations about the choices of his opponents corresponding to the coalitions
in which is not involved and about the formation rule of these coalitions. Moreover, in
this paper, we are interested in the evolutionary games arising from the static model of
coalition formation. More precisely, we consider the situation in which players determine
at every instant the set of players they wish to join and then we study how the coalition
structure evolves according to these strategic choices. To this purpose the classical concept
of coalition as a subset of players, also called crisp coalition, seems to be not well suited.
In fact, such concept implicitly presupposes that a group of players signs a contract (either
they cooperate or not), the realization of which requires the involved players to cooperate
with a full commitment. In a dynamical setting, it seems natural to assume that a player
is not asked to sign a contract at any instant, but rather to announce the set of players
he wishes to join. According to this point of view, Konishi and Ray (2003) state that
uncertainty enters into the coalition formation process in a natural way: whenever a player
has more than one reasonable move he might randomize among them. So we assume that,
at any instant, each player j can randomize his choice by playing a mixed strategy, that
is, a probability distribution on the set of all coalitions containing j, called mixed coalition
(De Marco and Romaniello (2006)).
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Therefore, in our approach, each player j, knowing only the components of the strate-
gies of the other players corresponding to the coalitions S containing j, can only infer, via
a mixed rule of coalition formation, the subjective probabilities that coalitions containing
j will eventually form and, consequently, subjective “coalition structure beliefs”, cs beliefs
for short, (that is, probability distribution on the set of coalition structures). However,
this approach embodies two fundamental problems:

i) Even if player j knows the components of the strategies of the other players cor-
responding to the coalitions S containing j, there exist many rules which assign
to every mixed strategy profile the probabilities that coalitions containing j will
eventually form and which generalize the γ or the δ rules.

ii) Given a probability assignment on coalitions containing j corresponding to a mixed
strategy profile under one of the possible generalizations of the γ or of the δ rules
then, the coalition structure belief is not unequivocally determined. In other words,
there might exist many cs beliefs which are consistent (in terms of laws of probability)
with the probability assignment.

In this paper we focus only on the γ model and, to tackle the first question, we introduce
the so called mixed γ model, which gives back the pure γ model whenever agents play only
pure strategies and which is the natural probabilistic extension of the pure γ model since
the probability of each coalition S is calculated as the product of the probabilities given
by every player in S to this coalition.

The second question is unsolvable in a sense. In fact, if one interprets the probability
of a coalition S as the probability of the event “coalition structures containing S”, then,
there might exist multiple coalition structure beliefs which are coherent in the sense of
de Finetti (1931) with this probability assignment (roughly speaking, such that the total
probability theorem is satisfied for the probability of every event/coalition). Therefore,
such multiplicity problem do not allow for an unambiguous and well-defined decision
mechanism of each player. For instance, the multiplicity of coherent coalition structure
beliefs for player j implies multiplicity of von Neumann - Morgestern expected utilities
to player j, given the mixed strategy profile. We will show below that it is possible
to deal with these difficulties by selecting a mechanism of revision of prior beliefs in a
dynamical environment. In particular, we consider the coalition structure beliefs updating
problem of the generic player j and state the condition that coalition structures beliefs
be consistent (in terms of de Finetti’s coherency) with his subjective probabilities that
coalition containing j will eventually form, at all instants, as a viability constraint. Then,
we give characterizations for continuous evolutions in both the players’ strategies and (at
least one) corresponding subjective coherent belief, by applying the main viability theorem
for differential inclusions.

More precisely, we consider evolutionary games in which players act on the velocities of
the strategies which are regarded as decisions (controls) and used by the players to govern
the evolution of coherent coalition structure beliefs. For every player j, the evolution of
the strategies determine, through the mixed γ model, an unique evolution of the player
j subjective probability assignment on coalitions containing j. Moreover, among every
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possible evolution of player j subjective coalition structure belief we consider only those
which are coherent with the given probability assignments at every instant. The coherency
condition is regarded as a viability constraint and we characterize the so called regulation
map (Aubin (1991)) which gives the velocities which guarantee viable evolution of couples
coalition structure belief/mixed strategy profile starting from every point in the viability
constraint’s domain. Moreover, starting from such characterizations, we exhibit some
paradoxes for differentiable evolutions of pairs coalition structure belief/mixed strategy
profile whenever they start from or arrive at a pure cs belief.

Finally, given feedback (state dependent) controls of the players, the evolution of the
beliefs can be regarded as a problem of probabilistic belief revision. Namely, the classical
question in belief revision theory is the following: Suppose one holds a certain belief about
the states of the world and at a given moment something that contradicts these belief is
observed. How should the belief be revised? Of course, different approaches might be
considered; we focus on the idea of minimal change revision (see Schulte (2002) and Perea
(2007)). In fact, in belief revision theory, it is a generally accepted idea that if one observes
an event that contradicts the previous belief, then the new belief about the world should
explain the event just observed, and should be “as close as possible” to the previous ones.
The intuition behind this principle is that previous belief should change only as far as
necessary. In our case, belief revision works in continuous time and revised beliefs explain
observations at every instant through the coherency conditions, since observations are in
terms of probability assignments on coalitions rather than events; moreover, the idea of
minimal change is translated in terms of revision with minimal velocity. Therefore we
provide an existence theorem for evolutions of cs belief of minimal velocity in the mixed
γ.
As a final remark we recall that, to describe uncertainty in cooperative games, a different
approach is the use of the concept of fuzzy coalition (Aubin (1974, 1981) in which each
player is characterized by his participation rate. However this concept is more suited
to describe stability of the grand coalition rather than coalition structures formation.
Moreover differential cooperative games were firstly introduced by Filar and Petrosjan
(2000) and then developed for fuzzy coalitions by Aubin (2002, 2003) in the framework of
characteristic form games.

2 Mixed strategies and coherent coalition structure

beliefs

2.1 Preliminaries

Let I = {1, . . . , n} be the set of players. Then the coalition structures set (cs set, for
short) is the set B of all partitions of I, that is

B ∈ B ⇐⇒
⋃

S∈B

S = I, S ∩ T = ∅ ∀S, T ∈ B
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In Hart and Kurz (1983), the strategy set of each agent i is Σi = {S ⊆ I | i ∈ S} so
that a strategy profile is the n-tuple (S1, . . . , Sn) ∈

∏
i∈I Σi and the strategy Si is the set

of players that player i wishes to join. The total number of partitions of a set with n
elements is given by the Bell number, denoted with B(n), which can be defined by the
following recursive equation

B(n) =
n−1∑

k=0

(
n − 1

k

)
B(k). (1)

Moreover B(n) =
∑n

k=0 S(n, k) where S(n, k) are the Stirling numbers of the second kind
which are a doubly indexed sequence of natural numbers, each element representing the
number of ways to partition a set of n objects into k groups.

On the other hand, it is well known that the number C(n) of nonempty coalitions of
a set with n elements is given by

C(n) =
n∑

k=1

(
n

k

)
= 2n − 1.

Therefore, since the number of strategies of each player is equal to the number of nonempty
coalitions in a set with n − 1 players plus 1 (corresponding to the strategy singleton), we
get |Σi| = 2n−1 and call |Σi| = k.

The γ model proposed in Hart and Kurz (1983) for coalition structures formation can
be represented by the function hγ :

∏
i∈I Σi → B defined by:

T ∈ hγ(S1, . . . , Sn) ⇐⇒ T = Sj for all j ∈ T or T = {l} for some l ∈ I

Remark 2.1: A relation between the number of coalition structures and the number of
not empty coalition is given by the following

Lemma 2.2: If B(n) > C(n) then B(n + 1) > C(n + 1).

Proof. Trivially

C(n + 1) =
n+1∑

k=1

(
n + 1

k

)
= 2n+1 − 1 = 2(2n − 1) + 1 = 2C(n) + 1

Consider

B(n + 1) =
n∑

k=0

(
n

k

)
B(k),

by Pascal’s rule (
n − 1

k − 1

)
+

(
n − 1

k

)
=

(
n

k

)

so

B(n + 1) =

(
n

0

)
B(0) +

n−1∑

k=1

[(
n − 1

k − 1

)
+

(
n − 1

k

)]
B(k) +

(
n

n

)
B(n)
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since

n−1∑

k=1

(
n − 1

k − 1

)
B(k) >

n−1∑

k=1

(
n − 1

k − 1

)
= C(n− 1) ,

n−1∑

k=1

(
n − 1

k

)
B(k) = B(n)−

(
n − 1

0

)
B(0)

then

B(n+1) > B(0)+C(n−1)+B(n)−B(0)+B(n) = 2B(n)+C(n−1) > 2C(n)+1 = C(n+1)

Since, it can easily calculated that B(5) = 52 > 31 = C(5), then B(n) > C(n) for all
n ≥ 5.

2.2 Mixed strategies and coalition formation rules

Differently from Hart and Kurz (1983), we assume that every player i is allowed to choose
a mixed strategy, called mixed coalition. Denote with Si = {S ⊆ I | i ∈ S} then, a mixed
coalition is a vector of probabilities mi = (mi,S)S∈Si

such that mi,S ≥ 0 for every S ∈ Si

and
∑

S∈Si
mi,S = 1. The set of mixed strategies of player i is denoted with ∆i ⊂ R

k, with
k = |Σi|.

As stated in the Introduction, we consider the situation in which the generic player j
observes only the probability µj,S that coalition S will eventually form, for every S ∈ Sj.
Following the idea in the γ and the δ models, each µj,S should be given by a function
λj,S :

∏n
i=1 ∆i → [0, 1], that is, µj,S = λj,S

(
(mi)i∈I

)
. Each function λj,S represents the

subjective coalition S formation rule to player j.

The mixed γ model

There are different ways to generalize the γ model to the case of mixed strategies, that
is there are different set of functions (λj,S)S∈Sj

which extend the γ model. The mixed γ

model
Among the possible extensions to the mixed strategy case of the γ model we consider

the following:

mixed γ model :=





µj,S = λj,S(m1, . . . , mn) =
∏

i∈S mi,S ∀S ∈ Sj, |S| ≥ 2

µj,{j} = λj,{j}(m1, . . . , mn) = 1 −
∑

S∈Sj , |S|≥2 µj,S

(2)

In this case µj,S =
∏

i∈S mi,S translates the idea that player j evaluates the probability
of coalition S as the product of the probabilities announced by players in S and the
probabilities left are assigned to the singleton. Observe that in the mixed γ model, the
functions λj,S are multiaffine and therefore continuously differentiable. Finally, note that
whenever players choose only pure strategies the mixed γ model is equivalent to the (pure)
γ model.
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2.3 Coherent beliefs

A coalition structure belief (cs belief for short) is a probability distribution on B, that is
a vector of probabilities ̺ = (̺B)B∈B such that ̺B ≥ 0 for all B ∈ B and

∑
B∈B

̺B = 1.
Denote the set of all of cs beliefs with ∆B ⊂ R

b with b = B(n) = |B|.
It is obvious that a coalition S can be interpreted as an event in the set of all coalition

structures B, more precisely as the event ES = {B ∈ B | S ∈ B} for every S ⊆ I, so that
the probability µj,S can be regarded as µj,S = prob{B ∈ B | S ∈ B} for every S ⊆ I.
Therefore, as stated in the Introduction, the generic player j considers feasible only those
coalition structure beliefs which are coherent in the sense of de Finetti (1931) with his
subjective probability assignment on the event/coalition S for every S ∈ Sj. This is
equivalent to say that, for every event/coalition S ∈ Sj the total probability theorem
should be satisfied, that is, a cs belief must satisfy the following coherency constraint:

∑

B∋S

̺B = µj,S ∀S ∈ Sj (3)

Remark 2.3: Usually, Probability Theory works with probability measures on σ-algebras
and needs the specification of probabilities of all the events in the σ-algebra. There are,
however, situations in which one can be interested in working with partial assignments of
probability. In such cases the collection of all events for which probabilities are known (or
believed to be something) need not have any algebraic structure (for example, do not form
a σ-algebra). In such cases, one would like to know if there is a probability space (Ω, Σ, P)
such that Σ contains all events of interest to us and P assigns the same probabilities to
these as we believe them to be. In other words, one would like to know if the probability
assignment is coherent in the sense of de Finetti (1931).
In our model the probability assignments to player j are the probabilities µj,S to the
event/coalition S. The probability distributions on B are the cs-beliefs ̺ and constraints
(3) determine coherency, that is, if constraints (3) are satisfied then the cs belief assigns
to the coalitions the same probabilities as player j believes them to be in light of his
strategies and the corresponding mixed coalition rule (λj,S)S∈Sj

.

Existence

The system of equations in constraints (3) define a linear system in the unknowns (̺B)B∈B

where the number of unknowns is greater than the number of equations. The next propo-
sition gives sufficient conditions for the existence of coherent cs beliefs:

Proposition 2.4: For every probability assignment (µj,S)S∈Sj
satisfying the following con-

dition ∑

S∈Sj

µj,S = 1 (4)

there exists at least a cs belief satisfying the coherency constraints (3).

Proof. For every coalition S with at least two players, let BS be the coalition structure
defined by BS = {S, ({l})l /∈S} . Obviously S 6= T ⇐⇒ BS 6= BT . Given the assignment
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(µj,S)S∈Sj
satisfying (4), let B′ be the coalition structure having only singletons as elements

and ̺̂ a cs belief defined by

̺̂BS
= µj,S ∀S ∈ Sj, |S| ≥ 2; ̺̂B′ = 1 −

∑

S∈Sj ,|S|≥2

µj,S; ̺̂B = 0 otherwise.

It results that ∑

B∋S

̺̂B = ̺̂BS
for all S ∈ Sj, |S| ≥ 2

so, being ̺̂BS
= µj,S, the coherency constraints for coalitions with at least two players is

satisfied.
Moreover, the only coalition structures containing {j} which have positive probability in
the cs belief ̺̂ is B′. Therefore, from the assumption (4), it results that

µj,{j} = 1 −
∑

S∈Sj , |S|≥2

µj,S = ̺̂B′ =
∑

B∋{j}

̺̂B.

Hence the coherency constraint is for coalition {j} is satisfied. Since ̺̂ is a probability
distribution on B then the assertion follows.

Multiplicity

In the next examples we show that multiple coalition structure beliefs might be supported
by the same probability assignment (µj,S)S∈Sj

.

Example 2.5: Consider a 3 player game and the following strategies:





i) m1,{1,2,3} = 1/2, m1,{1,2} = 1/4, m1,{1,3} = 0, m1,{1} = 1/4
ii) m2,{1,2,3} = 1/3, m2,{1,2} = 0, m2,{2,3} = 0, m2,{2} = 2/3
iii) m3,{1,2,3} = 1, m3,S = 0 otherwise

(5)

Consider player 1 and calculate µ1,S for all S ∈ S1 as in the γ model, we obtain the
following 




µ1,{1,2,3} = 1/6,
µ1,{1,2} = 0, µ1,{1,3} = 0,
µ1,{1} = 5/6

then it easily follows that coherent cs beliefs must satisfy the following coherency conditions





1) µ1,{1,2} = ̺{{1,2},{3}} = 0, µ1,{1,3} = ̺{{1,3},{2}} = 0
2) µ1,{1,2,3} = ̺{{1,2,3}} = 1/6
3) 5/6 = µ{1} = ̺{{1},{2},{3}} + ̺{{2,3},{1}}

and therefore we get from 3) we get infinite solutions.
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3 Evolution of coherent coalition structure beliefs

Now we introduce the evolutionary games arising from the γ and δ models of coalition
formation. We consider the situation in which players determine at every instant the set
of players they wish to join, more precisely players act on the velocities of the strategies
which are regarded as controls. Then, fixed a generic player j, we study how his subjective
coalition structure beliefs might evolve, governed by Nature, according to these strategic
choices, that is, coherently with his subjective probability assignment on coalitions deter-
mined by the strategies.

For every player i ∈ I, Ui : ∆B ×
∏n

l=1 ∆l Ã R
k is the set-valued map of feasible

controls of player i; the set valued map of the a-priori feasible dynamics of cs beliefs is
H :

∏n
j=1 ∆j × ∆B Ã R

b, with b = B(n) = |B|. Note that H could be constant and

given, for instance, by the entire space R
b or by a closed ball with radius η and center 0,

B(0, η) ⊂ R
b. Moreover, the evolution of pairs cs belief/mixed strategy profile (̺(t),m(t))

should satisfy the following simplex constraints
{

̺B ≥ 0 ∀B ∈ B∑
B∈B

̺B = 1
;

{
mi,S ≥ 0 ∀ ∈ Si∑

S∈Si
mi,S = 1

for all i ∈ I (6)

and the coherency constraints of player j, which can be rewritten as
∑

B∋S

̺B = λj,S(m1, . . . ,mn) ∀S ∈ Sj.

Summarizing, evolutions of coherent pairs coalition structure belief/mixed strategies should
be solutions of the following dynamical system (i.e. absolutely continuous functions satis-
fying the following system for almost all t):





̺′
B(t) = hB(t) ∀B ∈ B

m′
i(t) = ui(t), ∀i ∈ I

ui(t) ∈ Ui(m(t), ̺(t)) ∀i ∈ I
(hB)B∈B ∈ H(m(t)), ̺(t))

(7)

under the viability constraints Kj given by:

(̺,m) ∈ Kj ⇐⇒





i)̺B ≥ 0 ∀B ∈ B

ii)
∑

B∈B
̺B − 1 = 0

iii)mi,S ≥ 0 ∀S ∈ Si, and∀i ∈ I
iv)

∑
S∈Si

mi,S − 1 = 0 ∀i ∈ I
v)χS(̺,m) =

∑
B∋S ̺B − λj,S(m1, . . . , mn) = 0 ∀S ∈ Sj

(8)

Note that the control ui(t) is the vector ui(t) =
(
ui,S(t)

)
S∋i

, where each component ui,S(t)
governs the velocity of mi,S.

Of course, there is no a-priori reason why a solution (̺(t),m(t)) of the system (7)
should be viable in the constraints (8) for every t ∈ [0, +∞[, that is, satisfy the constraints
(8) for every t ∈ [0, +∞[. So we are interested to characterize velocities

(
h(t), u(t)

)
=((

hB(t)
)
B∈B

,
(
ui(t)

)
i∈I

)
such that the corresponding solutions are viable. To this purpose

we will apply the main viability theorems for control systems as stated in Aubin (1991).
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The viability theorem

Now we recall some classical definitions and state the main viability theorem for the
previous system. The constraints set Kj is said to be viable under the control system (7)
if for every point (̺0,m0) ∈ Kj there exists at least one solution (̺(·), m(·)) starting at
(̺0,m0) and governed by (7) such that (̺(t),m(t)) ∈ Kj for all t ≥ 0.

We recall that if K ⊂ R
q and y ∈ K, a direction v ∈ R

q belongs to the contingent cone
TK(y) if there exist a sequence εn > 0 and vn ∈ R

q converging to 0 and v respectively,
such that:

y + εnvn ∈ K ∀n ∈ N.

To simplify notations denote M(̺,m) = H(̺,m) ×
[∏n

i=1 Ui(̺, m)
]
, then the Viability

Theorem (Aubin, 1991, 1997) for system (7) under the constraints (8) reads:

Theorem 3.1: Assume that the set-valued maps H and Ui, with i ∈ I, are Marchaud,
that is with closed graphs, not empty, compact and convex images for every point in the
domain and bounded by linear growth, that is, there exists c, ψ1, . . . , ψn > 0 such that, for
all (̺,m) ∈ Kj:

sup
y∈H(̺,m)

‖y‖ ≤ c(‖(̺, m)‖ + 1)

and
sup

zi∈Ui(̺,m)

‖y‖ ≤ ψi(‖(̺,m)‖ + 1) ∀i

Then, Kj is viable under the control system (7) if and only if for every (̺,m) ∈ Kj, the
images of the regulation map RKj

: Kj Ã R
b ×

∏n
j=1 R

k are not empty, where RKj
is

defined by:
RKj

(̺,m) =
{
(h, u) ∈ M(̺,m) | (h, u) ∈ TKj

(̺,m)
}

. (9)

Moreover, every evolution (̺(·),m(·)) viable in Kj is regulated by (it is a solution of) the
system: 




̺′
B(t) = hB(t) ∀B ∈ B

m′
i(t) = ui(t), ∀i ∈ I

(u(t), h(t)) ∈ RKj
(̺(t),m(t)).

(10)

This previous theorem provides existence conditions and characterization of continuous
evolutions in both the players’ strategies and corresponding coherent beliefs to player j
for a general class of set valued maps of feasible controls (satisfying classical regularity
assumptions). This approach obviously might include, as particular cases, set valued maps
of feasible controls related, for instance, to myopic optimization criteria (such as best
reply dynamics). However, at this point, the definition of suitable preference relations
over strategy profiles is not straightforward since we deal with ambiguous probabilities
or expected payoffs (Ellsberg (1961)) arising from the multiplicity of beliefs for a given
strategy profile and therefore deserves a future accurate analysis.
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Conditional viability and belief revision

Let (̺,m, u) Ã A(̺,m, u) be the set valued map defined by

A(̺,m, u) =
{
h ∈ H(̺,m) | (h, u) ∈ RKj

(̺,m)
}

(11)

and u(̺,m) a profile of feedback controls of the players. Consider a solution (̺̂(t), m̂(t))
of the following differential inclusion:

{
̺′(t) ∈ A

(
̺(t),m(t), u

(
̺(t),m(t)

))

m′ = u(̺(t),m(t))
(12)

then it follows that the evolution of the cs belief ̺̂(t) satisfies the coherency constraints at
every instant t given the probability assignment λj,S(m̂(t)). Therefore, it can be regarded
as a revision, in continuous time, of player j subjective probabilistic belief conditioned (in
terms of the coherency constraints) by the evolution, in continuous time, of the assignment
of probability on coalitions in Sj which, on the other hand, is determined by the evolution
of the mixed strategy profile m̂(t). Of course, there are no a-priori reasons why system
(12) should admit a solution. Existence could be guaranteed, for instance, by the lower
semicontinuity of the set valued map A (see, for example, the proof of Theorem 9.2.4 in
Aubin (1997)) which, however, is not assured in general even when the model satisfies the
hypothesis of the main Viability Theorem 3.1. Finally, observe that, even if system (12)
admits a solution, then it could be not unique. Therefore it could be reasonable to refine
the set of feasible solutions of system (12) by restricting the set valued map A. In Section
4 we will apply this procedure to select belief revision of minimal velocity.

4 The regulation map in the mixed γ model

We give the formula for the regulation map RKj
(̺,m) of system (7) under the constraints

(8) in the mixed γ and δ models. To this purpose, denote with ∇ (̺B), ∇
(∑

B∈B
̺B

)
,

∇ (mi,S), ∇
(∑

S∋i mi,S

)
, ∇

(∑
B∋S ̺B

)
and ∇

(∏
i∈S mi,S

)
the gradients of the functions

with respect to the variables (̺,m). Moreover recall that a set C ⊆ R
n is said to be it

regular in a point x ∈ C (also called sleek, see Aubin and Frankowska (1990)) if the set
valued map x Ã TC(·) is lower semicontinuous in x. If the set C is regular in x, then the
normal cone of C in x NC(x) is given by set of regular normal vectors, i.e.:

NC(x) = {ω | 〈ω, x − x〉 ≤ o(‖x − x‖) ∀x ∈ C} .

A function f : R
n → R is said to be lower subdifferentially regular in a point x if the

epigraph
epi f = {(x, y) ∈ R

n × R | y ≥ f(x)}

is a regular set in (x, f(x)). Moreover, f is said to be upper subdifferentially regular in x
if −f is lower subdifferentially regular in x.
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The characterization theorem

Let LB(̺,m) (resp. Li,S(̺,m)) be the functions defined by LB(̺,m) = 1 if ̺B = 0 and
LB(̺,m) = 0 otherwise (resp. Li,S(̺,m) = 1 if mi,S = 0 and Li,S(̺,m) = 0 otherwise).

Proposition 4.1: Assume that each function λS is defined as in the mixed γ model. Let
(ϕB)B∈B, (ηi,S)i∈I,S∋i be nonnegative real numbers and ζ, (βi)i∈I , (αS)S∈Sj , |S|≥2, θ be real
numbers, if the following transversality condition holds:





i) ϕBLB(̺,m) + ζ +
∑

S∈B∩Sj , |S|≥2 αS = 0, ∀B ∈ B, such that {j} /∈ B

ii) ϕBLB(̺,m) + ζ +
∑

S∈B∩Sj , |S|≥2 αS + θ = 0, ∀B ∈ B, such that {j} ∈ B

iii) ηi,SLi,S(̺,m) + βi = 0, ∀(i, S) such that S /∈ Sj, i ∈ S

iv) ηi,SLi,S(̺,m) + βi − αS

(∏
l∈S\{i} ml,S

)
+ θ

(∏
l∈S\{i} ml,S

)
= 0,

∀(i, S) such that S ∈ Sj, i ∈ S
⇓

ϕB = ζ = θ = αS = ηi,S = βi = 0 for all B, S, i
(13)

Then (h, u) ∈ M(̺,m) belongs to RKj
(̺,m) if and only if:





i) hB ≥ 0 whenever ̺B = 0
ii)

∑
B∈B

hB = 0
iii) ui,S ≥ 0 whenever mi,S = 0
iv)

∑
S∈Si

ui,S = 0, ∀i ∈ I

v)
∑

B∋S hB −
∑

i∈S ui,S

(∏
l∈S\{i} ml,S

)
= 0, ∀S ∈ Sj, |S| ≥ 2

vi)
∑

S /∈Sj

[∑
i∈S ui,S

(∏
l∈S\{i} ml,S

)]
+

∑
B∋{j} hB = 0.

(14)

For the proof of the previous proposition the following Lemma is needed:

Lemma 4.2: Let fi : R
n → R with i ∈ J1 and gl : R

n → R with l ∈ J2 be continuously
differentiable functions and let K be the set defined by:

K =



x ∈ R

n

∣∣∣∣∣∣

fi(x) = 0, ∀i ∈ J1

and
gl(x) ≤ 0, ∀l ∈ J2





Let H(x) ⊆ J2 denote the set of active constraints in a point x, that is l ∈ H(x) ⇐⇒
gl(x) = 0. Assume that ∇fi(x) 6= 0 for all i ∈ J1 and ∇gl(x) 6= 0 for all l ∈ H(x) and
that the following transversality condition holds: given vi ∈ R for all i ∈ J1 and ql ∈ R+

for all l ∈ H(x) then
∑

i∈J1
vi∇fi(x) +

∑
l∈H(x) ql∇gl(x) = 0 =⇒ vi = 0 ∀i ∈ J1 and ql = 0 ∀l ∈ H(x).

(15)
Then

w ∈ TK(x) ⇐⇒





〈∇fi(x), w〉 = 0 ∀i ∈ J1

and
〈∇gl(x), w〉 ≤ 0 ∀l ∈ H(x)

(16)
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Proof. Consider the sets Ei = {x ∈ R
n | fi(x) = 0} ∀i ∈ J1 and Fl = {x ∈ R

n | gl(x) ≤ 0}
∀l ∈ J2. From the assumptions it follows that Ei and Fl are regular sets in every point
and

TEi
(x) = {w | 〈∇fi(x), w〉 = 0} ∀i ∈ J1, TFl

(x) = {w | 〈∇gl(x), w〉 ≤ 0} ∀l ∈ H(x).

The normal cones are

NEi
(x) = {w∇fi(x) | w ∈ R} ∀i ∈ J1, NFl

(x) = {w∇gl(x) | w ∈ R+} ∀l ∈ H(x).

So, in light of (15) in the assumptions, from Proposition 6.42 in Rockafellar and Wets
(1998) it follows that

TK(x) =

(
⋂

i∈J1

TEi
(x)

)
∩




⋂

l∈H(x)

TFl
(x)


 . (17)

Hence, we get the assertion.

Proof of Proposition 4.1. Note that the functions defining the constraints in (8) are con-
tinuously differentiable. Since the functions in equations v) in (8) are defined as in the
mixed γ model (2), then they can be rewritten as

∑

B∋S

̺B −
∏

i∈S

mi,S = 0 for all S ∈ Sj, |S| ≥ 2

and
∑

S∈Sj ,|S|≥2

[
∏

i∈S

mi,S

]
+

∑

B∋{j}

̺B − 1 = 0.

One first computes the gradients with respect to the variables (̺,m); ∇ (̺B) is a vector
with 1 as the entry corresponding to partition B and 0 elsewhere; ∇

(∑
B∈B

̺B

)
is a vector

with 1 as the first B(n) entries (associated to all the partitions B) and 0 elsewhere; ∇ (mi,S)
is a vector with 1 as the entry associated to the pair (i, S) and 0 elsewhere; ∇

(∑
S∈Si

mi,S

)

is a vector with 1 as the entries associated to the pair (i, S) for all S ∈ Si and 0 elsewhere.
Then one considers the constraints v) in (8). Let S contain at least two players and consider
the entries of the gradient ∇

(∑
B∋S ̺B −

∏
i∈S mi,S

)
; among the first B(n) components

(those associated to the partitions) one finds 1 corresponding to the partitions containing
S and 0 elsewhere; for the remaining entries,

∏
l∈S\{i} ml,S appears for the entries corre-

sponding to the pairs (i, S), for every i ∈ S, while the remaining entries are equal to 0.

Finally consider the entries of the gradient ∇
(∑

S∈Sj ,|S|≥2

[∏
i∈S mi,S

]
+

∑
B∋{j} ̺B − 1

)
;

among the first B(n) components (those associated to the partitions) one finds 1 cor-
responding to the partitions containing {j} and 0 elsewhere; for the remaining entries,∏

l∈S\{i} ml,S appears for the entries corresponding to the pairs (i, S), for all i ∈ S and
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all S ∈ Sj with |S| ≥ 2, while the entries are equal to 0 elsewhere. So the gradients are
different from 0 and

i) 〈∇ (̺B) , (h, u)〉 = hB, ∀B ∈ B

ii)
〈
∇

(∑
B∈B

̺B

)
, (h, u)

〉
=

∑
B∈B

hB

iii) 〈∇ (mi,S) , (h, u)〉 = ui,S, ∀S ⊆ I with S ∋ i, ∀i ∈ I
iv)

〈
∇

(∑
S∈Si

mi,S

)
, (h, u)

〉
=

∑
S∈Si

ui,S, ∀i ∈ I

v)
〈
∇

(∑
B∋S ̺B −

∏
i∈S mi,S

)
, (h, u)

〉
=

∑
B∋S hB −

∑
i∈S ui,S

(∏
l∈S\{i} ml,S

)

∀S ∈ Sj, |S| ≥ 2

vi)
〈
∇

(∑
S∈Sj , |S|≥2

[∏
i∈S mi,S

]
+

∑
B∋{j} ̺B − 1

)
, (h, u)

〉
=

=
∑

S∈Sj , |S|≥2

[∑
i∈S ui,S

(∏
l∈S\{i} ml,S

)]
+

∑
B∋{j} hB

(18)

Condition (13) in the assumptions guarantees that





∑
B∈B

(
ϕB [∇ (̺B)] LB(̺,m)

)
+ ζ

[
∇

(∑
B∈B

̺B

)]

+
∑

i∈I

∑
S∋i

(
ηi,S [∇ (mi,S)] Li,S(̺,m)

)

+
∑

i∈I

(
βi

[
∇

(∑
S∈Si

mi,S

)] )
+

∑
S∈Sj , |S|≥2

(
αS

[
∇

(∑
B∋S ̺B −

∏
i∈S mi,S

)] )

+ θ
[
∇

(∑
S∈Sj ,|S|≥2

[∏
i∈S mi,S

]
+

∑
B∋{j} ̺B − 1

)]
= 0

⇓
ϕB = ζ = βi = ηi,S = αS = θ = 0 for all i, S,B,

(19)
which implies that condition (15) in Lemma 4.2 holds true.
Hence (h, u) ∈ TKj

(̺,m) if and only if





i) hB ≥ 0 whenever ̺B = 0
ii)

∑
B∈B

hB = 0
iii) ui,S ≥ 0 whenever mi,S = 0
iv)

∑
S∈Si

ui,S = 0, ∀i ∈ I

v)
∑

B∋S hB −
∑

i∈S ui,S

(∏
l∈S\{i} ml,S

)
= 0 ∀S ∈ Sj, |S| ≥ 2

vi)
∑

S∈Sj , |S|≥2

[∑
i∈S ui,S

(∏
l∈S\{i} ml,S

)]
+

∑
B∋{j} hB = 0

(20)

Hence, the assertion follows.

A Paradox in the mixed γ model

Proposition 4.3: If the assumption of Proposition 4.1 are satisfied and if (̺,m) ∈ Kj

is such that ̺B′ = 1 and ̺B = 0 for all B 6= B′. Then

(h, u) ∈ RKj
(̺,m) =⇒ hB = 0 ∀B ∈ B such that ∃S ∈ B ∩ Sj with S /∈ B′ and |S| ≥ 2
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Proof. Let (h, u) ∈ RKj
(̺,m) and consider a coalition S ∈ Sj such that S /∈ B′ and

|S| ≥ 2. Being mi,S = 0 for all i ∈ S, we have:

∑

i∈S

ui,S




∏

l∈S\{i}

ml,S


 = 0.

Therefore, in light of condition v) in (14), it follows that
∑

B∋S hB = 0.
However, since S /∈ B′ and ̺B = 0 for all B 6= B′, from i) in (14) it follows that hB ≥
0 for all B ∋ S, and so hB = 0 for all B ∋ S.

Remark 4.4: The “only if” part in Proposition 4.1 does not require the transversality
assumption (13) in Proposition 4.1. In fact, from Proposition 6.42 in Rockafellar and
Wets (1998), it follows that the contingent cone to the intersection of sets is a subset
of the intersection of the contingent cones, while only for the converse statement the
transversality conditions is required. Therefore Proposition 4.3 can be extended also when
condition (13) is not satisfied.

Proposition 4.3 can be also interpreted as follows: whenever at a given time the cs
belief is pure, that is players are partitioned in coalitions with probability 1, then any
differentiable deviation of a player from his pure strategy has the only effect of increasing
his probability to stay alone. In other words, even if two or more players jointly deviate
from a pure coalition in order to form a new one, then feasible cs beliefs evolve in such a
way that the probability of this new coalition coalition remains 0. We will better illustrate
the previous paradox in the following example:

Example 4.5: Let I = {1, 2, . . . , 5} be the set of players and consider (̺,m) such that
̺B′ = 1, with B′ =

{
{1, 2, . . . , 5}

}
, and ̺B = 0 for all B 6= B′. Of course this implies that,

for all i ∈ I, mi,{1,2,...,5} = 1 and mi,S = 0 otherwise. Consider the following controls of
the players: 




u1,{1,3} = −u1,{1,2,...,5} > 0, u3,{1,3} = −u3,{1,2,...,5} > 0
ui,{2,4,5} = −ui,{1,2,...,5} > 0, ∀i = 2, 4, 5
ui,S = 0 otherwise

(21)

Let h be velocities of coalition structure beliefs such that (h, u) belongs to the regulation
map. From (v) and (ii) in (14)

hB′ =
5∑

i=1

ui,{1,2,...,5} < 0,
∑

B∈B

hB = 0.

Consider the evolution of beliefs of player 1. In light of Proposition 4.3 hB = 0 for all
B 6= B′ such that ∃S ∈ B ∩ Sj with S /∈ B′ and |S| ≥ 2. In particular hB = 0 for all B
containing {1, 3}. Therefore, let B = {B ∈ B | {1} ∈ B}, then

hB′ +
∑

B∈B

hB = 0 =⇒
∑

B∈B

hB > 0
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This means that even if players’ deviations are somehow in the direction of coalition
structure {{1, 3}, {2, 4, 5}}, the beliefs evolve only in the direction of the coalition structure
in which player 1 stays alone.

5 Minimal Change of Beliefs

As stated in Section 2, given a profile of feedback controls of the players u(̺,m) =
(ui(̺,m))i∈I , a solution (̺̂(t), m̂(t)) of the differential inclusion (12) provides revision,
in continuous time, of cs belief conditioned (in terms of the coherency constraints) by the
control u(̺,m) (therefore by the corresponding evolution of the mixed strategy profile
m̂(t)). However some evolution of cs beliefs might show inconsistencies. Consider the
following example:

Example 5.1: Assume we are in the mixed γ model. Fixed (̺̂, m̂), let û a profile of

feedback controls such that û(̺̂, m̂) = 0. Consider velocities of the cs belief ĥ satisfying





ĥ{{1,2,3},{4,5}}(̺̂, m̂) = ĥ{{1},{2},{3},{4},{5}}(̺̂, m̂) = 1

ĥ{{1,2,3},{4},{5}}(̺̂, m̂) = ĥ{{1},{2},{3},{4,5}}(̺̂, m̂) = −1

ĥB(̺̂, m̂) = 0 otherwise

.

It follows that for every coalition S ∈ Sj, conditions v), vi) in (14) are satisfied so that ĥ
belongs to A

(
̺̂, m̂, û(̺̂, m̂)

)
. However notice that in this case velocities lead to a change

of the coalition structure even if players are not changing their strategies. From (14), it is
easy to check that 0 ∈ A

(
̺̂, m̂, û(̺̂, m̂)

)
. Hence, if we follow the idea of minimal change

belief revision (see, for instance, Schulte (2002) or Perea (2007)), which states that the new
belief should be as similar as possible to the previous one, we expect that, whenever the
mixed strategy profile reaches m̂ with velocity 0 then, the corresponding cs belief reaches
̺̂ where it remains there in equilibrium.

The previous example shows that in order to capture the idea minimal change belief
revision, we could restrict velocities to those characterized by minimal norm and then
consider the corresponding solutions. More precisely:

Definition 5.2: An evolution ̺(t) is a minimal change cs belief revision of system (12)
for a given continuous feedback control profile (̺,m) → ũ(̺,m) if there exists an evolution
of strategy profile m(t) such that (̺(t),m(t)) is a solution of the following system

{
̺′(t) = h̃

(
̺(t),m(t), ũ

(
̺(t),m(t)

))

m′ = ũ(̺(t),m(t))
(22)

for a function h̃(̺,m, u(̺,m)) defined by

‖h̃(̺,m, ũ(̺,m))‖ = min
h∈A(̺,m,ũ(̺,m))

‖h‖.
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Of course, there are no a-priori reasons why system (12) should admit minimal change
cs belief revision. We give some existence results below. Note also that the concept of
minimal change cs belief revision corresponds to a slight modification of the concept of
heavy solution to a differential inclusions which has been investigated in Aubin (1991,
1997) and Aubin and Saint-Pierre (2006).

Lemma 5.3: If the assumptions of Theorem 3.1 are satisfied and if A(̺,m, ũ(̺,m)) is a
lower semicontinuous set valued map with not empty and compact values for all (̺,m) ∈ Kj

and the feedback control ũ(̺,m) is continuous and bounded by linear growth in Kj, then
every point in Kj is the starting point of a minimal change cs belief revision.

Proof. Since A(̺,m, ũ(̺,m)) has not empty and compact values for all (̺,m), then the
function

(̺,m) → π(̺,m) = min
h∈A(̺,m,ũ(̺,m))

‖h‖

is well defined, moreover A is a lower semicontinuous set valued map so the assumptions of
the Marginal Function Theorem (see for instance theorem 1.4.16 in Aubin and Frankowska
(1990)) hold true, and π is also an upper semicontinuos function, that is

lim sup
(̺,m)→(̺,m)

π(̺,m) ≤ π(̺,m) ∀(̺,m) ∈ Kj.

The set valued map (̺,m) Ã B(0, π(̺,m)) has closed graph; in fact consider a sequence
{(̺ν ,mν)}ν∈N converging to (̺,m) and a sequence {hν}ν∈N converging to h with hν ∈
B(0, π(̺ν ,mν)) for all ν then

‖hν‖ ≤ π(̺ν , mν) =⇒ ‖h‖ = lim sup
ν→∞

‖hν‖ ≤ lim sup
ν→∞

π(̺ν ,mν) ≤ π(̺,m)

therefore h ∈ B(0, π(̺,m)) and (̺,m) Ã B(0, π(̺,m)) has closed graph. From the
assumptions, the set valued map H has closed graph so the set valued map (̺,m) Ã

W(̺,m) defined by:

W(̺,m) = B(0, π(̺,m)) ∩ H(̺,m) ∀(̺,m) ∈ Kj

has closed graph. Moreover W(̺,m) is the intersection of compact and convex sets and
so it is compact and convex, for every (̺,m). Finally, from W(̺,m) ⊆ H(̺,m), it follows
that W is bounded by linear growth.
Therefore, the system: 




̺′(t) = h̃(t)
m′(t) = ũ(̺(t),m(t))

h̃(t) ∈ W(̺(t),m(t))

(23)

satisfies the assumptions of Theorem 3.1 then Kj is viable under this auxiliary system.
Hence, every point (̺,m) ∈ Kj is the staring point of at least a solution (̺(t),m(t))
of system (22) which remains in Kj, that is, an evolution (̺(t),m(t)) such that m(·) is

governed by ũ(̺(t),m(t)) and ̺(·) by a control h̃(t) which satisfies

‖h̃(t)‖ ≤ min
h∈A(̺(t),m(t),ũ(̺(t),m(t)))

‖h‖ = π(̺(t),m(t), ũ(̺(t),m(t))) (24)
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for almost all t ≥ 0. Hence, there exists a minimal change cs belief revision starting from
every point in Kj.

Proposition 5.4: If the assumptions of Theorem 3.1 are satisfied, the functions λS are
given as in the mixed γ model and the set valued maps H, Ui for i = 1, . . . , n are also
lower semicontinuous in Kj and satisfy the following:

∀(̺,m) ∈ Kj ∃η > 0, θ > 0 such that

B(0, η) ⊂ M(̺̂, m̂) − TKj
(̺̂, m̂) ∀(̺̂, m̂) ∈ B

(
(̺,m), θ

)
(25)

then, given a feedback control ũ(̺,m) continuous and bounded by linear growth in Kj such
that A

(
·, ·, ũ(·, ·)

)
has not empty values, for every initial condition in Kj there exists a

minimal change cs belief revision.

Proof. Since the functions λj,S are defined by system (2), the set Kj defined by (8) is
regular (as the functions that define the constraints are differentiable or concave), then,
by definition, it follows that (̺,m) Ã TKj

(̺,m) is a lower semicontinuous set valued map.
We claim that the regulation map RKj

is lower semicontinuos in Kj. In fact, fix (̺, m) ∈
Kj, z = (h, u) ∈ RKj

(̺,m) and a sequence (̺ν , mν) in Kj converging to (̺,m). Since the
set valued maps TKj

and M are lower semicontinuous in (̺,m), there exists sequences
xν → z and yν → z such that xν ∈ M(̺ν ,mν) and yν ∈ TKj

(̺ν ,mν) for all ν ∈ N. From
the assumptions there exists η > 0 and ν such that

B(0, η) ⊂ M(̺ν ,mν) − TKj
(̺ν , mν) ∀ν ≥ ν

Set ‖xν − yν‖ = εν and αν = η
η+εν

∈]0, 1[, it follows that ανεν = (1 − αν)η and then

αν(xν − yν) ∈ B(0, ανεν) = B(0, (1 − αν)η) ⊂ (1 − αν)
(
M(̺ν ,mν) − TKj

(̺ν ,mν)
)

Thus

αν(xν − yν) = (1 − αν)(ϕν − ψν) with ϕν ∈ M(̺ν ,mν), ψν ∈ TKj
(̺ν ,mν).

Therefore,

αν(xν − yν) = (1 − αν)(ϕν − ψν) ⇐⇒ ανxν + (1 − αν)ϕν = ανyν + (1 − αν)ψν .

Moreover, since M(̺ν ,mν) and TKj
(̺ν ,mν) are convex sets

ανxν + (1 − αν)ϕν ∈ M(̺ν ,mν) and ανyν + (1 − αν)ψν ∈ TKj
(̺ν ,mν)

So,
ξν = ανxν + (1 − αν)ϕν ∈ M(̺ν ,mν) ∩ TKj

(̺ν ,mν) = RKj
(̺ν ,mν).

Moreover αν → 1 as ν → ∞ and then ξν → z as ν → ∞, which means that RKj
is lower

semicontinuous in ̺,m). Then, it easily follows that A is lower semicontinuous. Thus,
since ũ is continuous in Kj, A

(
·, ·, ũ(·, ·)

)
is lower semicontinuous in Kj. In light of (20)

the images of A
(
·, ·, ũ(·, ·)

)
are convex and compact and, in light of the assumptions, non

empty, then the assumptions of Lemma 5.3 are satisfied. Hence we get the assertion.
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6 Conclusion

This paper proposes an evolutionary game style model for the dynamics of coalition struc-
ture beliefs when players announce the coalition they wish to join by using a mixed strat-
egy. These models extend the static γ models of coalition formation introduced in Hart and
Kurz (1983) for situations in which each player has vague expectations about the choices
of his opponents corresponding to the coalitions in which is not involved and about the
formation rule of these coalitions as a consequence of private communication within the
members of each coalition.
In particular, an evolutionary game is considered, where strategies and coalition structure
beliefs are state variables and players act on the velocities of their strategies. Fixed a
generic player j, we state the condition that his subjective coalition structures beliefs be
consistent (in terms of de Finetti’s coherency) with the mixed strategy choices of the play-
ers at all instant as a viability constraint and then, give characterizations for continuous
evolutions in both the players’ strategies and corresponding coherent belief, by applying
the main viability theorem. Finally we relate the evolution of the beliefs to probabilistic
belief revision; in particular, we propose to reduce the set of viable evolutions of beliefs
by selecting the changes with minimal norm and provide existence results.

As a final remark, in this paper we considered a general class of set valued maps of
feasible controls of the players (satisfying classical assumptions). Further research might
focus on the problem of considering particular controls; for instance, related to some
myopic optimization criteria (such as best reply dynamics); however, this approach is not
straightforward since it requires the definition of suitable preference relations in case of
ambiguous probabilities arising from the multiplicity of coherent beliefs for a given strategy
profile.
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