

A Study of Economic Outcome of Joint Forest Management Programme in West Bengal: The Strategic Decisions between Government and Forest Fringe Community

Sarker, Debnarayan and Das, Nimai

Centre for Economic Studies, Presidency College, Kolkata

2006

Online at https://mpra.ub.uni-muenchen.de/14875/ MPRA Paper No. 14875, posted 28 Apr 2009 05:03 UTC

A Study of Economic Outcome of Joint Forest Management Programme in West Bengal: The Strategic Decisions between Government and Forest Fringe Community

Debnarayan Sarker Centre for Economic Studies, Presidency College, Kolkata (INDIA)

and

Nimai Das Centre for Studies in Social Sciences, Calcutta (INDIA)

ABSTRACT: This paper attempts to find out the economic outcome of joint forest management (JFM) programme for forest fringe community belonging to marginal landholding, small landholding and landless agricultural households and government who jointly manage the forest protection activities based on a field survey in West Bengal. This empirical study suggests that the economic outcome of the JFM programme has been beneficial for both and this is due to the strict dominant cooperative strategy of community. Economically government was the worst sufferer for her restrictive policy. The higher economic outcome of the government is due to the cooperation of community whom government neglected earlier. However, cooperation yields an outcome preferred by both parties under JFM programme as they are able to negotiate before the start of the game and obtain binding commitments. This study also suggests that force or law can not effectively control the illegal collection of timber forest products for the poor agricultural households, which mainly depend on forest resources for livelihood security and that live below poverty line, until and unless a considerable increase in the income from legal forest products and forest wage income meet their livelihood security.

JEL CLASSIFICATION: Q23, Q01, C71

KEYWORDS: Joint forest management programme, economic outcome, cooperative game, nontimber forest products.

The authors would like to thank Mr. K. C. Gayen, Principal Chief Conservator of Forest and Divisional Forest Officers (Bankura North, Bankura South and Panchet Soil Conservation), Department of Forest, Govt. of West Bengal, for providing data of this paper. Special thanks to Mr. Nihar Ranjan Chakroborty, DFO (Statistic) and Mr. Gopal Ch. De, Assistant Statistician, Department of Forest, Govt. of West Bengal, for helpful comments. Thanks are also due to the anonymous referee of the *Indian Economic Review* for the valuable comments regarding the earlier draft of this paper. The usual disclaimers apply.

I Introduction

Increasing interest in rural poverty alleviation has resulted in a new focus in the forest dependent poor (Fisher, 2004; Pattanayak et al., 2004; Angelsen and Winder, 2003; Kumar, 2002; Kumar et al., 2000; Arnold, 2001; World Bank, 2001; Wunder, 2001; Cavendish, 1999; Scherr et al., 2002; Somanathan, 1991). Forest contributes significantly to the economic, social and environmental well being of a country. Its role is more pronounced in a developing country like India that has a predominantly agriculture-based rural economy. Forest in India constitutes just over one-fifth of the land area of the country. Forest meets nearly 40 per cent of the energy needs of the country (more than 80 per cent in the rural sector), the bulk of it as direct subsidy to the poor. In India, fuelwood is a source of livelihood for more than eleven million people. An estimated fifty nine per cent of rural households in India obtain their wood from home-grown source or free collection (World Bank, 2006: 46); only twenty one per cent pay for all of their wood (Kohlin and Ostwald, 2001, cited in World Bank, 2006:46). It also provides about 25 per cent of the fodder needs of vast cattle population. Forest products are crucial to the rural and tribal economy. The dependence of tribal on forests for sustenance and income generation is also significant, ranging from 15 to 84 per cent, depending on the community and region (Sarmah and Rai, 2000:207). The World Bank Report (2006) indicates that forests offer vast potential for poverty reduction and rural economy growth in India while also supporting critical national conservation goals (World Bank, 2006: xiii). The Report also revels that half of India's 89 million tribal people, the most disadvantaged section of society, live in forest fringe areas and forests have the potential to improve the livelihoods of forest dwelling people, particularly tribal people who are the most disadvantaged group in Indian society (ibid:2). The overall estimate is that 33 per cent of the tribal earn their livelihood from forests and forest products (Sarmah and Rai, 2000:207). Many of the products, including non-timber forest products (NTFPs), provide sustenance to the Indian rural people who collect a large part of their day-to-day necessities, including food and medicines, from the forests (ibid).

Issues relating to households' income accounts in rural areas of southern Malawi in Africa are presented by Fisher (2004) in two sources – forest and non-forest (farm, self-employment, non-forest wage work, sales assets and transfers)¹. There is rich empirical evidence to support the claim that forest is an important source of income for the poor forest fringe households through the extraction of wood (timber and firewood) and non-timber forest products (NWFPs) or non-wood forest products (NWFPs) by preserving the forest resource sustainable with the help of cooperative

management (Somanathan, 1991; Pattanayak et al., 2004; Guha, 1989; Jodha, 1986, 1992; Kumar et al., 2000; World Bank, 2001). In an attempt to measure the effect of JFM on various social groups – landless, marginal farmer, small farmer, medium farmer and large farmer – Kumar(2002) observes that the poorer sections of village community are disproportionally dependent on non-wood forest products both for subsistence and extra income due to low opportunity cost of labour (p.770). Access to forest for fuelwood is substantially important to local people and makes substantial contribution to households' welfare (Pattanayak et al., 2004: 176). The demand for fuelwood collection for poor households is inelastic with respect to their travel cost (or the shadow price of fuelwood) indicating that fuelwood is essential for these households, whereas improved economic conditions that increase household wealth and raise opportunity cost reduce household's dependence on fuel wood from forest (ibid:175). Asset-poor in Malawi in southern Africa are observed more reliant on both low return forest activities (LRFA) - e.g. fuel wood and non-timber forest products - and high return forest activities (HRFA) - e.g. timber - compared with the better off and access to forest income in rural Malawi help the poor not only to prevent by supplementing income but also to improve their living standard over time (Fisher, 2004: 147-151). Without any legal punishment by law, traditional cooperative management system based on self-enforcing social norms and customs – each person knows that if they cheat, the other will as well, and to their supply of forest products in years to come will be jeopardized – were enough to restrain people from removing trees from forest and the prevailing conditions ensures that the forest dependent households did not suffer from a scarcity of forest resource on which they were so dependent (Somanathan, 1991:PE 38-9).

With the increasing presence of forest products in the market economy, greater importance for livelihood sustenance of forest fringe communities on forest resource and a greater understanding of the non-tangible benefits from forests, the concept of community forest management, like JFM, has naturally brought to the fore various interrelated issues concerning forest management, and the past working of the forests, allegedly only for timber extraction and industrial supplies, has come in for criticism. For nearly four decades or so environmentalists, conservationists, foresters, researchers, planners, policy makers and social scientists have been engaged in an intense debate on appropriate policy strategies (to reach at some consensus) as to how a sustainable livelihood from forest and NTFPs in particular could be ensured to forest dependent communities. In keeping with these policy strategies, there has been a shift over from revenue oriented forest management to conservation and that is related to participatory community based approaches in most of the developing countries

during the last one and a half decade (Bhattacharya, 2001:107). The main trends of the forest policies in the developing countries include replacement of uncontrolled exploitation, selected areas with conservation of forest, more plantations and community and social forestry, sharing of benefits with the forest dependent communities, involving communities and the management of forests, and encouraging communities to participate to some extent in decision-making (ibid:107). Concerning to the cooperative management in JFM, it is said that forestry can play a significant role for the well being of the people living in and around the forest areas and, conversely, these people can play a major part in making the forests around them more productive under local management partnership between the state and local communities. In keeping with this, a consensus has also emerged in both academic and policy-making bodies about the desirability cooperative model for the management of forest resources. The World Bank Learning Group on Participatory Development defined participation as process through which stakeholders' influence and share control over development initiatives, and the decisions and resources that affect them (World Bank, 1995:3; World Bank, 1996; Banki, 1981). This definition acknowledges the sharing of benefits derived from the projects by the beneficiaries of projects and participation as a growth and development. The World Bank's 1991 Forest Strategy, in fact, emphasized greater involvement of local people in the long-term management of natural forests (World Bank, 2000:15). The ad-hoc intergovernmental panel or forests emphasized the crucial importance of sustainable forest management at the fourth session of the Eleventh World Forestry Congress held in October 13-22, 1997. The observation of the panel does contribute to an emerging consensus on the feasibility of sustainable livelihood approach of forest fringe communities through decentralized planning and participatory forest management. Moreover the Rio Summit of 1992, which happened to be turning point in the world environment history, paved milestone in the way of sustainability and further strengthened the concept of decentralized planning community participation to sustain forest management (Bhattacharya, 2001:13). Community participation between the state and local communities has been globally accepted as a concept and essential tool for the sustainability of natural resources. The National Forest Policy of 1988 in India has also recognized the interdependence between people and forests, and envisages active community participation in the protection and development of forestlands for sustainability of forest management. Managing forests primarily with a view to protecting, developing and utilizing the non-timber forest products (NTFPs) is being recommended for sustainable forest management. Research studies conducted on Orissa, Himachal Pradesh, Madhya Pradesh and Bihar indicate that over 80 per cent of forest dwellers exclusively depend on NTFPs for

their daily subsistence and livelihood (Beer and McDermott, 1989; Campbell, 1993; Chandrasekharan, 1998; Gupta and Guleria, 1982; Mallik, 1994, 2000). The new policy lays emphasis on meeting the local needs in particular of the tribal and the rural poor living near the forest and in safeguarding their traditional rights and concessions subject to the carrying capacity of the forests. Livelihood sustenance issue also relates to sustainable harvest of NTFPs which ensures negligible impact on the structure and the dynamics of the plant production (Mallik, 2000:386). However, sustainability relies on political, socio-economic and a set of institutional factors. But in the context of sustainability of forest resources what appears to be crucial is who these end-users are. The users may be government, community groups or local forest users. To this end, the requirements of the fuelwood, fodder, other non-timber forest products and construction of timber required by tribal and rural poor living near the forests for their consumptive and productive purposes have been regarded as the first charge on forests. The National Forest Policy of 1988 in India stipulates that the forestry activities be so designed to facilitate improvements in the socioeconomic condition of the rural poor and tribal communities. In addition to this, sustainable yield of timber production for expanding government revenue has also been regarded as other important objective of forest management.

This paper, thus, attempts to find out the economic outcome of JFM programme for forest fringe communities and government who jointly manage the forest protection activities, based on a field survey of Bankura district in West Bengal. The present paper is important in that it tries to examine as to whether the institutional arrangements of community management under JFM have been economically beneficial for its member households belonging to agricultural households under three categories – landless, marginal farmer and small farmer – which depends on forest for their subsistence and income, compared with strict regulatory policy system of government before JFM, and contribute to extract forest resources sustainably. This paper is organized as follows. Section II presents the historical perspective of the study. A short review of relevant common pool resource (CPR) game is contained in section III. Section IV deals with survey design and methodology of the empirical exercise. Section V covers the findings of the study. Conclusions and policy implications appear in section VI.

II Historical Perspective

The revision of the National Forest Policy in 1988 marks a major departure from the earlier policies which emphasize on production of commercial wood and disregard for local need

(Poffenberger, 1995; Sarmah and Rai, 2000: 213), because Government of India, then, could understand that until and unless the benefit of forest fringe communities is secured, neither forest resources nor forest management can be sustainable. So, in order to execute sustainable forest management system, the active participation of local forest communities in forest management for conservation and development plans of forest resources and the participatory forest management on usufruct sharing basis for safeguarding their traditional rights subject to the carrying capacity of forest was first introduced and implemented by the National Forest Policy of 1988.

However, far-reaching developments in the demographic, economic, social and environmental fields have resulted in the revision of the National Forest Policy in 1988. The national policy of 1988 constitutes a significant departure from earlier policies of forest management practice, for it emphasizes on: 1) obtaining the active participation of local people in forest conservation and development programmes of local forest lands; and 2) the benefit sharing arrangements, which is intended to provide village communities living near the forests a stake in the protection and development on the degraded forests.

JFM programmes in India currently span over 27 states, represent 85000 village communities, and cover more than 17.3 million hectors of forestland. The programme encompasses an estimated 8.3 million families, half of which are SC and ST (Bahuguna, 2004, cited in World Bank, 2006:1). Most JFM committees use the surrounding forests mainly as a safety net or for regular or seasonal subsistence production of firewood, fodder and minor forest products.

The JFM in West Bengal has its origin in the success achieved in rejuvenating a patch of 17 hectares of degraded forests under a pilot project implemented during 1972 near Arabari in Midnapore district. About 618 families living in 11 villages lying in the fringe voluntarily protected these forests when in return they were assured provision of fuelwood and fodder from the regenerated forest and employment in forestry activities. In 1987 these villagers were also declared as beneficiaries for these rejuvenated forests and granted 25 per cent share from the revenue earned from final harvest. This project made both government and community benefited (SFR, 2000:47). It seems to be relevant to mention that the key precursor to JFM in India, from a management perspective, was a local level initiative, dating from the early 1970s, in the Arabari in West Bengal (Jeffery and Sundar, 1999:28).

In West Bengal, the JFM movement gathered momentum when in 1989 a programme of resuscitation and reestablishment of *moribund sal* and other hardwood forests in the districts of Midnapore, Bankura, Purulia, Burdwan and Birbhum in south West Bengal was initiated by the

Published in Indian Economic Review (2008), Vol. 43, No. 1 (pp. 17-45), Delhi

government with the active participation and involvement of the local people. West Bengal government's resolution in 1989 was issued by declaring the principles of sharing of duties, responsibilities as well as the usufructs from the forests to the participant local people living in the fringe of the forests. The procedures for establishment of the institution called forest protection committee (FPC), comprising of these participants as members, were also defined. The foundation of an innovative forest protection system and the participatory forest management was thus laid for the forests of south West Bengal which covers approximately 38 per cent of the total forest area of the State. West Bengal State Forest Report (2000) clearly mentions:

"As a result of participatory and joint forest management activities in south West Bengal the vast tract of scattered, over-exploited and degraded forests containing mainly the sal were resuscitated and restored to productivity with great improvement in quality and density" (SFR, 2000: 47).

Government report (State Forest Report, 2000) reveals that the overexploitation of trees for timber was so severe that thousand and thousand hectares of forest lands in the south West Bengal except *Sundarban* were almost treated as bare plain land, when the JFM was established; but such lands are almost secured after JFM programme. Secondly, government revenue from the degraded forest was almost nil when the JFM was established, but it has significantly increased after JFM.

However, with regard to the historical perspective of the Government of India in general and Government of West Bengal in particular are concerned, we usually observe two forest policies of the government – strictly regulatory policy (SRP) and cooperative policy (CP). The SRP was usually used before 1988 when the JFM was established and CP has been executing as soon as the JFM came into being. Hence the strategy-set of government is {SRP, CP}.

On the contrary, against the custodian forest management system (SRP action of government), the local forest fringe communities in different parts of India have mobilized repeatedly from long past to protect their traditional right on forest (Poffenberger, 1995). With regard to the south West Bengal (Midnapore, Bankura, Purulia, Burdwan and Birbhum), including our study area, is concerned, *Santal, Bhumij* and *Mahato* tribal, with some low cast Hindus, mobilized repeatedly against *Mughal* and *British* rulers to protect their traditional rights on forestland from long past (Sarker and Das, 2004:172). *Chur Rebellion* (from 1767 to 1805), *Naik Revolt* (1806-16), *Hul Rebellion* (1855) are the glaring examples of the history in south West Bengal where forest fringe communities organized resistance against rulers of India to protect their own right in forestland. It is said that during *Hul Rebellion* (on July 16, 1855) some ten thousand

tribal, under the messianic leadership of four Santal brothers stood their ground firmly and fought with bows and a kind of battle-axe in a battle near *Pirpaiti* (Dutta, 1940:26). The revolt collapsed eventually after half their members were reportedly killed. Despite their defeat, the *Hul Rebellion* (as it is known among the Santal) profoundly influenced the ideological development of many Santal communities (Duyker, 1987:35), and lives on in the songs and oral traditions of the tribal people of this area.

JFM can, thus, be seen to emerge as the major policy change and attempt to create a new relationship between the government and the community in terms of cooperative framework. Thus, from the standpoint of the forest fringe community is concerned, one may usually find two actions of the community on its forestland – fighting policy (FP), which was mainly executed when government's SRP was in operation. They usually executed this policy to meet up their livelihood security. The cooperative policy (CP) of forest fringe communities has been gaining ground on as soon as the JFM programme came into being. So the community's strategy-set is {FP, CP}.

This empirical study is important in that it might help us examine whether, unlike earlier forest policies which emphasize on production of commercial wood and disregard for local need, the 1988 Forest Policy of India and thereafter West Bengal Government' JFM resolution in June 1989, which for the first time specifies the rights of the protecting communities with the help of establishing Forest Protection Committees/Village Forest Committees over forest lands through their active participation in the protection and development of forest lands, has been effective on meeting the local needs in particular of the tribal and the poor living near the forests and expanding government revenue from timber subject to the carrying capacity of forests.

III Review of the Relevant CPR Game

The daily livelihood of vast masses of the rural poor in many countries depends on the success with which common pool resources (CPRs) – such as forest and water resources – are managed and on the environmental consequences of their management. "CPR (common pool resource) management is a collective action dilemma: a situation in which mutual cooperation is collectively rational for the group as a whole, but individual cooperation is not necessarily individually rational for each member"(Dayton-Johnson and Bardhan, 2002:577). There is now a vast literature which examines the problem of extracting commonly owned renewable resources by game-theoretic framework (Clark, 1980; Dasgupta and Heal, 1979; Ostrom et al., 1990; Gardner et al., 1990; Ostrom et al., 1992; Chichilnisky, 1994; Sethi and Somanathan, 1996; Dayton-Johnson and

Bardhan, 2002). Game theory provides a useful tool for many problems in environmental economics. The theory is concerned with the strategic action of different agents/players where these actions are in some way interlinked. It is said that the absence of private property rights in common property resources is characterized by a negative externality whenever the resource is scare; this leads to inefficiently high levels of extraction, possibly high enough to exceed the maximum sustainable yield, and threaten thereby the long run viability of the resource. But there is considerable literature of common pool resource game which suggests that cooperative management of common property resources guided by social norms and customs have been successful over long period of time (Fudenberg and Maskin, 1986; Williamson, 1985; Ostrom, 1990; Ostrom et al., 1990; Hecheter, 1987; Acherson, 1993; Sethi and Somanathan, 1996). In a study of CPR institution, Cordell and McKean (1992) identity the established codes of conduct which are far more binding on individual conscience than any governmental regulations. These codes of conduct serve to ensure both sustainable aggregate harvests and an equitable distribution of access to the resource. Acheson (1993) is another example of sustainable management of common resources based on customs and social norms. In fact, self-organized CPR institutions have been devised without reference to centralized authorities and sustained over long period of time (Hechter, 1987; Willamson, 1985). Empirical evidence suggests that individuals facing social dilemmas in many cases develop credible ex ante commitments without relying on external authorities: appropriation from CPRs have repeatedly shown their capacity to organize themselves, establish credible commitments, monitor each other behavior and impose sanctions on those who breaks their commitments (Gardner et al., 1990; Ostrom et al., 1990). Ostrom et al. (1992) find that high level of cooperation can be sustained for the management of CPRs if the possibility of pre-game communication is present, with or without the possibility of costly sanctions. The game-theoretic model of Sethi and Somanathan (1996) suggests that cooperative behavior guided by social norms of restraint may be stable to run the common property resources and pastures in a well defined sense against invasion by narrowly self-interested behavior; when the social norms break down, it generally lead to the lowering of the long run stock, and possibly to its extraction (p.766). This model follows from Somanathan's (1991) empirical evidence which describes a variety of traditional arrangement guided by social norms, customs and courtesy designed to enable Himalayan villages in India exploit their common forest sustainably without the possibility of costly sanctions. The CPR game of our study which emerges from our empirical evidence seeks to examine as to whether the interaction between community and government over a trade off between economic outcome from extracting commonly owned

renewable forest resource is beneficial for both guided by a variety of institutional arrangements under JFM programme leading to exploit forest resource more sustainably compared with the system of strict regulatory policy (SRP) of government before JFM.

IV Survey Design and Methodology

a) The data set

The data have been collected through an intensive field enquiry covering all members from three sample female FPCs and three joint FPCs under Bankura district² of West Bengal. We have taken samples from all forest divisions - Bankura (North), Bankura (South) and Panchayet (SC) under Bankura district, because almost all female FPCs exist in this district only. For the selection of female FPCs, random sampling technique (SRSWOR) is used. *First*, we have taken three sample female FPCs, taking one from each division of the district with the method of SRSWOR. Second, we have taken all members of each sample female FPC for our study. The number of members of each female FPC has been collected from the records of the respective FPC. However, total members from three sample-female FPCs are 120 in number - Brindabanpur (56), Agua (23), and Malibona (41). To make a comparative study of FPC members between female FPCs and joint FPCs, we take three joint FPCs along with three sample female FPCs for our study. First, each joint FPC has been selected based on the criterion of close proximity (nearest distance in km.) to each sample female FPC. Second, all members of joint FPCs have been selected for our final survey. Total number of members from three joint FPCs works out to 182 in number - Katul-2 (93), Balboni (44), and Baragari (45). However, total number of members selected for our field survey including female and joint FPCs, work out to 302. It is worth mentioning that each FPC was formed in the respective village. So FPC/village is synonymous in the study.

The data of six FPC-villages under our study were considered for two-time points – before JFM and after JFM situations. The period of collecting data for 'after situation' in all FPCs is same – between April 2005 and March 2006. But the period of data for 'before situation' was not same to all FPCs. JFM programme in Agua, Belboni, Malibona, Baragari, Brindabanpur and Katul-2 FPC-villages was started on February 1993, February 1993, March 1996, December 1996, April 1991 and September 1990 respectively. 'Before situation' for each FPC is considered for the preceding one-year period from the starting of JFM programme in the respective FPCs. For example, 'before situation' in Agua FPC-village was between February 1992 and January 1993. But the major problems in measuring different socio-economic indicators are the level of measurement

Published in Indian Economic Review (2008), Vol. 43, No. 1 (pp. 17-45), Delhi

(household/village/community/group), types of statistical information (variable/attribute), difficulties in ascribing the changes to a particular programme (like JFM programme) from other variables (programmes) influencing these changes, unit of measurement (for example kilograms/days/standard cattle). To some extent, these problems or limitations can be dealt with through the adoption of appropriate techniques of data generation and estimation procedures. An appropriate baseline survey of the households would contribute to capture the changes better. But such baseline data set are often not available; the problem in such cases is that we cannot observe the participating households without observing the programme at the same time. This is the major loophole of this study. One way of addressing this problem is to have a control group, which is similar to the participating group in all respects except the programme so that the control group may act as the counter factual of the participating group. But it is difficult to find such a matching group in this study, because there is hardly any household of forest fringe communities without JFM programme in the area we surveyed. Even the recent JFM programmes operating in this area originated before the year 2002. A second best solution in this regard is reflexive comparison where 'before' and 'after' scenarios are compared for the participating households. This would be helpful to provide reasonable estimates of the impact provided that there is no serious memory lapse problem among the respondents (Ravallion, 2001). But memory lapse is directly related to the time, which passes away after initiating the programme. By using the 'double difference' method where 'before' and 'after' situations are examined for both control and participating groups, these biases can be further minimized. Due to non-availability of data of matching control group for the causes mentioned earlier, we had to depend on 'reflexive comparison' where 'before' and 'after' situations are examined for participating groups only. 'Before' and 'after' estimation are analyzed for all households involved in the JFM programme under our study. More importantly, the share of timber sale received by each FPC from the forest department was equally distributed among all households irrespective of the economic status of households.

b) Evaluation of cost and revenue

Total revenue and total cost of rural forest fringe households under our survey are estimated on two sources – forest and non-forest – during both the situations – before and after JFM. As regards revenue is concerned, forest source of revenue is generated from sale of timber, fuelwood and non-timber forest products, and forestry wage labour. Revenue from forest resource is of two types: legal (Y_L) and illegal (Y_I). Legal income from forest resource is generated from LRFA (like fuelwood, non-timber forest products), forest wage income and legal share of timber products from forest department. Illegal income from forest resource yields from illegal collection of timber (HRFA). Non-forest revenue, on the other hand, rises out of the sale of agricultural farm crops, nonforest wage labour (mainly from agricultural farm labour) and others (self employed business activities like market middleman, tailoring, radio and cycle-rickshaw repairing, sale of livestock and its products, personal and household items, etc.). Income from 'others' constitute a very little part of their total income for our surveyed households during both the situations – before and after JFM. Most of the households receive their part-time income from their self-employed business activities as their 'others' sources of income, the major income being the forest source. Almost all households under our study during both the situations receive income from their domestic livestock and it is the major part of their income from 'others' source. But out of the total surveyed households (302 in number), the part-time income other than livestock under 'others' source is insignificant: only nine households from market middlemen, three households from tailoring and two households from radio and cycle-rickshaw repairing receive a small part of their total income during after situation of JFM, although before JFM they did not receive income from the same source. However, non-forest income is of two types: agricultural-crop source and 'others' (almost from livestock). It is worthwhile to mention that to estimate income for forest fringe households under our study we use the household production framework (Pattanayak and Sills, 2001; Zorn, 1998; Pattanayak, et al., 2004). The household production framework seems to be appropriate for describing this situation because this framework contributes to household's production of utilityyielding services from forest (legal and illegal) and non-forest (agricultural-crop and livestock) sources for their own consumption and generating income: household's own labour for forest sector, household's own labour and capital (land, plough, etc.) for agricultural-crop sector, and their own labour and capital for livestock are used as primary inputs in the production process. The procedures of estimation of cost and revenue during both before and after JFM situations are evaluated as follows.

As forest is a common pool environmental resource and its harvest gives both tangible and intangible benefits, there are some problems in estimating the cost of forest benefit to the users (forest dependent households). Even if we exclude the intangible part (which is indirect and non-marketable benefit like watershed benefit, ecosystem service and biodiversity conservation), some problems remain. As mentioned earlier, the forest source of benefit or revenue is of two types (legal and illegal) consisting of three sources – NTFPs, forestry wage and TFPs (which combine share from government's timber sale and sale of illegal extraction of timber together). Basically, forest

dependent households under our study do not bear any direct cost for their forest income because they do not pay any direct fees/taxes to the forest department for their extraction of forest products; although they incur some costs as protection of forest resource like monitoring and patrolling the forest, almost all protection costs are usually paid by forest department regularly in monetary unit (in Rs.). However, cost component of the households under our study from the forest income is the opportunity cost of labour for their collection, processing and/or marketing of forest products. But the main problem in estimating opportunity cost of labour is to evaluate whether we should consider the local wage rate or the forestry wage rate as the opportunity cost of labour because the surveyed households of our study have to work as wage labour under both forest and non-forest sectors. As regards forest wage rate is concerned, the prevailing wage rate for forest wage labour is fixed at Rs.67.50 /- which is about a double of the average local wage rate for crop farm sector, for usually eight hours of service from 8am to 4pm. But forest wage rate and the number of working days as wage labour under forest department by the forest fringe households are fixed. Usually, one person from each household with a family size of five or less gets the opportunity of forest work from 35-40 days per year. If the size of member of a household is greater than five, usually, two persons get the opportunity for forest wage work for 70-80 days in total per year. In this perspective, we consider local market wage rate of non-forest sector as the opportunity cost of labour because the working days and wage rate under non-forest work turns out to be a variable which is not fixed as forest wage work. The other important problem in estimating opportunity cost of labour for collecting, processing and/or marketing of forest products is that the time and hours of collection, processing and/or marketing are not fixed. Collection, processing and/or marketing may execute at any time and at any period usually between dawn to duck. Moreover, women and girls constitute the major segment of the collection and processing of NTFPs. In the face of these facts, we have calculated cost based on the actual period (duration) the collector households spent on collecting, processing and/or marketing of the forest products. For example, if a collector (man/woman/boy/girl) spends on two hours for collecting forest products, his/her opportunity cost of labour is calculated for two hours based on the local wage rate (for the respective category).

Forest resource provides a variety of goods and services to its users for their current benefit like timber and non-timber forest products. Hence they are said to have 'use value' which is consumptive or/and productive (Kadekodi, 2001:290-1). The most significant problem in estimating such benefit or revenue from the forest products for forest fringe households under our study is that either the collectors do not sale the entire portion of their collections or the markets for forest products are sometimes thin or missing. A considerable portion is consumed by the collector households. However, the appropriate method used in this case is based on sound economic theory. One may assume two possible cases: (i) when a market for a forest product exists and (ii) when market for a close substitutable/surrogate exists. Whenever market exists for any forest product, the market price is used for valuing revenue of the product. The value of various timber forest products and a wide range of NTFPs like fuelwood, sal seeds/leaves, kendu leaves, medicinal plants, some food items (mainly mushroom) fall into this category. But what does one do if there is no market for a particular use of product under consideration? The product may have alternative uses with revealed market price or may have alternative product to substitute for. Methods such as opportunity/replacement cost basically draw upon market data and information on prices and values for such alternatives or substitutes. Moreover, surrogate prices are hypothetical market prices taken from such products which are close substitute for those products. The present study considers surrogate price for valuation of fodder and ritual items and opportunity cost for valuation of the residual forest products (other than the forest products mentioned above). While calculating price per unit of forest product, we consider producer's price for the quantity of product which the collectors actually sold; for their consumable part, we consider consumer's price.

Now we turn to study the estimation procedure of total cost and total revenue related to agricultural crop under our surveyed households. But the computation of cost of cultivation of agricultural crop is, no doubt, a controversial issue. Agricultural farm's cost is the combination of materials and services of heterogeneous nature and, therefore, a number of conceptual and methodological issues are involved in estimating the cost of cultivation of individual crops. However, realizing the seriousness of this problem, Government of India appointed expert committee headed by Hanumantha Rao for developing the concept of estimating the cost of production of agricultural produce (GoI, 1990). As per recommendations of the Committee, the items of cost of cultivation cover both the paid out costs and the imputed costs. The paid cost includes (i) hired labour (human, animal and machinery), (ii) maintenance expenses on owned animals and machinery, (iii) expense on material inputs, (iv) depreciation on implements, machinery and farm building, (v) land revenue, (vi) miscellaneous expenditure, and (vii) interest on working capital. The imputed cost consists of value of family labour, rental value of owned land and interest on owned fixed capital. Hired human labour cost is evaluated from the actual wages paid by the farmer. The valuation of family labour is also a controversial issue among farm economists. The evaluation of family labour has been decided at the market wage rate prevailing in the locality. The managerial functions performed by the family members are evaluated on the basis of the time spent with the family, the labour wage rate and the actual expenses incurred for traveling, etc. In the present study depreciation charges of fixed assets is worked out by the Straight Line Method using the following formula: Depreciation = (Original cost – Junk value) \div Life of the asset. Fixed capital (excluding land) used by the cultivating households (marginal and small landholders) under our study is cattle and plough (made by wood). There is no other fixed asset (like tractor, pumping machine, shallow tube-well) possessed by any cultivator households. The irrigation facility the cultivators used in the study area is through cannel system from government irrigation project. The cost of irrigation is not included under the cost of fixed assets. The junk value of cattle is assumed to be nil, because if cattle die they do not possess any junk value to the households under our study. Junk value of plough is considered as the 'use value' of fuelwood consumption because when plough is ineffective to function, it is used by the cultivating households for fuelwood. Original cost and lifetime of the cattle and plough are estimated based on the practical information available from our surveyed households. There are some problems in the valuation of interest on working capital. The major problems are the rate of interest and the period over which interest is charged. Working capital in this study is evaluated in terms of (a) owned and (b) borrowed (mainly, non-institutional) capital. While the actual interest paid out is taken into account for the borrowed capital, the interest on owned capital is estimated at the same rate the borrowed capital is worked out. The interest rate of borrowed capital is calculated on the basis of their non-institutional (informal) borrowing because the surveyed households under our study usually borrowed from non-institutional source during both the situations. It is worth noting that there are only three cases of formal borrowing (only from small landholding households) during after situation of JFM, whereas there was no formal borrowing by any category of households during before situation of JFM under our study. The annual average rate of interest for informal borrowed capital is estimated as around 32 per cent during after JFM situation, whereas it was evaluated as 41 per cent during before JFM situation. If any household employs owned capital instead of borrowed capital, the interest of the owned capital of that household is evaluated at the same interest rate the borrowed capital (non-institutional) is worked out. To compute rental value for owned land, a number of alternative procedures have been suggested. Important among them are (i) an appropriate rate of interest on the value of land, (ii) market rent, and (iii) a fixed proportion of output. Since land values are high due to pressures external to agriculture, we have resorted to estimate the rental value of owned land on the basis of prevailing rent in the village for identical type of land. The expenditure incurred or imputed for some of the cost items relate to the agricultural farm crop as a whole. These cost items are estimated under joint costs. Joint costs are allocated to depreciation on farm buildings and implements, land rent, interest on owned capital, cesses and taxes, etc. because such costs are allocated to all crop enterprises in a particular land over the whole year. This study also estimates these joint costs for all crop enterprises as a whole in a particular land over the whole year during both the situations – before and after JFM.

The total revenue of agricultural crop is estimated at the annual gross return from all agricultural crops earned by the cultivating households under our study during both the situations – before and after JFM. Producer's price for the agricultural crop is considered for the valuation of agricultural products the households actually marketed. But consumer's price is considered for the valuation of the proportion of agricultural produces the households used for self-consumption or retained for self-consumption.

As regards cost related to livestock is concerned, usually two types of costs – labour and capital – are borne by the surveyed households as primary inputs for livestock during both the situations under our study. Opportunity cost of labour is considered for cattle grazing, but for fowl no such cost is necessary for the households we surveyed. The necessary capital requires for livestock is of two types – fixed (cage/building for shelter) and working (for feeding) capitals. Fixed capital used by the owners of livestock is mainly 'kaacha' cage made by wood. The estimation of fixed and working capitals of livestock is evaluated on the similar procedure adopted in estimating cost of capitals for agricultural crop. The total revenue of livestock is estimated at the annual gross return from the sale of livestock and the products of livestock.

c) Methods of strategy set

As regards the strategy-set of community is concerned, two FPCs – Baragari joint FPC and Brindabanpur female FPC – out of six provide some distinguishing features. *First*, Baragari joint FPC under Bankura (South) forest division came into existence in December 1996, although the West Bengal Government's initiative for JFM programme was operative in this forest division on and from 1989, during this period, i.e. from 1989 to 1996, the government policy was cooperative but Baragari community's strategy was 'fighting'. This is mainly because of more heterogeneous community structure and high endemic factionalism among the community members in this village. *Secondly*, the establishment of Brindabanpur female FPC under Bankura's Panchayet (SC) Forest Division is a classic example in that a) it is the first female FPC not only in West Bengal but also in India; its leader *Mrs. Parul Lohar* was awarded Government of India's honour for her noble work;

still she is the leader of this FPC; and b) unlike the usual practice, the primary initiative for the establishment of FPC was taken by the collective action of the members of this locality³. The members of this FPC came forward at first for the establishment of female FPC in their locality and local forest officials responded after three years. By this transition period community's policy was cooperative but government policy was strict (SRP). The distinguishing feature of Brindabanpur female FPC and Baragari joint FPC, however, helps us calculate the economic outcome of forest fringe community and government for their two distinct strategy profiles {FP, CP} and {CP, SRP}, the first and second actions of each distinct strategy profile being the community and the government respectively, based on our field survey.

This study considers simple technique of measurement like arithmetic mean, proportion, and tabular analysis for examining our stated objective. The outcome of the strategy profiles of government and community has been explained in simple game theoretic approach. Additionally, a simple mathematical model is also used for our study.

V Findings

At the very outset, we examine some basic characteristics of our sample FPCs (Table 1). *First*, all members of FPCs – both female and joint – in five FPCs out of six are either SC or ST (column 11). In Baragari joint FPC, about 90 per cent of members do not belong to SC/ST. *Second*, about 43 per cent of households (129 out of 302 cases) are landless, about 45 per cent of households are marginal and the rest, about 12 per cent are small (columns 7, 8 and 9 respectively). In our sample there is no household, which belongs to medium or big category⁴. *Third*, over 77 per cent of households in each village live below poverty line⁵ (column 5), the incidence of poverty being the lowest in Baragari (77.78 percentage). *Fourth*, except Baragari and Katul-2, majority of members in each village are illiterate (column 12). This study, however, indicates the abject economic and social conditions of the tribal people who are among the most disadvantaged group in rural Indian society.

Table 2 presents annual net real income (in Rs.) of sample households from forest source, nonforest source and from all sources along with the change of income between two time points. The real income (in Rs.) is determined after deflating the money income by cost of living index (general) of agricultural labourer. As mentioned earlier, we consider the year 2005-06 as the base year. In doing so we use the technique of splicing (which consists in combining two or more overlapping series of index number to obtain a single continuous series) ⁶. Table 2 shows the following important results: 1) annual net real income (in Rs.) for all categories of households under our sample except small land holding households in Baragai joint FPC have considerably increased (ranging between 12.84 and 41.56 percentage points) after JFM (column 11); 2) the increase of the annual net real income of households from all sources is only due to the net increase in income from forest source after JFM (column 9); 3) the annual net income from non-forest source of sample households in all FPCs has decreased to a large extent (column 10); 4) the dependence on forest income for all categories of households has considerably increased after JFM(column 3). Before JFM programme the annual net real income from forest source out of annual net income from all sources from sample households ranges between 61.56 percentage point and 78.51 percentage points (column 6). It implies that forest was major source of income for all categories before JFM; 5) after JFM, annual net income of forest fringe communities has made a substantial increase. After JFM programme, the contribution of annual net real income from forest source out of annual net real income from all sources from sample households works out between 65.84 and 89.62 percentage points except Baragari FPC (column 3); and 6) the incidence of the dependence on forest income is much lower for the households belonging to the better economic position on land status after JFM programme (column 9). It is important to mention that per capita annual net real income from forest source (PCANRIFS) is considered as the economic outcome (payoff) of the community. In order to calculate PCANRIFS, annual net real income from forest source of all sample households is divided by total number of members (calculated from columns 3 and 6 respectively in Table 2).

The share of annual net real income derived from different sources of forest and non-forest sectors for agricultural households (landless, marginal farmer and small farmer) of six FPC-villages (during before and after situations of JFM programme) under our study appears in Table 3. Some important features that emerge from Table 3 are: i) forest sources – NTFPs, forestry wage and timber forest products (TFPs) – account for major share of annual net real income for all categories of households both after and before JFM programme situations. After JFM net return from all non-forest sources – farm, non-forest wage and others – have decreased for all categories of households except farm income for only small farmer households in Baragari FPC. Conversely, annual net real income from two forest sources – NTFPs and forest wage – has increased for all except NTFPs source in one category of households – small farmer households in Baragari FPC. As the households of small farmer of Baragari FPC could not diversify their income generating activities within forest sources – for example, NTFPs – like others, their share of farm income from farm source out of their procentage after JFM, although their share of annual net real income from farm source out of their

annual net real income from all sources are below 20 per cent before and after JFM. ii) more than 80 per cent of annual net real income of landless and marginal farmer households, who are relatively asset poor and that also live below poverty line, come from forest sources except annual net real income of the same categories of households under Baragari FPC after JFM programme, whereas the contribution of net forest income was at best about 65 percentage for the same categories of households before JFM (Table 2). The significant increase of forest income after JFM is due to two sources - NTFPs and forest wage, the highest contribution being the NTFPs source (Table 3). However, the incidence of forest income is higher for the households which belong to lower landbased economic condition after JFM programme. iii) after JFM forest provides much income generating opportunity for all categories of households in all FPC-villages. As regard forest wage labour is concerned, not only the landless and marginal categories of households but also small farmer category of households are involved in forestry works. This is due to attractive high forestry wage rate compared with local wage rate in non-forest sector. As mentioned earlier, forest wage rate and the number of working days as wage labour under forest department by the poor forest fringe communities are more or less fixed; iii) out of annual net real income from all sources, NTFPs' share has increased in all FPCs for all categories of households, except small category of households in Baragari FPC. But most importantly, compared with before JFM period the change of annual net income of NTFPs after JFM, particularly, for landless and marginal categories of households, who are relatively asset poor than small categories of households and that live below poverty line, marks a major increases, ranging between 42.38 percentage point and 440.73 percentage point, in all FPCvillages excepts landless and marginal categories of households in Baragari village. Conversely annual net real income from timber forest products (TFPs) generating from illegal source⁷ for landless and marginal categories of households in Baragari FPC-village has increased during after JFM period compared with before JFM period, whereas net annual real income from TFPs yielding from illegal source for the same categories of households in other FPC-villages has considerably decreased during the same period, ranging between 44.27 percentage point and 72.71 percentage point. Moreover, net annual real income from TFPs has considerably decreased for small category of households in all FPC-villages.

The break-up of annual net real income from legal and illegal forest sources for below poverty line households before and after JFM situations appears in Table 4. It reveals that the illegal income from TFPs after JFM has substantially increased (30.59 percentage point) to poor categories of households which live below poverty line in Baragari joint FPC (column 9). The change of illegal

income from TFPs after JFM for the same categories of households to other FPC-villages is highly negative (ranging between 20.77 and 74.47 percentage points). This is mainly because the change of income from legal forest products of the poor categories of households of Baragari FPC after JFM is much lower than that of same categories of households in other FPCs. In all FPCs, except Baragari, the change of income from legal sources of forest is highly positive ranging between 42.91 percentage point to 117.17 percentage point; in Baragari this change is negative (12.92 percentage point). It clearly indicates that force or law can not effectively control the illegal collection of TFPs of the poor categories of households, which live below poverty line, until and unless a considerable income from legal forest source meets up their bare minimum level of subsistence.

However, while considering per capita annual net real income from forest source (PCANRIFS) as the payoff of the community together with the break-up of share of income from different sources, we also calculate the government's economic outcome by considering annual net real income from forestland per FPC (ANRIFFPFPC) as the economic outcome (payoff) of the government. As mentioned earlier, the payoff of the Government of West Bengal (GoWB) from the degraded forest, particularly from south West Bengal is concerned, was almost nil for her SRP. A little payoff that GoWB would usually receive from this forestland was the auction sale of those trees that were removed by rain and/or by storm. As no specific government revenue had been reported from the FPC we surveyed before JFM was established and, on the contrary, government does not give an account of her little revenue for the particular division as a whole, we consider the critical ANRIFFPFPC for government as Re.1 for her SRP.

With a list of pure strategies available to each player, we now have the game of two-player (so that the industry is a duopoly) with two strategy sets $G = \{SRP, CP\}$ and $C = \{FP, CP\}$ along with its four distinct strategy profiles $\{SRP, FP\}$, $\{SRP, CP\}$. $\{CP, FP\}$, and $\{CP, CP\}$ in the following simple form. It is assumed that both players choose annual net real income in per capita/per FPC terms rather than annual net money income. First, we use normal form of representation in analyzing static game (simultaneous move) of complete information**8**. In figure 1, payoff in the left hand side indicates the payoff of community and right hand side, the government's payoff.

Obviously for community, FP is strictly dominated by CP, because 2570>2359 and 3723>2613. It seems to be important to mention that for government, the strategy SRP is said to be weakly dominated by CP9. But when a strictly dominated strategy equilibrium exists we can confidently predict that this will be the outcome of the game (Bierman and Fernandez, 1998: 34). So as a rational player, community will not play FP. Thus government knows that community is

rational; then government will eliminate FP from community's strategy-space. SRP is now strictly dominated by CP for government. Thus community knows that government is rational, and then community will eliminate SRP from government's strategy-space leaving the strategy profile (CP, CP) as the outcome of the game. This process is called *iterated elimination of strictly dominated strategies*. This outcome is Pareto optimum because it is not dominated by any other outcome of the game. The outcome (CP, CP) will hold good as producing cooperative is a dominant strategy for community. So the strategy profile (CP, CP) is the unique Nash equilibrium.

But the long run viability of forest resource depends on the economic outcome of poor forest fringe community, which mainly depends on forest resource for their major source of income. As mentioned in Table 3, the main source of forest income is due to NTFPs. But the price per unit of some NTFPs like kendu leaves and sal seed, the collectors receive from its purchasers is very low in relation to the market price. What is more significant is that whatever amount of more valuable NTFPs per unit (in Rs.) the collectors desire to sell in the market they have only to sell it legally to the agents of LAMS (Large Adibasi Multipurpose Society), which usually pay to their collectors's considerably lower price per unit for the amount the latter sell to the former. Table 5 shows that net profit per K.G. of kendu leaves for the agents of LAMPS is about hundred percent of the collector's price. Similarly, net profit per K.G. of sal seeds is more than hundred percent of the collector's price. This situation is more or less similar with Jharkhand state, very close to West Bengal state. In Jharkhand, Jharkhand State Forest Development Corporation (JSFDC), licensed traders operating on behalf of the state, controls kendu leaves marketing in the state, where villagers are little more than collectors operating as pure price takers in a monopsony, with no bargaining position and no incentives to improve quality above minimum standards (World Bank, 2006: 46).

However, the success of JFM programme with respect to economic outcome for forest fringe community and government of this study highlights some particular issues of the poor households of community, which live below poverty line: 1) more than 80 percent of net annual real income of poor forest fringe communities yield from forest source – legal or/and illegal source(s); 2) when NTFPs and wage income from forest are inadequate to meet the bare subsistence level of income of the poor forest communities, who live below poverty line, they are involved in yielding illegal income by removing timber forest products from the forest land to meet up their minimum livelihood security; 3) wage rate for forest wage labour is fixed at Rs. 67.50, which is about a double of the average local wage rate, for usually eight hours of service from 8am to 4pm; 4) forest wage rate and the number of working days as wage labour under forest department by the poor

forest fringe communities during present situation of JFM programme are more or less fixed; 5) the price per unit of some NTFPs the collectors (forest communities) receive from the agent of LAMPS is considerably lower than market price; and 6) the incidence of the dependence on forest income is considerably higher for the households which belong to lower economic condition after JFM programme.

Hence the issue is: what are the means to overcome the problem of the poor categories of households, which live below poverty line, when legal forest income (income from legal forest products like NTFPs, fuel wood, timber share from government and wage income from forest) is inadequate to meet up their bare minimum level of subsistence? There seems to be three ways to tackle the situation – *one* is to increase the production of quick growing NTFPs, fuel wood etc. in order that the poor households may increase the legal collection of those products; but its proper execution is hardly short term in nature. The *second* is to increase the existing government wage rate and the increase of the number of working days as wage labour under the department of forest. But the existing government wage rate (Rs. 67.50/- for usually eight hours' of work a day) is high enough as compared with the local wage rate (local wage rate ranges between Rs. 30 to 40 for usually eight hours' of work a day). Similarly the increase of labour days also depends on new aforestation programme, which seem to be hardly possible within a short period. The *third* is to increase the per unit price of Forest Products (FPs) the collectors have to sell to the agents of LAMS. This measure seems to be useful for the short period.

VI Conclusions and Policy Implications

This empirical study suggests that the economic outcome of the JFM programme has been beneficial for both community belonging to marginal landholding, small landholding and landless agricultural households and government and this is due to the strict dominant cooperative strategy of community. But the earlier forest policy of the government was oriented with the commercial need of the government disregarding the traditional right and benefit of the forest fringe communities. Economically government was the worst sufferer for her SRP, because law or force could not effectively control the illegal collection of forest products of the poor forest fringe communities which mainly depend on income from forest resource and that live below poverty line, until and unless a bare minimum level of subsistence level of these communities was met up. The success of JFM programme has proved that active involvement of forest fringe communities in protection, regeneration and development planning of forest resource not only provides a significant increase in income of the community but also begets a major increase in income of the government who failed to receive such income while she executed SRP. The higher economic outcome of the government is due to the cooperation of community whom government neglected earlier. Similarly, the coordinated action by the community, which belong to marginal landholding, small landholding and landless agricultural households, also help them generate a substantial increase of forest income after JFM as compared with before JFM mainly from two sources – NTFPs and forest wage, the highest contribution being the NTFPs' source. But the incidence of forest income is higher for the households which belong to lower land-based economic condition and that live below poverty line after JFM. However, the CPR game of our study, which follows from our empirical evidence, suggests that the interaction between community and government over a trade off between economic outcome from extracting commonly owned renewable forest resource has been beneficial for both guided by cooperation (CP, CP) preferred by both parties within a variety of institutional arrangement under JFM programme leading, thereby, to exploit the forest more sustainably compared with the system of strict regulatory policy (SRP) of government before JFM. Although forest resource of south West Bengal including our study area was resuscitated and restored to productivity with great improved in quality and density after JFM compared with before JFM, as mentioned in SFR (2000:47), the institutional arrangement of JFM could not retain the poor households, which are mainly dependent on forest resource for their livelihood security and that live below poverty line, from illegal collection of timber products until and unless a considerable income from legal forest sources - NTFPs, forestry wage and government' timber share - meets their livelihood security. This study also suggests that the prices per unit of NTFPs the collectors have to sell to the agents of LAMPS are considerably lower than their market prices.

In this perspective, however, there seems to be three ways to tackle these problems within the existing JFM programme – one is to increase the production of quick growing NTFPs, fuelwood etc. in order that the very poor households may increase the legal collection of those products; but this depends on the participatory forest management programmes and its proper execution which is hardly short term in nature. *Secondly*, the existing government wage rate on forest work is considerably higher (about a double) than that of the average local wage rate. The increase of labour days by the forest department depends on new afforestation programme, which also seems to be hardly possible within a short period. The *third* is to increase the price per unit of NTFPs the collectors have to sell to the agents of LAMS. So, in order to have the higher economic outcome and the higher outreach of the JFM programme, government should restrict the power of the LAMPS so that the collectors of NTFPs may sell their products at a higher price in the market and increase their income. But the increase of the collectors' price of NTFPs may not increase considerable income of the households below poverty line for the long period. Together with it, more pro-poor programmes under both government and non-government initiatives that complement the benefit of JFM programme need to be introduced.

Notes:

1) Farm income implies earnings from sales of field crops including fruit crops. Self-employment includes non-forest based business like resale of agricultural commodities, tailor, money lending, sales of fish, grocery sales, public transport operation, radio and bike repair, tinsmith, and stone breaking. Wage work includes non-forest off-farm employment like contract agricultural labour, forestry officer, teacher, mechanic, watchman, and village headperson. Sales assets consider sales of livestock and poultry, property rental, and sales of personal and household items. Transfers include remittance from household residents, gifts from relatives, and loans.

2) We take all samples for our study from Bankura district only since almost all female FPCs in West Bengal are operating in Bankura district, being extended to all three forest divisions – Bankura (north), Bankura (south), and Panchet S C – of the district. As this paper has been prepared based on PhD research work entitled 'Women's Dependence on Forest and Participation in Forestry: A Case Study of Joint Forest Management Programme in West Bengal', we consider all samples from Bankura district in south West Bengal where the vast tract of forest land containing mainly the sal were overexploited and degraded before JFM situation. After JFM the forest land under our study have been resuscitated and restored to productivity with great improvement in quality and density.

3) It is worth mentioning that forest officials usually take the primary initiative (during 1988-89) for the establishment of both joint FPC and female FPCs in this area. They first speak to the local forest communities, local *panchayet* bodies about the utility of the establishment of FPC under JFM programme. Later, local forest communities and local panchayet respond to it.

4) In the irrigated area households possessing cultivable land between 0.01 and 2.49 acres are treated as marginal farmer households, between 2.50 and 4.99 acres, as small farmer households, while in the unirrigated area, this is twice the area of their irrigated lands.

5) Poverty line income in rural West Bengal on the basis of PCME (per capita monthly expenditure) by NSS of 55th round (1999-00) is Rs. 350.17. Based on the CPIAL (Consumer Price Index of Agricultural Labour [General]) per capita monthly expenditure for the year 2005-06, the poverty line income for the year 2005-06 is calculated as Rs. 393 approximately.

6) Indian Labour Journal (1991, Vol. 32, No. 4: p. 662) provides the Consumer Price Index Number of Agriculture Labour (General) for rural West Bengal on and from 1990-91 to 1995-96, the base year being 1960-61. Similarly, Indian Labour Journal (2005, Vol. 46, No. 12: p. 1225) provides the same for rural West Bengal on and from 1995-96 to 2005-06 with 1986-87 as base year. We then shift the base

year of 1960-61 to 1986-87 for all the years from 1990-91 to 2005-06. Again we shift the base year from 1986-87 to 2005-06 and calculate the CPIAL from 1990-91 to 2005-06.

7) Never did the respondents say that their source of income was illegal; rather, while examining the answers from the respondents regarding their break-up of their source of income, the distinction between legal and illegal source was clearly demarcated.

8) It might be a game of complete information because each player's payoff function (the function that determines the player's payoff from the combination of action chosen by the players) is common knowledge among all the players (Gibbons, 1992: 2).

9) SRP is no longer strictly dominated by CP, because both strategies provide same payoff (Re 1) to the government if community adopts a FP strategy, but strictly higher payoff to government if community adopts CP.

References:

- Acheson, J. M. (1993), Capturing the Commons: Legal and Illegal Strategies, in: T. L. Anderson and R. T. Simmons, eds., *The political economy of customs and culture: Informal solutions to the commons problem*, Rowman and Littlefield, Lanham.
- Angelsen, A. and S. Wunder (2003), Exploring the forest-poverty link: key concepts, issues and research implications, CIFOR Occasional Paper No. 40, Center for International Forestry Research, Bogor, Indonesia.
- Arnold, M. (2001), Forestry Poverty and Aid, *Occasional Paper No. 33(E)*, Center for International Forestry Research, Bogor, Indonesia.
- Bahuguna, V. K. (2004), Root to Canopy: An Overview, in: V. K. Bahuguna, K. Mitra, D. Capitrano, and S. Sargal, eds., *In Root to Canopy: Regenerating Forests through Community-State Partnerships*, Winrock International and Commonwealth Forestry Association, Delhi.
- Banki, E.S. (1981), Dictionary of Administration and Management, System Research Institute, Los Angeles.
- Beer, D. and McDermott (1989), *Economic Value of Non-Timber Forest Products in South West Asia*, Council for the International Union of the Conservation of Nature, The Netherlands.
- Bergstrom, T. (2002), Evolution of Social Behaviour: Individual and Group Selection, *Journal of Economic Perspectives*, Vol. 16, No. 2, 67-88.
- Bhattacharya, A. K. (2001), Community Participation and Sustainable Forest Development Global Perspective, Concept Publishing Company, New Delhi.
- Bierman, H. S. and L. Fernandez (1998), *Game Theory with Economic Applications*, Pearson Education: Delhi.
- Campbell, J.Y. (1993), Changing Objectives, New Products and Management Challenges Making the Shift Major versus Minor to Many Forest Products, Paper presented at the Seminar on Forest Produce, Coimbatore.

- Cavendish, W. (1999), Poverty, Inequality and Environmental Resources: Quantitative Analysis of Rural Households, *Working Paper Series No. 99-9*, Center for the Study of African Economics, Oxford.
- Chandrasekharan, C. (1998), Role of Non-Wood Forest Products in Sustainable Forest Management, SEANN Workshop, Dehra Dun.
- Chichilnisky, G. (1994), North South Trade and the Global Environment, *American Economic Review*, Vol. 84, No. 4, 851-74.
- Clark, C. W. (1980), Restricted Access to Common-Property Fishery Resources: A Game-theoretic Analysis, in: Pan-Tai Liu, ed., *Dynamic Optimization and Mathematical Economics*, Plenum, New Work.
- Cordell, J. and M.A. McKean (1992), Sea Tenure in Bahia, Brazil, in: D.W. Bromley, ed., *Making the commons work*, ICS Press, San Francisco.
- Dasgupta, P. and G. Heal (1979), *Economic theory and exhaustible resources*, Cambridge University Press, Cambridge.
- Dayton-Johnson, J. and P. Bardhan (2002), Inequality and Conservation on the Local Commons: A Theoretical Exercise, *The Economic Journal*, Vol. 112, 577-602.
- Dutta K.K. (1940), The Santal Insurrection of 1955-1857, University of Calcutta: Calcutta.
- Duyker, E. (1987), *Tribal Guerrillas: The Santals of West Bengal and the Naxalite Movement*, Oxford University Press: Delhi.
- Fisher, M. (2004), Household welfare and forest dependence in Southern Malawi, *Environment and Development Economics*, Vol. 9, 135-154.
- Fudenberg, D. and E. Maskin (1986), The Folk Theorem in Repeated Games with Discounting or with Incomplete Information, *Econometrica*, Vol. 54, No. 3, 533-54.
- Gardner, R., E. Ostrom and J. Walker (1990), The Nature of Common-Pool Resource Problems, *Rationality and Society*, Vol. 2, 335-58.
- Gibbons, R. (1992), Game Theory for Applied Economists, Princeton University Press: New Jersey.
- GoI (1990), Report of the Expert Committee for Review of Methodology of Cost of Production of Crops, H.Rao (Ed.), Ministry of Agriculture, Government of India, New Delhi.
- Guha, R. (1989), The Unquiet Woods, Oxford University Press, Delhi.
- Gupta, T. and A. Guleria (1982), Non-Wood Forest Products in India, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- Hardin, G. (1968), The Tragedy of the Commons, Science, Vol. 162, 1243-48.
- Hanley, N., J.F.Shogren and B.White (1997): *Environmental Economics in Theory and Practice*, Macmillan: New Delhi.
- Hechter, M. (1987), Principles of Group Solidarity, Berkeley University California Press, California.
- Hirshleifer, D. and E. Rasmusen (1989), Cooperation in a Repeated Prisoners' Dilemma with Ostracism, *Journal of Economic Behavior and Organization*, Vol. 12, No. 1, 87-106.

- Jeffery, R. and N. Sundar, eds., (1999), A New Moral Economy for India's Forests? Discourses of Community Participation, Sage Publications: New Delhi.
- Jodha, N.S. (1992), Common Property Resources and Rural Poor in Dry Regions of India, *Economic and Political Weekly*, Vol. 21, 1169-1181.
- Jodha, N.S. (1986), Common Property Resources: A Missing Dimension of Development Strategies, *Discussion Paper No. 169*, The World Bank, Washington DC.
- Kadekodi, (2001), Valuation of Natural and Environmental Resources: Methodology and Estimation, *Indian Journal of Agricultural Economics*, Vol. 56, No. 3, pp. 285-311.
- Kohlin, G. and M. Ostwald (2001), Impact of Plantations on Forest Use and Forest Status in Orissa, India, *Ambio*, Vol. 30, No. 1.
- Kumar, S. (2002), Does "Participation" in Common Pool Resource Management Help the poor? A Social Cost Benefit Analysis of Joint Forest Management in Jharkhand, India, *World Development*, Vol. 30, No. 5, 763-782.
- Kumar, S., N. Saxena, Y. Alagh and K. Mitra (2000), *India: Alleviating Poverty through Forest* Development – Evaluation Country Case Study, The World Bank, Washington DC.
- Mallik, R.M. (1994), Study of Some Minor Forest Produce in Orissa: An Empirical Investigation, NCDS, Bhubaneswar.
- Mallik, R. M. (2000), Sustainable Management of Non-Timber Forest Products in Orissa: Some Issues and Options, *Indian Journal of Agricultural Economics*, Vol. 55, No. 3, pp. 385-396.
- Ostrom, E. (1990), *Governing the commons: The evolution of institutions for collective action*, Cambridge University Press, Cambridge.
- Ostrom, E., R. Gardner and J. Walker (1990), *Rules and Games: Institutions and Common-Pool Resources*, University of Michigan Press, Ana Arbor.
- Ostrom, E., J. Walker and R. Gardner (1992), Covenants With and Without a Sword: Self-Governance Is Possible, *American Political Science Review*, Vol. 86, No. 2, 404-17.
- Pattanayak, S.K. and E. O. Sills (2001), Do Tropical Forests Provide Natural Insurance: The Microeconomics of Non-timber Forest Products Collection in the Brazilian Amazon, Land Economics, Vol. 77, pp. 595-612.
- Pattanayak, S.K., E.O. Sills and R.A. Kramer (2004), Seeing the forest for the fuel, *Environment and Development Economics*, Vol. 9, 155-179.
- Poffenberger, M. (1995), The Resurgence of Community Forest Management in the Jungle Mahals of West Bengal, in: D. Arnold and R. C. Guha, eds., *Nature, Culture and Imperialism: Essays on the Environmental History of South Asia*, 336-69, Oxford University Press: Delhi.
- Ravillion, M. (2001), The Mystery of the Vanishing Benefits: An Introduction to Impact Evaluation, *The World Bank Economic Review*, Vol. 15, No. 1.

- Sarker, D. N. and N. Das (2004), Historical Relevance of Joint Forest Management Programme and the Key Element of Its Sustainability: Evidence from Western Midnapore Division of West Bengal, *International Journal of Environment and Development*, Vol. 1, No. 2, 169-91.
- Sarmah, D. and S. N. Rai (2001), Forest Resource Management in India: Role of the State and its Effectiveness, in: S.N. Chary and V. Vyasulu, eds., *Environment and Management*, 206-20, Macmillan: New Delhi.
- Scherr, S.J., A. White and D. Kaimowitz (2002), Making Markets Work for Forest Communities, *Forest Trends Policy Brief*, Washington DC.
- Sethi, R. and E. Somanathan, (1996), The Evolution of Social Norms in Common Property Resource Use, *The American Economic Review*, Vol. 86, No. 4, 766-88.
- SFR (2000), *State Forest Report*, Office of the Principal Chief Conservator of Forest, Directorate of Forest, Government of West Bengal, Kolkata.
- Somanathan, E. (1991), Deforestation, Property Rights and Incentives in Central Himalaya, *Economic and Political Weekly*, January 26, PE37-46.
- Weitzman, M.L. (1974), Free Access vs. Private Ownership as Alternative Systems for Managing Common Property, *Journal of Economic Theory*, Vol. 8, No. 2, 225-34.
- Williamson, O.E. (1985), The Economic Institutions of Capitalism: Firms, Market, Relational Contracting, Free Press, New York.
- World Bank (1995), *Towards Environmentally and Socially Sustainable Development*, Environment Department Papers, Washington, D.C.
- World Bank (1996), World Bank Participation Source Book, New Work, Oxford University Press.
- World Bank (2000), *The World Bank Forest Strategy: Striking the Right Balance*, in U. Lele, N. Kumar, S.A. Husain and L. Kelly (eds.), The World Bank, Washington, D.C.
- World Bank (2001), A Revised Forest Strategy for the World Bank Group (Draft), The World Bank, Washington DC.
- World Bank (2006), *India: Unlocking Opportunities for Forest-Dependent People*, The World Bank, Agriculture and Rural Development Sector Unit, South Asia Region, Oxford University Press: New Delhi.
- Wunder, S. (2001), Poverty Alleviation and Tropical Forests What Scope for Synergies?, World Development, Vol. 29, 1817-1833.
- Zorn, C.J.W. (1998), An Analytic and Empirical Examination of Zero-inflated and Hurdle Poisson Specifications, *Sociological Method and Research*, Vol.26, pp. 368-400.

				% of HH		Status of	f agricultural	land	Sex of FPC	% of HH	% of
Division	FPC/Village	No. of	Average	live below	Size of forest land	1	holding**		member	belongs to	illiterate
		Нн	size of HH	poverty	(ha.) protected under JFMP	Land less	Marginal	Small	Female {Male}	SC [ST]	FPC
				line*	under JFIVIP				()	category	member
1	2	3	4	5	6	7	8	9	10	11	12
Bankura	Agua	23	4.52	100	13.75	19	4	0	23{0}	100 [0]	95.24
North	Belboni	44	4.95	100	70	41	3	0	2{42}	100 [0]	86.36
Bankura	Malibona	41	4.97	95.12	70	4	35	2	41{0}	9.75[90.25]	51.22
South	Baragari	45	5.44	77.78	70	3	32	10	2{43}	2.22 [8.89]	33.33
Panchayet	Brindabanpur	56	4.80	80.36	56	29	16	11	56{0}	100 [0]	77.50
S C	Katul-2	93	5.08	84.95	180	33	46	14	3{90}	100 [0]	42.63

Table 1: Some Basic Characteristics of the Sample FPC/Village Households

* Poverty line in year 2005-06 is per capita expenditure of Rs. 393 /-

** Holding of agricultural land from 0.01 to 2.50 acres are treated as marginal, from 2.51 to 5.00 acres as small. For unirrigated land these would be doubled.

 Table 2: Annual Net Real Income (in Rs.) from All Sources of Sample Households*

			Present							Befor	re			% change		
	Category	Net retur	n from	Net retur	n from	Net ret	turn	Net retur	rn from	Net return	n from	Net re	turn	Net return	Net return	Net
FPC/ Village	of	fore	st	non-fo	orest	from	all	fore	est	non-fc	orest	from	all	from	from non-	return
	house-	sources		sources		sources		sources		sources		sources		forest	forest	from all
	holds		CV		CV		CV		CV		CV		CV	sources	source	sources
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Landless	327825.8	0.29	52747.4	1.48	380573.2	1.08	173018.4	0.36	95810.6	3.42	268829.0	2.11	89.47	- 44.95	41.56
Agua		(86.14)		(13.86)		(100.00)		(64.36)		(35.64)		(100.00)				
	Marginal	65496.0	0.38	11503.8	1.59	76999.80	1.19	42175.6	0.48	19964.2	3.96	62139.8	2.49	55.29	- 42.38	38.04
		(85.06)		(14.94)		(100.00)		(67.87)		(32.13)		(100.00)				

	Landless	766193.2	0.24	107857.9	1.16	874051.1	1.01	430512.0	0.33	243004.9	3.09	673516.9	1.90	77.97	- 55.61	29.77
Belboni		(87.66)		(12.34)		(100.00)		(63.92)		(36.08)		(100.00)				_,
	Marginal	53202.7	0.30	8776.2	1.31	61978.9	1.12	31508.2	0.44	17048.2	3.48	48556.4	2.21	68.85	- 48.52	27.64
	C	(85.84)		(14.16)		(100.00)		(64.89)		(35.11)		(100.00)				
	Landless	76308.4	0.32	8838.2	1.86	85146.6	1.30	44898.8	0.38	24049.1	3.57	68947.9	2.20	69.96	- 63.25	23.49
		(89.62)		(10.38)		(100.00)		(65.12)		(34.88)		(100.00)				
Malibona	Marginal	681299.2	0.41	91324.0	1.92	772623.2	1.39	425916.3	0.51	230551.6	3.95	656467.9	2.53	59.96	- 60.39	17.69
		(88.18)		(11.82)		(100.00)		(64.88)		(35.12)		(100.00)				
	Small	37745.8	0.83	6042.8	2.21	43788.60	1.96	26510.9	1.25	7256.4	4.12	33767.3	3.36	42.38	- 16.72	29.68
		(86.20)		(13.80)		(100.00)		(78.51)		(21.49)		(100.00)				
	Landless	51154.2	0.39	19735.8	1.66	70890.00	1.27	38831.5	0.62	21738.6	3.75	60570.1	2.54	31.73	- 9.21	17.04
		(72.16)		(27.84)		(100.00)		(64.11)		(35.89)		(100.00)				
Baragari	Marginal	574257.2	0.58	237413.8	2.12	811671.0	1.69	460344.3	0.99	258943.6	3.92	719287.9	3.02	24.74	- 8.31	12.84
		(70.75)		(29.25)		(100.00)		(64.00)		(36.00)		(100.00)				
	Small	133182.4	0.98	104388.8	2.57	237571.2	2.31	140987.2	1.67	88036.8	4.26	229024.0	3.85	- 5.53	- 18.60	3.73
		(56.06)		(43.94)		(100.00)		(61.56)		(38.44)		(100.00)				
	Landless	574140.6	0.35	132581.0	1.75	706721.6	1.25	360161.6	0.41	219808.8	3.41	579970.4	2.17	59.41	- 39.68	21.85
		(81.24)		(18.76)		(100.00)		(62.10)		(37.90)		(100.00)				
Brindabanpur	Marginal	298869.9	0.44	70515.7	1.99	369385.6	1.48	214342.2	0.83	108461.4	3.68	322803.6	2.71	43.42	- 34.98	14.43
		(80.91)		(19.09)		(100.00)		(66.40)		(33.60)		(100.00)				
	Small	166586.3	0.76	42090.1	2.57	208676.4	2.09	116871.0	1.08	48718.5	3.89	165589.5	3.09	42.54	- 13.60	26.02
		(79.83)		(20.17)		(100.00)		(70.58)		(29.42)		(100.00)				
	Landless	651273.6	0.36	132260.6	1.82	783534.2	1.31	374660.7	0.59	217875.5	3.50	592536.2	2.40	73.83	- 39.29	32.23
		(83.12)		(16.88)		(100.00)		(63.23)		(36.77)		(100.00)				
Katul-2	Marginal		0.51	178988.2	2.04	1025720.4	1.56	519358.3	0.92	276542.3	3.82	795900.6	2.88	63.03	- 35.28	28.87
		(82.55)		(17.45)		(100.00)		(65.25)		(34.75)		(100.00)				
	Small	295158.8	0.85	70498.8	2.55	365657.6	2.18	211210.5	1.14	81344.8	4.01	292553.3	3.20	39.75	- 13.33	24.99
		(80.72)		(19.28)		(100.00)		(72.20)		(27.80)		(100.00)				

* The real income is determined after deflating the money income by cost of living index (general) of agricultural labour. We consider 2005-06 as the base year.

CV = coefficient of variation.

FPC/Village	Category		eturn from					orest sources			% ch	ange		
	of		Forestry	TF	^a Ps ^a		Non-forest		Net retu	urn from fores	t sources	Net retur	n from non-forest	t sources
	households	NTFPs	wage	Total	Illegal	Farm ^b	wage ^c	Others ^d	NTFPs	Forestry wage	TFPs	Farm	Non-forest wage	Others
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Landless	58.68	14.52	11.86	11.67	0.00	8.59	5.27	198.32	76.21	- 64.50	-	- 66.11	- 48.79
A guio		(19.67)	(8.24)	(36.45)	(36.45)	(0.00)	(25.35)	(10.29)			[- 67.98]			
Agua	Marginal	58.92	13.97	11.17	10.86	5.08	4.31	5.55	159.21	68.92	-66.99	- 15.19	- 69.67	- 53.48
		(22.73)	(8.27)	(36.87)	(36.87)	(5.99)	(14.21)	(11.93)			[-70.57]			
	Landless	53.56	15.35	17.32	17.18	0.00	8.83	3.51	240.19	104.67	- 53.91	-	- 66.85	- 62.82
Belboni		(15.75)	(7.50)	(40.67)	(40.67)	(0.00)	(26.64)	(9.44)			[- 57.76]			
Delbolli	Marginal	54.54	13.34	16.96	16.34	4.72	4.55	4.89	277.47	63.08	- 57.51	- 8.70	- 75.77	- 56.18
		(14.45)	(8.18)	(42.26)	(42.26)	(5.17)	(18.78)	(11.16)			[-61.33]			
	Landless	53.61	16.34	18.46	18.58	0.00	6.80	3.58	175.47	57.72	- 44.27	-	- 71.21	- 68.21
		(19.46)	(10.36)	(35.30)	(35.30)	(0.00)	(23.62)	(11.26)			[-47.37]			
	Marginal	55.93	14.17	17.68	17.03	4.58	2.40	4.84	185.19	36.12	- 48.12	- 6.53	- 85.41	- 64.85
Malibona		(19.61)	(10.41)	(34.86)	(34.86)	(4.90)	(16.45)	(13.77)			[- 51.15]			
	Small	59.79	11.62	14.79	13.73	7.35	0.00	6.45	56.76	49.94	- 54.66	- 3.54	-	- 53.50
		(38.14)	(7.75)	(32.62)	(32.62)	(7.62)	(0.00)	(13.87)			[- 57.92]			
	Landless	17.55	8.61	45.99	44.85	0.00	18.44	9.40	21.39	29.67	6.94	-	- 17.86	- 30.06
		(14.46)	(6.64)	(43.01)	(43.01)	(0.00)	(22.45)	(13.44)			[4.28]			
	Marginal	18.36	8.51	43.17	42.81	3.88	15.50	9.87	7.57	44.97	6.86	- 4.20	- 14.84	- 28.22
Baragari		(17.07)	(5.87)	(41.06)	(41.06)	(4.05)	(18.20)	(13.75)			[4.26]			
	Small	19.45	4.77	31.84	30.70	19.48	0.00	24.46	- 4.84	51.43	- 16.14	11.00	-	- 17.09
		(20.44)	(3.15)	(37.97)	(37.97)	(17.55)	(0.00)	(20.89)			[- 19.15]			
	Landless	57.77	17.61	4.09	3.51	0.00	10.30	8.46	65.76	115.81	- 69.30	-	- 53.50	- 46.29
		(34.85)	(8.16)	(19.09)	(19.09)	(0.00)	(22.15)	(15.75)			[- 81.61]			
	Marginal	58.89	17.24	3.41	2.30	6.32	4.07	8.70	42.38	113.37	- 71.80	- 16.4	-58.72	- 46.23
Brindabanpur		(41.36)	(8.08)	(16.96)	(16.96)	(7.56)	(9.86)	(16.18)			[- 86.44]			
	Small	64.62	12.05	3.16	0.14	10.94	0.00	9.23	33.54	88.28	- 79.99	- 9.21	-	- 46.86
		(48.39)	(6.40)	(15.79)	(15.79)	(12.05)	(0.00)	(17.37)			[- 99.11]			

 Table 3: Annual Net Real Income Share (in percentage) by Sources of Sample Households

	Landless	52.77	16.47	12.45	12.75	0.00	9.60	7.28	440.73	121.97	- 69.87	-	- 59.80	- 43.52
		(9.76)	(7.42)	(46.05)	(46.05)	(0.00)	(23.88)	(12.89)			[-72.31]			
	Marginal	54.67	15.80	11.78	10.88	6.57	3.25	7.63	290.23	126.36	- 72.71	- 4.78	- 74.69	- 49.17
Katul-2	_	(14.01)	(6.98)	(44.26)	(44.26)	(6.90)	(12.84)	(15.01)			[-75.42]			
	Small	59.90	11.48	9.34	8.32	11.06	0.00	8.22	128.28	115.38	- 77.01	- 3.91	-	- 49.54
		(26.24)	(5.33)	(40.63)	(40.63)	(11.51)	(0.00)	(16.29)			[- 79.53]			

Published in Indian Economic Review (2008), Vol. 43, No. 1 (pp. 17-45), Delhi

Notes: 1. Figures within () and [] represent the value during before situation of JFM programme and percentage change of illegal timber forest products respectively;

2. a) TFPs(timber forest products) include net return from two sources – share from government' timber sale and sale of illegally collected timber; b) net return from sale of farm crops including households crops; c) non-forest wage includes farm and/or non-farm labour wage other than forest wage employment; and d) others' non-forest source includes net return from self-employment(business activities like market middle man, tailor, and radio and bike repair) and net return from sale of livestock, personal and household items etc.

FPC/ Village Present net return of forest from Before net return of forest from % change										
FPC/ Village	Present	net return of for	est from	Before	net return of for	est from		% change		
	Legal	Illegal	All sources	Legal	Illegal	All sources	Legal	Illegal	All sources	
	sources	sources		sources	sources		sources	sources		
1	2	3	4	5	6	7	8	9	10	
Agua	281848	45360	393322	136594	78600	215194	106.34	- 42.29	82.78	
	(71.66)	(11.53)	[85.96]	(63.47)	(36.52)	[65.00]				
Belboni	549153	140280	819396	273620	188400	462020	100.70	- 25.54	77.35	
	(67.02)	(17.12)	[87.54]	(59.22)	(40.78)	[63.98]				
Malibona	516157	130200	757608	306487	164278	470765	68.41	- 20.77	60.93	
	(68.13)	(17.19)	[88.32]	(65.10)	(34.90)	[64.90]				
Baragari	255426	268800	625411	293343	205833	499176	- 12.92	30.59	25.28	
_	(40.84)	(42.98)	[70.86]	(58.76)	(41.23)	[64.00]				
Brindabanpur	670515	26880	873010	469198	105306	574504	42.91	- 74.47	51.96	
_	(76.80)	(3.08)	[81.13]	(81.67)	(18.33)	[63.64]				
Katul-2	1067680	174720	1498006	491638	402381	894019	117.17	- 56.58	67.56	
	(71.27)	(11.66)	[82.80]	(54.99)	(45.01)	[64.39]				
Total \rightarrow	556796	131040	827792	328480	190808	519288	69.51	- 31.32	59.41	
	(67.13)	(15.83)	[82.51]	(63.26)	(36.74)	[64.25]				

Table 4: Annual Net Real Income (Rs.) from Forest for BPL Categories of Households

* Figures within () represent percentages out of total forest income; Figures within [] represent percentages of forest income out of total income.

Published in Indian Economic Review (2008), Vol. 43, No. 1 (pp. 17-45), Delhi

Table 5: Variation	Rs. per KG Midvalue and range ⁺			
Name of NTFPs	Collectors' price	Processing, transport and other costs	Market price	Profit *
1	2	3	4	5
Kendu leaves Sal seeds	20±5 0.75±0.50	13±4 1.50±0.70	52±4.50 4.00±0.60	19±4.50 1.75±0.60

Table 5. Variation in Price of Some Valuable NTEPs the Collectors' sell to the Agents of LAMPS

⁺ The method is suggested by Rudra (1992)

* Column 5 = [4 - (2 + 3)]

Figure 1: Payoff matrix of players

		Governme	ent's strategy \rightarrow
		SRP	СР
Community's strategy ↓	FP	(2399, 1)	(2613, 1)
	СР	(2570, 1)	(3723, 46650)

Dr. Debnarayan Sarker is Professor of Economics at the Centre for Economic Studies, Department of Economics, Presidency College, Kolkata, India.

- Mr. Nimai Das is Research Officer at the Centre for Studies in Social Sciences, Calcutta (CSSSC), India.
- Address: Centre for Economic Studies, Department of Economics, Presidency College, 86/1 College Street, Kolkata - 700073, India.

Centre for Studies in Social Sciences, Calcutta (CSSSC), R-1 Baishnabghata Patuli Township, Kolkata - 700094, India.

[Email: sarkar_d_n@rediffmail.com, nimai_econ@rediffmail.com]