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Forecasting Telecommunications Data with Linear Models* 

 

Abstract 
 

For telecommunication companies to successfully manage their business, companies rely on mapping future 

trends and usage patterns. However, the evolution of telecommunications technology and systems in the 

provision of services renders imperfections in telecommunications data and impinges on a company’s’ ability 

to properly evaluate and plan their business. ITU Recommendation E.507 provides a selection of econometric 

models for forecasting these trends. However, no specific guidance is given. This paper evaluates whether 

simple extrapolation techniques in Recommendation E.507 can generate accurate forecasts. Standard forecast 

error statistics—mean absolute percentage error, median absolute percentage error and percentage better—

show the ARIMA, Holt and Holt-D models provide better forecasts than a random walk and other linear 

extrapolation methods. 
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I. Introduction 

 

In the current environment telecommunications industry boundaries are rapidly changing, 

markets are increasingly competitive, and company-based data are more fragmented and 

proprietary. Within this context, telecommunications companies must develop strategy to 

deal with a rapidly changing and expanding mix of telecommunications services, especially 

the emergence of substitutes and complements. That is, to successfully manage their 

business carriers must rely on data to monitor, analyse and optimize their systems to map 

future trends and use patterns. Forecasting is an integral input into such network traffic 

management, infrastructure optimization and planning, and the scenario planning process. 

Data-based forecasts, excluding the analysis, are constructed from data that is processed via 

statistical models from which inferences are drawn. The analysis of Grubesic and Murray 

(2005) addresses concerns related to the quality of available (spatial) data. In particular, 

Grubesic and Murray argue that, because of the complexity of telecommunications systems, 

analysts need to concern themselves with the impact of using imperfect spatial information. 

Finally, Grubesic and Murray develop a framework to address the sensitivity of spatial 

analyses to imperfect spatial data. By contrast, this study focuses on identifying appropriate 

statistical method given no information about the available data. This approach is in the 

spirit of the International Telecommunication Union (ITU) Recommendation E.507. The 

Recommendation provides an overview of existing mathematical techniques for forecasting 

that includes curve-fitting models, autoregressive models, autoregressive integrated moving 

average (ARIMA) models, state space models with Kalman filtering and regression models.
1
 

However, Recommendation E.507 provides no guidance as to which models are the most 

appropriate for forecasting telecommunications series. This study contributes by examining 

                                                 
1
 Recommendation E.507 also describes methods to evaluate and select an appropriate technique, depending on 

available data and forecast period. 
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the forecast performance of these extrapolation models by comparing forecasts against those 

from a random walk model.
2
 In particular, the paper follows the format of a competition 

between simple models that do not require detailed domain knowledge. Namely, the 

comparison of forecast accuracy is based on telecommunications data via series pattern 

recognition. The paper is structured as follows. Section II describes the M3-competition 

telecommunications data. Section III reviews linear univariate forecast methods employed in 

this study, and discusses error statistics used to evaluate forecast performance. Section IV 

presents the forecast results and Section V concludes. 

 

II. Data 

 

Data used is acquired from the Institute of Forecasters Web site located at 

http://www.forecasters.org. M3-competition data are comprised of 3003 series. 149 series 

are telecommunications industry data, of which 29 are monthly series and 120 series are of 

unknown periodicity (and labelled ‘other’). Monthly and ‘other’ series consist of 53 and 63 

observations, respectively. All observations have strictly positive values. No additional 

information is provided by the Institute. A representative specimen of the monthly and 

‘other’ data are shown in Fig. I and Fig. II. 

 

<Insert Fig. I & Fig. II> 

 

Grambsch and Stahel (1990) and Fildes (1992) find telecommunications data exhibit both 

non-stationary and strong negative trends.
3
 Similarly, most of the monthly and ‘other’ series 

                                                 
2 Standard univariate linear models are useful for this application as they are simple to implement and easily 

understood, and therefore used for commercial applications. 
3 These observations lead Grambsch and Stahel (1990) and Fildes (1992) to argue the simple exponential 

smoothing model is inappropriate for forecasting these data. 
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in this study exhibit negative trends. For the monthly series, only 1 of 29 series shows a 

positive trend. For the ‘other’ series, 115 series exhibits a negative trend, while only 5 series 

exhibit a positive trend. 

 

<Insert Table I & Table II> 

 

Average summary statistics for the monthly and ‘other’ series are presented in Table I and 

Table II, respectively. The tables indicate the mean, standard deviation, degree of skewness 

and number of outliers for the ‘other’ series is higher than those of the monthly series. The 

sample average of standard deviation for the monthly and ‘other’ series are 386.8 and 921.5, 

respectively. This indicates the spread of the ‘other’ series is about 2.4 times larger than that 

of the monthly series. The corresponding coefficients of variation (0.08 and 0.13) for both 

series also indicate the differences in the spread of the series. 

 

Following Fildes (1992), frequency of outliers, strength of trend and degree of randomness 

for the data are analysed. Results are shown in Fig. V and Fig. VI.
4
  

 

<Insert Fig. III and Fig. IV> 

 

                                                 
4 An observation is defined as being an outlier when either )(5.1 LULX xxt   or  

where 

)(5.1 xxxt LULX 

xL   denotes the lower quartile and 
xU  is the upper quartile. The strength of trend is measured by the 

correlation between series (with outliers removed) and a time trend, with the absolute value of the trend 

indicating its strength. Randomness is measured by estimating the regression: 

 

3t32t21t1t XXXtX    

 

Where  denotes the series 
tX tX   with outliers removed. 

2
R  measures the variation explained by the model. 

A higher 
2

R  indicates little randomness, while a relatively low 
2

R  suggests a higher degree of randomness. 

 4



 

Figure III reveals 26 of the 29 monthly series contain only a single outlier, with 3 series 

containing more than 1 outlier. The ‘other’ series exhibit some similar properties. That is; 

Fig. IV shows that 116 of the 120 ‘other’ series contain only 1 outlier, 2 series contain 11 

outliers and 2 series contains 14 outliers. The characteristics of the M3 telecommunications 

data appear to be homogenous and have similar properties to the telecommunications data 

analysed by Fildes (1992). 

 

<Insert Fig. V & Fig. VI> 

 

Figure V and Fig. VI show the strength of the trend for the M3 data. The monthly series have 

the stronger negative correlation with time. The histograms contained in Fig. V and Fig. VI 

also reveal a higher correlation for the monthly series. 

 

<Insert Fig. VII & Fig. VIII> 

 

Figure VII and Fig. VIII show both the monthly and ‘other’ series exhibit a low degree of 

randomness and have a strong positive correlation with a linear trend. The results suggests 

employing linear models to forecast the M3 telecommunications data is appropriate. 

 

III. Forecast Models Applied 

 

The univariate linear extrapolative techniques applied for forecasting are ARARMA (Parzen 

1982), ARIMA, Holt, Holt-D, Holt-Winters, simple exponential smoothing (SES) and the 
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robust trend (RT; Grambsch and Stahel 1990) models.
5

 These forecast methods are 

employed as the models are proposed in Recommendation E.507 and are shown to be 

reliable by Makridakis et al. (1993), Fildes et al. (1998), and Makridakis and Hibon (2000) 

by performing consistently in the M-competition studies. All models are estimated beginning 

at observation 6. This means parameter estimates for all models are estimated from 

observation 6 to observation 53, and observation 6 to observation 63 for the monthly and the 

‘other’ series, respectively. To estimate the parameters of the ARARMA and ARIMA 

models, an automatic procedure with a maximum 5-period lag is employed. The automatic 

procedure estimates the parameters of all possible combinations of ARARMA and ARIMA 

models within the imposed lag limit generating 60 possible models for each ARARMA and 

ARIMA model, respectively.
6
 A grid search is then performed on the generated ARARMA 

and ARIMA models to determine the optimal lag length. This is done by comparing the 

Akaike Information Criterion (AIC) statistic values of the generated models.
 7

 The ‘best’ 

ARARMA and ARIMA models are those that generate the lowest AIC. Holt, Holt-D, Holt-

Winters and RT models have their lag lengths fixed and so do not require a grid search to 

select best model.
8
 Following Makridakis and Hibon (2000), a best model—for both series 

and method—is used to forecast a maximum 18 observations and 8 observations ahead for 

the first forecast in the sequence, respectively, for the monthly and ‘other’ series. For the 

second forecast in the sequence, the data series expands by one period (one-step ahead) and 

                                                 
5 Only the no trend, no seasonal version of the SES model is included in the analysis, i.e., the SES model used 

is 
t1t ty y e  , with 0.3  . 

6 The maximum lags for the ARARMA model is 5 periods. The ARARMA is estimated by applying an AR 

model 1- and 2-period lags. Residuals are estimated with another ARMA model with lags of 1- to 3-periods to 

generate the ARARMA model. 
7
 2

( , )

2
ˆlog( )p q

m
AIC

T
    

where is the variance of the residuals of the estimated model. T  is the number of observations and m  

is the number of parameters of the univariate model tested. 

2

),(
ˆ

qp

8 Only the linear, no trend and non-seasonal versions of the Holt and Holt-W methods are considered. The 

Holt-D model is the exponentially smoothed version of the Holt model. Parameters for these models are 

estimated from data rather than being fixed arbitrarily. 
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forecasts are made for 17 observations and 7 observations ahead, respectively. Forecast 

accuracy measures employed are guided by Armstrong and Collopy (1992), viz., mean 

absolute percentage error (MAPE), median absolute percentage error (MdAPE) and percent 

better (PB). The error statistics are defined in the Appendix.
9
 

 

IV. Forecasts 

 

To identify the most accurate forecast model, aggregate results by method are compared 

using an out of sample forecast horizon for the monthly and ‘other’ series data. Following 

Makridakis and Hibon (2000), a maximum of 18 and 8 steps ahead are generated for 

monthly and ‘other’ data, respectively. Forecast accuracy is compared using MAPE, MdAPE 

and PB error statistics. Table III and Table IV present the MAPE and MdAPE results for the 

out-of-sample monthly forecasts. MAPE statistic show the Holt model as best forecast 

method for medium-and long-horizons (short-, intermediate- and long-horizons are 

considered), as it consistently the yields lowest percentage error when compared to sample 

data. The MdAPE statistic indicates the Holt-D model is the best method for medium- and 

long-horizons. For short-horizon forecasting (1-period ahead), the MAPE and MdAPE 

statistics suggest the ARIMA model is best model. 

 

<Insert Table III, Table IV & Table V> 

 

The results for the PB statistic are reported for monthly series in Table V. Similar to the 

MdAPE results of Table IV, Table V shows the ARIMA and the Holt-D model are best. 

Table V shows the ARIMA model is best at forecasting short- and long-horizons for 1-

                                                 
9 Mean square error measures are not used as they are scale dependent and sensitive to outliers. 
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period, 12-periods and 18-periods ahead, while the Holt-D model is best at forecasting 

intermediate- to long-horizons of 6-periods and 12-periods ahead. 

 

Figure IX through Fig. XI illustrate forecasts for 1-period to 18-periods ahead for the best 

forecast methods using monthly data. The MAPE statistic in Fig. IX shows the Holt and RW 

models is best for most forecast horizons. At shorter horizons of 8-periods ahead or less, the 

MAPE statistic shows the ARIMA and Holt models generate the best forecasts. 

 

The MdAPE statistic in Fig. X indicates the Holt model and Holt-W model typically forecast 

best for all horizons. The only exception is the ARIMA model forecast better than the Holt-

W model at 12-periods ahead. The PB statistic in Fig. XI, show the Holt-D model and 

ARIMA model are the best forecast models for most forecast horizons, with the Holt-W 

model is equally accurate in forecasting horizons 6-periods and 9-periods ahead. That is, the 

MAPE, MdAPE and PB statistics suggest the Holt and Holt-D models provide an 

improvement over other linear extrapolation techniques and a random walk model in 

providing forecasts for monthly data. This indicates the Holt and Holt-D models are useful 

for establishing relatively accurate judgement-free projections of telecommunications data 

up to 18-periods ahead for monthly data. Holt and Holt-D models are superior for most 

forecast horizons. For short-horizon forecasts, the ARIMA model is best. 

 

<Insert Fig. IX, Fig. X & Fig. XI> 

 

Table VI and Table VII present the MAPE and MdAPE results of the out-of-sample 

forecasts for the ‘other’ series. The results in Table VI and Table VII are similar to the 

forecast error results of the monthly series. The MAPE statistic in Table VI shows the Holt 
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model is best forecast method for medium- and long-horizons, and yields lowest percentage 

error when forecasting 4-periods, 6-periods and 8-periods ahead. For short horizons of 1-

period ahead, the MAPE statistic shows the ARIMA and the Holt-D are the best for 

forecasting ‘other’ series. 

 

The MdAPE error statistic presented in Table VII shows a similar result to the MAPE 

statistic. The Holt model is the best for forecasting 4-periods, 6-periods and 8-periods ahead. 

The MdAPE statistic also shows the Holt-D model is best for forecasting short- and 

intermediate-horizon periods, viz., 1-period and 4-periods ahead. An exception contained in 

Table VII shows the Holt-W model performs as well as the Holt and Holt-D models when 

forecasting 4-periods ahead. 

 

<Insert Table VI, Table VII & Table VIII> 

 

The PB statistic presented in Table VIII shows the Holt-D model is best for forecasting 

short- and intermediate-horizons of 1-period and 4-periods ahead for the ‘other’ series, while 

the Holt model is best suited for forecasting the intermediate to long-horizons of 6-periods 

and 8-periods ahead. 

 

<Insert Fig. XII, Fig. XIII & Fig. XIV> 

 

When forecasting the ‘other’ series, the MAPE and MdAPE statistics contained in Fig. XII 

and Fig. XIII shows the Holt, Holt-D and Holt-W methods provide an improvement over 

other linear extrapolation techniques and random walk model. The PB statistic in Fig. XIV 

show the Holt model and Holt-D models provide better forecasts for the ‘other’ series. The 
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results suggest the Holt model, Holt-D model and Holt-W models are useful for establishing 

relatively accurate judgement-free projections of telecommunications data of up to 8-periods 

ahead for telecommunications data of unknown periodicity. The results of the Holt and Holt-

D models are superior for most horizons. 

 

<Insert Table IX, Table X & Table XI> 

 

A summary of the results by error statistic and forecast horizon are presented in Table IX, 

Table X and Table XI. The tables indicate the best model for forecasting telecommunication 

series without any domain knowledge for the forecast horizons tested are the ARIMA, Holt 

and the Holt-D models. 

 

V. Conclusion 

 

This analysis intends to identify those of the linear models proposed in ITU’s 

Recommendation E.507 (to aid telecommunication companies in forecasting) provide the 

better forecasts when little domain information is available. In particular, the analysis covers 

situation whereby little or no information is available about the reliability or quality of data. 

Forecasts from the ARARMA, ARIMA and several SES model specifications are compared 

against those for a random walk model. The results show despite having no knowledge of the 

origin of the telecommunications series, the models can accurately forecast 

telecommunications data. This suggests imperfections that may be inherent within 

telecommunications data might not unduly affect the accuracy of generated 

telecommunication forecasts. Telecommunications data are often not well understood and 

are short in length. Hence, the use of these univariate models without assumptions a priori 
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may be most appropriate. The study shows the linear extrapolation models perform well 

when employed to forecast monthly and ‘other’ M3 telecommunications series of unknown 

periodicity. The sample forecast accuracy based on MAPE and MdAPE statistics, and PB 

measure show the Holt and Holt-D models provides the most reliable forecasts without any 

knowledge of the underlying dynamics of the telecommunications data series, an outcome 

similar to the recommendations of the M3-competition. The results suggest further gains in 

forecast accuracy may not be worthwhile in employing more sophisticated nonlinear models, 

as the forecast performance of the univariate linear models applied can generate accurate 

forecasts than the random walk for intermediate and long-horizons future periods. 

 

References 

 

Armstrong, J. and Collopy, F. (1992), ‘Error Measures for Generalizing about Forecast 

Methods: Empirical Comparisons’, International Journal of Forecasting, 8, 69-80. 

Fildes, R. (1992), ‘The Evaluation of Extrapolative Forecasting Methods’, International 

Journal of Forecasting, 8, 81-98. 

Fildes, R., Hibon, M., Makridakis, S. and Meade, N. (1998), ‘Generalising about Univariate 

Forecasting Methods: Further Empirical Evidence’, International Journal of 

Forecasting, 14, 339-58. 

Gardner, E. and McKenzie, E. (1985), ‘Forecasting Trends in Time Series’, Management 

Science, 31, 1237-1246. 

Grambsch, P. and Stahel, W. (1990), ‘Forecasting Demand for Special Services’, 

International Journal of Forecasting, 6, 53-64. 

Grubesic, T. and Murray, A. (2005), ‘Geographies of Imperfection in Telecommunication 

Analysis’, Telecommunications Policy, 29, 69-94. 

 11



 

Ionescu-Graff, A. (1982), ‘A Sequential Projection Algorithm for Special Services Demand’, 

Bell Systems Technical Journal, 61, 34-66. 

Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K. and Simmons, L. 

(1993), ‘The M-2 Competition: A Real-time Judgmentally Based Forecasting Study’, 

International Journal of Forecasting, 9, 5-23. 

Makridakis, S. and Hibon, M. (2000), ‘The M3-competition: Results, Conclusions and 

Implications’, International Journal of Forecasting, 16, 451-76. 

Pack, C. and Whitaker, B. (1982), ‘Kalman Filter Models for Network Forecasting’, Bell 

System Technical Journal, 61, 1-14. 

Pankratz, A. (1983), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, 

John Wiley: New York. 

Parzen, E. (1982), ‘ARARMA Models for Time Series Analysis and Forecasting’, Journal of 

Forecasting, 1, 67-82. 

 

Appendix 

 

To estimate the MAPE for method  and horizon  for series i h j , the absolute percentage 

error , ,i h jAPE is first calculated; 

 

, , ,

, ,

,

i h j h j

i h j

h j

F A
APE

A


 , 

 

where is the forecast for method  for horizon  using series , ,i h jF i h j  and is the actual 

value at horizon h  for series j. The 

,h jA

, ,i h jMAPE  is then calculated by finding the mean of the 
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, ,i h jAPE

i

s

( 1) /s 

 series; 

 

, , , ,( )i h j i h jMAPE mean APE , 

 

As none of the series observations are negative, the MAPE is appropriate. An advantage of 

applying the MAPE is that it is scale-invariant. To estimate the MdAPE error statistic for 

method  for series j from the  error statistic, the median of the  series is 

calculated: 

, ,i h jAPE , ,i h jAPE

 

, ,( )i h jMdRAE median APE , 

 

where  is the total number of total number of series forecasted and MdAPE is observation 

 if  is odd, or the mean of observations  when  is even when  

observations are ordered by rank. The PB statistic counts the proportion a given method has 

a forecasting error larger than a relative method: 

2 s / 2s s , ,i h jAPE

 

, ,

1

1
*100

s

i h j

js




 
 
 
, ,i h jPB   

 

where 
, , , , , ,

, ,

1

0

i h j h j rw h j h j

i h j

if F A F A

otherwise

   



 .  is the forecast for method i  at 

horizon  for series 

, ,i h j
F

h j . and is the actual value at horizon h  for series . ,h j
A i , ,i h j

  is a 

dummy variable that records the proportion of times a particular model  forecasting horizon 

 for series 

i

h j  has a lower forecast error than the random walk model and s  is the total 
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number of series forecasted and  is the proportion (in percentage) method i performs 

better that the relative method. The relative method applied for comparison in this study is 

the random walk model. A value of greater than 50% for indicates the forecasts 

obtained for a particular forecasting method  is more accurate than the random walk. 

, ,i h jPB

, ,i h j
PB

i
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Fig. I. Specimen of a M3 Monthly Series 
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Source. IIF(2005). 

 

 

 

Fig. II. Specimen of a M3 ‘Other’ Series 
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Source. IIF(2005). 
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Fig. III. Outlier Frequency of M3 Monthly Series 
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Fig. IV. Outlier Frequency of M3 ‘Other’ Series 
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Fig. V. Correlation with Time for M3 Monthly Series 
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Fig. VI. Correlation with Time for M3 ‘Other’ Series 
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Fig. VII. Variation Explained by the Linear/AR for M3 Monthly Series 
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Fig. VIII. Variation Explained by the Linear/AR for M3 ‘Other’ Series 
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Table I. Summary Statistics for M3 Monthly Series 

 Mean Variance Skewness Kurtosis Minimum Maximum 

Mean 4,953.84 2,337.83 0.88 2.61 2,183.06 10,740.60 

Variance 386.80 362.29 2.55 10.37 57.75 1,867.98 

Skewness 73.91 36.66 0.07 1.74 11.04 134.92 

Kurtosis -0.82 0.85 1.84 6.35 -1.90 2.13 

Turning Points 10.00 3.09 -0.54 2.11 4.00 15.00 

Step Changes 0.48 0.87 1.51 3.89 0.00 3.00 

Outliers 27.97 6.63 -3.14 11.42 2.00 30.00 

CV 0.08 0.08 3.29 14.81 0.02 0.46 

Maximum 5,562.57 2,489.95 0.74 2.58 2,384.60 11,855.20 

Minimum 4,331.32 2,159.54 0.78 2.26 1,879.20 8,971.50 

Runs 16.83 4.98 -0.36 2.21 6.00 24.00 

Autocorrelation 0.95 0.07 -3.11 12.36 0.65 0.99 

Note: The number of series tested is 29. The summary statistics report represents the summary statistics of 

each series. Std Dev is the standard deviation; Turing Points and Step Changes are the number of turning 

points and step changes, respectively, defined in Shah (1997); Outliers is the number of outliers greater than 3 

standard deviations; CV is the coefficient of variation; Runs is the number of runs; Autocorrelation is the 

estimate of autocorrelation of lag 1. 

 

 

Table II. Summary Statistics of M3 ‘Other’ Series 

 Mean Variance Skewness Kurtosis Minimum Maximum 

Mean 6,748.04 5,988.95 2.75 13.31 1,749.82 42,191.30 

Std Dev 921.50 1,315.54 4.37 23.94 109.88 8,988.27 

Skewness 102.49 46.78 0.93 5.92 3.70 319.65 

Kurtosis -0.94 0.82 4.84 34.51 -1.90 5.49 

Turning Points 12.88 4.62 0.02 2.60 2.00 23.00 

Step Changes 0.57 1.00 1.70 4.86 0.00 4.00 

Outliers 48.10 6.68 -3.88 17.25 15.00 50.00 

CV 0.13 0.06 1.03 4.44 0.03 0.32 

Maximum 8,146.49 7,821.10 3.14 15.79 2,127.00 55,794.00 

Minimum 5,221.50 4,523.13 2.65 12.67 1,276.00 30,908.00 

Runs 17.58 5.46 0.00 2.82 4.00 30.00 

Autocorrelation 0.98 0.03 -4.71 27.37 0.81 1.00 

Note: The number of series tested is 120. The summary statistics report represents the summary statistics of 

each series. Std Dev is the standard deviation; Turing Points and Step Changes are the number of turning 

points and step changes, respectively, defined in Shah (1997); Outliers is the number of outliers greater 

than 3 standard deviations; CV is the coefficient of variation; Runs is the number of runs; Autocorrelation 

is the estimate of autocorrelation of lag 1. 
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Table III. Mean Absolute Percentage Error for M3 Monthly Series 

Forecast Method Forecast Horizon 

 1 6 12 18 

RT 0.136 0.182 0.211 0.235 

ARIMA 0.004 0.077 0.183 0.322 

HOLT 0.012 0.066 0.124 0.185 

HOLT-D 0.008 0.085 0.397 4.119 

HOLT-W 0.016 0.094 0.184 0.292 

ARARMA 0.860 0.949 1.104 1.815 

SES 0.042 0.119 0.190 0.267 

RW 0.013 0.087 0.161 0.236 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is the random walk model with no drift. Percentages in bold at a forecast 

horizon is the models with lowest mean absolute percentage error. 

 

 

 

 

Table IV. Median Absolute Percentage Error for M3 Monthly Series 

Forecast Method Forecast Horizon 

 1 6 12 18 

RT 0.116 0.152 0.179 0.199 

ARIMA 0.005 0.044 0.103 0.137 

HOLT 0.006 0.027 0.060 0.083 

HOLT-D 0.007 0.048 0.091 0.172 

HOLT-W 0.006 0.029 0.075 0.123 

ARARMA 0.999 1.006 1.029 1.033 

SES 0.033 0.105 0.164 0.232 

RW 0.007 0.066 0.120 0.197 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is the random walk model with no drift. Percentages in bold at a forecast 

horizon is the models with lowest median absolute percentage error. 
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Table V. Percent Better for M3 Monthly Series 

Forecast Method Forecast Horizon 

 1 6 12 18 

RT 1.400 10.345 6.897 44.828 

ARIMA 75.862 72.414 79.310 79.310 

HOLT 55.172 72.414 72.414 72.414 

HOLT-D 55.172 75.862 79.310 75.862 

HOLT-W 51.724 72.414 72.414 68.966 

ARARMA 13.793 3.448 10.345 10.345 

SES 3.448 3.448 6.897 6.897 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is not shown as the PB statistic shows the proportion of series for each model at 

each forecast horizon that is better than the forecasts of the RW model. Percentages in 

bold at a forecast horizon is the models with highest percentage accuracy. 

 

 

 

 

Table VI. Mean Absolute Percentage Error for M3 ‘Other’ Series 

Forecast Method Forecast Horizon 

 1 4 6 8 

RT 0.079 0.084 0.086 0.097 

ARIMA 0.009 0.034 0.051 0.071 

HOLT 0.010 0.025 0.036 0.049 

HOLT-D 0.009 0.030 0.047 0.070 

HOLT-W 0.012 0.032 0.047 0.064 

ARARMA 0.978 0.981 0.985 0.994 

SES 0.040 0.074 0.096 0.128 

RW 0.014 0.047 0.069 0.100 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is the random walk model with no drift. Percentages in bold at a forecast 

horizon is the models with lowest mean absolute percentage error. 
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Table VII. Median Absolute Percentage Error for M3 ‘Other’ Series 

Forecast Method Forecast Horizon 

 1 4 6 8 

RT 0.070 0.073 0.079 0.088 

ARIMA 0.006 0.028 0.041 0.058 

HOLT 0.008 0.022 0.027 0.033 

HOLT-D 0.006 0.022 0.036 0.050 

HOLT-W 0.009 0.022 0.033 0.047 

ARARMA 1.002 1.002 1.001 1.016 

SES 0.037 0.066 0.089 0.119 

RW 0.012 0.040 0.062 0.089 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is the random walk model with no drift. Percentages in bold at a forecast 

horizon is the models with lowest median absolute percentage error. 

 

 

 

Table VIII. Percent Better for M3 ‘Other’ Series 

Forecast Method Forecast Horizon 

 1 4 6 8 

RT 1.667 9.167 17.500 48.333 

ARIMA 65.833 67.500 68.333 70.000 

HOLT 65.000 75.000 76.667 79.167 

HOLT-D 69.167 75.833 75.833 76.667 

HOLT-W 59.167 70.000 69.167 73.333 

ARARMA 1.667 0.833 1.667 1.667 

SES 6.667 5.833 5.000 5.833 

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving 

average model; HOLT is Holt’s linear no trend model; Holt-D is Holt’s model with 

exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA 

is a long memory model; SES is the linear no trend simple exponential smoothing model. 

The RW is not shown as the PB statistic shows the proportion of series for each model at 

each forecast horizon that is better than the forecasts of the RW model. Percentages in 

bold at a forecast horizon is the models with highest percentage accuracy. 
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Fig. IX. Mean Absolute Percentage Error for M3 Monthly Series 
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Fig. X. Median Absolute Percentage Error for M3 Monthly Series 
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Fig. XI. Percentage Better for M3 Monthly Series 
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Fig. XII. Mean Absolute Percentage Error for M3 ‘Other’ Series 
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Fig. XIII. Median Absolute Percentage Error for M3 ‘Other’ Series 
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Fig. XIV. Percentage Better for M3 ‘Other’ Series 
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Table IX. Best Models for Forecasting M3 Series by MAPE 

M3 Series Forecast Horizon 

 1 6 12 18 

Monthly ARIMA HOLT HOLT HOLT 

Other ARIMA/ 

HOLT-D 

HOLT HOLT HOLT 

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving 
 

Table X. Best Models for Forecasting M3 Series by MdAPE 

M3 Series Forecast Horizon 

 1 6 12 18 

Monthly ARIMA HOLT-D HOLT-D HOLT-D 

Other 

HOLT-D HOLT/ 

HOLT-D/ 

HOLT-W 

HOLT HOLT 

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving 
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Table XI. Best Models for Forecasting M3 Series by PB 

M3 Series Forecast Horizon 

 1 6 12 18 

Monthly 
ARIMA HOLT-D HOLT/ 

HOLT-D 

HOLT-D 

Other HOLT-D HOLT-D HOLT HOLT 

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving 
 


	Abstract

