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Abstract

A semi-analytical parametric approach to modeling default dependency is presented. It is
a multi-factor model based on instantaneous default correlation that also takes into account
higher order default correlations. It is capable of accommodating a term structure of default
correlations and has a dynamic formulation in the form of a continuous time Markov chain. With
two factors and a constant hazard rate, it provides perfect fits to four tranches of CDX.NA.IG
and iTraxx Europe CDOs of 5, 7 and 10 year maturities. With time dependent hazard rates, it
provides perfect fits to all the five tranches for all three maturities.

Credit derivatives market has grown rapidly in recent years in response to the growing need for
transferring and hedging credit risk. Growing innovations in this market has made understanding
these products more urgent than ever. Various models have been developed to understand the
role of default correlation on the prices of such products referencing a portfolio of underlying
assets. A method for pricing these correlation products that has become standard is based on the
Gaussian copula. There are some well known shortcomings in this approach. It deals effectively
with default time correlation rather than default correlation itself. There is no straightforward
way to accommodate correlation term structures. The correlation smile implied from the market is
quite significant, an indication that the method is inadequate to price nonstandard products. These
and other issues have been discussed by various authors, for instance by Finger [2004], Friend and
Rogge [2004], Gregory and Laurent [2004], Hager and Schöbel [2005]. Better models addressing
these issues have also been developed. Some recent work in this direction involves implying the
copulas by Hull and White [2006], modeling the distance to default variables as in Albanese, Chen
and DAlessandro [2005], Baxter [2006], modeling the default intensities as in Joshi and Stacey
[2005], Chapovsky, Rennie and Tavares [2006], Errais, Giesecke and Goldberg [2006], and modeling
the loss distributions as in Bennani [2005], Sidenius, Piterbarg and Andersen [2005], Schönbucher
[2005], Brigo, Pallavicini and Torresetti [2006].

Here in this article, a semi-analytical parametric multi-factor model for pricing such correlation
products is discussed incorporating default correlation rather than default time correlation. Being
based on instantaneous default correlation, it is capable of handling correlation term structures in
addition to a term structure of default probabilities. It also takes into account higher order default
correlations in terms of a parameter that could explain clustering tendency of credit defaults. It
has a dynamic formulation in the form of a continuous time Markov chain that has the potential
to be useful for further development.

It is based on conditional independence of defaults at differing times. That is, if a credit name
has survived an instant, an event at that instant does not have any further influence on the credit
name. All defaults associated with an event would occur instantaneously at the same instant as
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that of the event. Simultaneous defaults have been discussed before, see for instance Duffie and
Singleton [1999]. It is a characteristic feature of the so called shock models based on Marshall-
Olkin copula that have been in use in reliability theories. Here we present a self-contained, a more
convenient and an instantaneous approach to modeling such default dependencies, attempting to
extract its power by formulating it in a parametric setting. A semi-analytical representation of the
default probability distribution for a homogeneous collection of credit names lets us price CDOs
accurately and efficiently using arbitrary precision arithmetic. A two factor model with four free
parameters and a constant hazard rate is used to provide perfect fits to the four non-equity tranches
of CDX.NA.IG and iTraxx Europe CDOs of 5, 7 and 10 year maturities. Allowing for time varying
hazard rates obtains perfect fits to all the five tranches of both CDX.NA.IG and iTraxx Europe
CDOs for all three maturities. These fits could be useful for hedging purposes and pricing non-
standard instruments.

First, some results are derived in section 1 for the intermediate objects involved in this approach,
followed by a factor based approach to motivating and building the model in a multi-factor setting
for a general collection of credit names. Section 2 discusses the multi-factor model for homogeneous
credit names, specializes to two factors, and provides fits to CDX.NA.IG and iTraxx Europe CDO
tranches. Section 3 discusses a dynamic formulation of the model in terms of a continuous time
Markov chain. Section 5 discusses a scaled correlation model potentially applicable for heavily
correlated collections with non-uniform hazard rates. Section 6 concludes with some remarks.

1 Modeling Simultaneous Defaults

Let us first derive some results that follow from the assumption of conditional independence of
defaults at differing times. Consider n credit names, i = 1, ..., n, with default times τi’s and hazard
rates λi(t)’s. Let

Q(t1, ..., tn) = Prob(τ1 > t1, ..., τn > tn) (1)

be the joint survival probability up to times t1, ..., tn. As assumed, given that credit names i and
j have survived up to times ti and tj respectively, ti 6= tj , their respective defaults at ti and tj are
independent of each other. Under this assumption, Q can be expressed as

LnQ(t1, ..., tn) = −
n
∑

i=1

∫ t(i)

t(i−1)

dt π(i)...(n)(t), (2)

where t(i)’s are ordered times, 0 = t(0) ≤ t(1) ≤ ... ≤ t(n), and (i) refers to the credit name

associated with the ith ordered time. πij...(t)dt is the conditional probability that at least one of
the names in the list {i, j, ...} defaults during the interval (t, t + dt) (unlisted names are not looked
at). Note that 1 − πij...(t)dt is the conditional probability that the listed names do not default
during (t, t + dt) (unlisted names are not looked at). Hence, under our assumption of conditional
independence of defaults at differing times, the above expression for Q can be obtained by building
it up infinitesimally from t = 0 to tn as a product of terms of the form 1 − π(i)...(n)(t)dt. It can
also be derived directly from our assumption as detailed in appendix A. It turns out this joint
survival probability in fact corresponds to the multi-variate version of the Marshall-Olkin copula
in a convenient representation and generalized to time dependent conditional probability densities.
For a discussion of such shock models as applied to credit risk, see Duffie and Singleton [1999],
Elouerkhaoui [2003], Lindskog and McNeil [2003].

The π density is related to pij...(t)dt, the conditional probability that all the listed names default
during (t, t + dt) (unlisted names are not looked at). First three of these relations are

πi(t) = pi(t) = λi(t),
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πij(t) = pi(t) + pj(t) − pij(t),

πijk(t) = pi(t) + pj(t) + pk(t) − pij(t) − pik(t) − pjk(t) + pijk(t). (3)

Remaining relations can analogously be written down. The two-point default probability density
lets us express the instantaneous correlation ρij(t) between credit names i and j as

ρij(t) =
pijdt − (pidt)(pjdt)

√

pidt(1 − pidt)pjdt(1 − pjdt)
≈ pij(t)
√

λi(t)λj(t)
. (4)

If say λi(t) ≤ λj(t), ρij(t) has an upper bound of
√

λi(t)/λj(t). This is because pij(t)/λi(t),

conditional probability of finding credit name j defaulted during (t, t + dt) knowing that i has

defaulted, should not exceed unity. Note that ρij(t) can be interpreted as
√

λi(t)/λj(t) times that

probability. Negative correlations are not supported.
Given the joint survival probability, we can get the joint survival and default probability Pij....

This is the probability that the names listed in {i, j, ...} default before their times, that is τi <
ti, τj < tj , ..., while the others survive up to their times. Probability that no names default before
their times is of course given by Q itself. The others are related to Q as

Pi(t1, ..., tn) = Qi − Q,

Pij(t1, ..., tn) = Qij − Qi − Qj + Q,

Pijk(t1, ..., tn) = Qijk − Qij − Qik − Qjk + Qi + Qj + Qk − Q. (5)

Remaining relations can analogously be written down. Qij... is obtained from Q(t1, ..., tn) by setting
ti, tj , ... to zero for the names in the list {i, j, ...}. The dependence of Qij...’s on the remaining times
is not shown for simplicity. If those times are all the same, say t, then we have from (2)

LnQij...(t) = −
∫ t

0
ds π6=ij...(s), (6)

where {6= i, j, ...} lists out the names not in {i, j, ...}. For a homogeneous collection of credit names,
equation (5) for the probability Pij... having ν names in the list {i, j, ...} gets simplified to

P[ν] =
ν
∑

k=0

(−1)k (ν
k) Q[ν−k] =

ν
∑

k=0

(−1)k (ν
k) exp

(

−
∫ t

0
ds π[n−ν+k](s)

)

, (7)

where only the number of names are shown as subscripts. When concerned with just the number
of defaults, this should be multiplied by the number of combinations of ν out of n credit names.

Thus, in general, if we have a model or some prescription for determining pij...(t)’s, we can use
them in (3) to determine πij...(t)’s that can be used in (6) to determine Qij...(t)’s which in turn can
be used in (5) to determine Pij...(t)’s. Pij...(t)’s are useful in pricing multi-name credit products.
For instance, for a νthto default credit product, we need to know the probability that less than ν
names have defaulted before t. This is given by

Q +
∑

i

Pi +
∑

ij

Pij +
∑

ijk

Pijk + ... +
∑

ijk...

Pijk..., (8)

where the summations are over all combinations of names and the last term has ν−1 names listed.
Being a sum of exponentials, this can be handled using one-name CDS expressions as detailed in
Appendix B for a homogeneous collection.
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Let us now introduce a parametric model for dependent defaults. As a motivation, let us assume
that the collective dynamics is governed by m event types called factor names, that are independent
of each other capable of generating events potentially causing joint defaults. Because joint arrivals
of such independent events during an infinitesimal interval (t, t+dt) have probabilities of order(dt)2

or higher, they would be treated individually.
Let as assume for the moment that a credit default during (t, t+ dt) implies that a factor name

has generated an event during that interval. Let ζr(t)dt be the conditional probability that factor
name r generates an event during (t, t+ dt). Let γir(t) be the conditional probability of finding ith
credit name defaulted knowing that factor name r has generated an event during (t, t + dt). This
suggests that λi(t)dt gets a contribution γir(t)ζr(t)dt from the rth factor name. Adding up similar
contributions from other factor names, we get1

λi(t) = λi(t) +
m
∑

r=1

γir(t)ζr(t), (9)

where an additional contribution λi(t) is included, coming from relaxing our assumption that a
credit default implies that a factor name has generated an event. All name-specific contributions
to λi(t) are expected to be included in λi(t). Under the assumption that credit names are condi-
tionally independent given that an event of certain type has arrived, we can express the conditional
probability density of joint defaults during (t, t + dt) as

pij...(t) =
m
∑

r=1

(γir(t)γjr(t)...)ζr(t). (10)

There are no additional terms here, since name-specific contributions to joint defaults during (t, t+
dt) are of order(dt)2 or higher, and all order(dt) contributions are expected to be taken care of
by a sufficient number of factor names. With these pij...(t)’s, one could sum up the terms in the
expansion of πij...(t) in (3) to obtain

πij...(t) =
∑

k

λk(t) +
m
∑

r=1

ζr(t)

[

1 −
∏

k

(1 − γkr(t))

]

, (11)

where k runs over only those credit names that are in the subscripted list {i, j, ...}. This can also
be obtained directly by noting that the first term is the contribution from name-specific issues and
the term under square brackets is the probability that at least one of the names defaults during
(t, t + dt) given that an event of type r has arrived.

If λi(t)’s are inputs to the model, equation (9) can be used to imply λi(t). Because λi(t)’s can
not be negative, it places a constraint on the parameters γ’s and ζ’s. As for the instantaneous
correlation ρij(t) between credit names i and j discussed earlier, we have

ρij(t)
√

λi(t)λj(t) =
m
∑

r=1

γir(t)γjr(t)ζr(t). (12)

These correlations could be treated as inputs to the model constraining the parameters γ’s and ζ’s
further, or this equation could be considered simply as defining implied correlations.

1Such a break up of the hazard rate has been considered before by various authors, as in, for example, Duffie and
Singleton [1999], Duffie and Garleanu [2001].
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2 Homogeneous Credit Names

The above formalism simplifies in the case of a homogeneous collection of credit names. Dropping
the credit name subscripts but retaining those for the factor names, equations (9) and (12) read

λ(t) = λ(t) +
m
∑

r=1

γr(t)ζr(t),

ρ(t)λ(t) =
m
∑

r=1

γr(t)
2ζr(t). (13)

For the higher order conditional probability densities, we have2

pij...(t) =
m
∑

r=1

γr(t)
νζr(t), (14)

where ν is the number of names listed in {i, j, ...}. Equation (11) for the π-densities simplfies to

πij...(t) = νλ(t) +
m
∑

r=1

ζr(t) [1 − (1 − γr(t))
ν ]. (15)

As noted earlier, these can be used (7) to determine the joint default probability distribution useful
in pricing multi-name credit products. It is also useful to introduce γ(t) through the definition

γ(t) =

∑m
r=1 γr(t)

2ζr(t)
∑m

r=1 γr(t)ζr(t)
. (16)

Note that the numerator above is ρ(t)λ(t) and the denominator is λ(t) − λ(t). Because λ(t) can
not be negative this implies ρ(t) ≤ γ(t) ≤ 1.

The conditional probability χν(t) for ν ≥ 3 of finding an additional credit name defaulted during
(t, t + dt) knowing that ν − 1 of them have defaulted during that interval is

χν(t) =

∑m
r=1 γr(t)

νζr(t)
∑m

r=1 γr(t)ν−1ζr(t)
. (17)

This could be referred to as default cluster coupling and could explain the clustering tendency of
credit defaults known as default contagion. It is related to higher order correlations present in the
model, namely the instantaneous correlation between a credit name and a cluster of ν−1 names. It
is expected to increase with the number of credit names in the cluster. This is not the case with the
one-factor model, but naturally holds in multi-factor models. One can prove that χν(t) ≥ χν−1(t),
with the equality holding only when nonzero γr(t)’s, r = 1, ...,m, are all the same, in which case
the model effectively reduces to one-factor. The largest value χν(t) takes is χn(t) for the n−name
cluster, which itself has an upper bound given by the largest of γr(t), r = 1, ...,m, as can be seen
by taking n → ∞. The smallest χν(t) is χ3(t) for a 3−name cluster, that has a lower bound given
by γ(t). Because γ(t) ≥ ρ(t), cluster coupling is never less than ρ(t), the probability of a second
default knowing the first. An explanation is, two or more defaults during the same infinitesimal
interval (t, t + dt) (in reality, during a short period) is an indication that common factors, rather

2It is interesting to observe here that this multi-factor expansion of the conditional probability densities is math-
ematically natural being just an expansion in simple poles along the positive real line in the complex z−plane of the
generating function

∑

∞

ν=1
p[ν]z

ν−1 where p[ν] = pij... and ν is the number of names listed in {i, j, ...}.
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than name-specific issues, are more likely to be the causes. In our terminology, factor names, rather
than λ(t)’s, are likely to be causing the defaults. However, such contagious features as jumps in
hazard rates are not apparent in these types of models because all clustering of defaults takes place
instantaneously. Information driven default contagion exhibiting such features has been discussed
before in Giesecke [2001] and Schönbucher [2003] in different contexts. For alternate mechanisms,
see Davis and Violet [2000] and Jarrow and Yu [2000].

Apart from λ(t), there are 2m parameters in the model, γr(t) and ζr(t), r = 1, ...,m, to be
determined empirically. It is illustrative to use the parameterization ρ, γr, r = 1, ...,m and θs, s =
1, ...,m − 1 such that

ζr<m =
ρλ

γ2
r

cos2θr

r−1
∏

s=1

sin2θs, ζm =
ρλ

γ2
m

m−1
∏

s=1

sin2θs. (18)

Note that
√

ρλ is the magnitude and θs’s are the angles of a m−dimensional vector with components
γr

√
ζr, r = 1, ...,m. During calibration of the model at the computation level, it is convenient use

x0 and xr’s, along with θs’s, related to the model parameters via the relations ρ = γx0 and
γr = x1x2...xr with the box constraints

0 ≤ xr ≤ 1, r = 0, ...,m, 0 ≤ θs ≤
π

2
, s = 1, ...,m − 1. (19)

In particular, for the two factor model, it is convenient use x0, x1, x2 and θ such that ρ = γx0,
γ1 = x1, γ2 = x1x2, and

ζ1 =
ρλ

γ2
1

cos2θ, ζ2 =
ρλ

γ2
2

sin2θ,
1

γ
=

1

γ1
cos2θ +

1

γ2
sin2θ. (20)

Note that γ1 ≥ γ ≥ γ2. Hence γ1 is the upper bound on the cluster coupling discussed earlier.
Angle θ determines the contribution of the second factor. It also controls the distribution of cluster
coupling over cluster sizes from three to n, that decreases as θ increases from a uniform γ1 for θ = 0
to a uniform γ2 for θ = π/2. For θ 6= 0, π/2, the intermediate distribution increases with cluster
size from γ1cos2θ+γ2sin

2θ for a 3−name cluster to its limiting value γ1 for a large n−name cluster.
Computations are done using equation (7). This involves summing up a lot of exponentials

with alternating signs that requires great care to ensure that significance is not lost due to machine
limitations. In fact, using the popular computers, it is difficult to go beyond the equity tranche.
It is safer to use arbitrary precision arithmetic to get to the remaining ones. Arbitrary precision
software is readily available and their use lets us price CDOs efficiently. Simplified results for
homogeneous names useful in the computations are presented in Appendix B.

A one-factor model does not suffice to provide a good fit to more than two of the CDO tranches.
Apart from λ(t), it has two parameters, ρ(t) and γ(t), and can provide a fit to two of the tranches.
It is not able to capture the market perceptions when pricing more than two tranches, perhaps
because the tranches are sensitive to a richer correlation structure. Obviously more than two
parameters are needed and these are supplied by multi-factor models, in particular a two-factor
model chosen for the following analysis.

Table 1 presents the results for the four non-equity tranches of CDX.NA.IG and iTraxx Europe
CDOs, assuming homogeneous names and constant parameter values. Because there are four
parameters in the two-factor model, λ being determined by the index spread, one would expect to
get a perfect fit to four of the tranches. This is indeed found to be the case with all the maturities
studied: 5, 7 and 10 year. It is nontrivial that a model can provide such perfect fits within its
constraints. Besides, the values obtained for the parameters are consistent with their roles.
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There are however significant differences with the predicted upfront fees for the equity tranches.
The discrepancies become severe as we go to higher maturities. Going to three factors does not
appear to provide much improvement. Other choices for the recovery rate give different parameter
values, but don’t seem to affect the quality of the fits. The origin of the discrepancies lies in
our assumption of a constant hazard rate. An increasing index spread term structure suggests an
increasing time dependence for the hazard rate. A constant hazard rate makes defaults more likely
at earlier times than as indicated by the index spreads. An increasing time dependence for the
hazard rate should give better prices for the equity tranches.

Table 2 presents the results assuming a log-linear time-dependence for the hazard rate, λ(t) =
λ(0)exp(κλt) and the same time dependence for ζr(t)’s maintaining their proportionality to λ(t)
according to (20). For ease of computations, the hazard rate is discretized to be piecewise constant
annually with λ(0) the first year multiplied by exp(κλ) year to year. The presence of an additional
parameter κλ enables us to calibrate the model to all the five tranches. Supporting our observations
above, the model gets calibrated perfectly to all the five tranches, for both CDX.NA.IG and iTraxx
Europe CDOs and for all three maturities. Of course, a log-linear hazard rate is not expected to
realistically describe the term structure of index spreads. Its purpose here is just to identify an
effective hazard rate time dependence that consistently prices the CDO tranches along with the
index CDS of the same maturity. When the hazard rate term structure is exogenously supplied,
an additional free parameter is not available for calibration. Under such circumstances, it may not
be possible to get a perfect fit, but an acceptable best fit could still be possible.

The model is in principle capable of handling a term structure of default probabilities and default
correlations. However, implying such term structures from the market data can be a challenging
task, and it would be too ambitious to look for a well-behaved perfect fit calibrated simultaneously
to all the maturities. One may look for a best fit assuming a continuous hazard rate term structure
that is log-linear in-between maturities, and term structures for the other parameters that are
piecewise constants, so that only the first maturity log-linear coefficient κλ is additionally available
for calibration. An attempt in this direction, though successful, resulted in significant discrepancies,
perhaps suggesting that it is important to include bid-ask spreads during calibration or have a more
flexible model of the term structure of hazard rates.

Figure 1 shows the joint default probability distribution as a function of the number of defaults
over a time period of 5, 7 and 10 years using the model parameters from Table 2 calibrated to
iTraxx Europe CDOs of the corresponding maturities. The distribution has a large body of mass
contributing mainly to the first few tranches. As we go to higher maturities, this body of mass
moves to the right contributing more and more to the remaining tranches. The shape of this mass
is largely determined by the term structure of hazard rates. For low maturities such as 5 year,
it affects mainly the equity tranche. This explains why we are able to get realistic values for the
model parameters assuming a constant hazard rate and calibrating to only the non-equity tranches,
and why the discrepancies get larger as we go to higher maturities.

An important feature of the default probability distribution is its long tail. To get a better
understanding of the distribution along the tail, a logarithmic plot is presented in Figure 2. It
exhibits an unusual bumpy distribution that has a direct impact on the prices of the non-equity
tranches. Such bumpy tail distributions have also been encountered by other researchers in the
field before. The bumpy feature appears to be more pronounced for smaller maturities. As can be
noted from Figure 3, it is also dependent on the number of credit names, becoming visible for a few
tens or so credit names and getting more bumpy as their number increases. These characteristics
can be analytically understood as in Appendix C.

It has not become necessary for us to interpret the factors making up the multi-factor model,
but it is appealing to do so as others have realized before. The first factor name could be identified
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with the economy and the second one with the industry. The implied parameters are consistent
with this interpretation. The first factor name couples more strongly to the credit names compared
to the second factor name, at the same time being less likely to generate default causing events.
The implied default correlations turn out to be somewhat larger compared to the historical default
correlations as expected in a risk neutral world.

3 Markov Chain Formulation

There is another approach to the model that has the potential to be useful for further development.
Our approach so far could be termed static as it involves working with the joint survival probability
distribution describing the default environment for all times. It turns out that there is an alternate
formulation that could be termed dynamic being capable of accommodating additional features
such as stochasticity of parameters. Let x(t) be a column vector representing the state of the
system at time t, evolving according to

dxT (t)

dt
= −xT (t)G(t), (21)

where a superscript T denotes transpose and the matrix −G(t) is the generator of this continuous
time Markov chain3. The entries of x(t) are the probabilities that the system will be found in their
associated states at time t. Because these probabilities should add up to one, we require xT (t)v = 1
where v is a column vector containing ones for all its entries. Besides, these probabilities should
remain non-negative at all times. These requirements are ensured by the constraints G(t)v = 0 and
that the diagonal elements of G(t) are non-negative and the off-diagonal elements non-positive. The
above linear system could in general involve a time-dependent G(t), but we would be concerned
with time-independence, or utmost a time dependence such that G(t)’s commute among themselves
for different t’s, that is G(s)G(t) = G(t)G(s) for any two times s and t. Then (21) solves to

xT (t) = xT (0)e−
∫ t

0
dsG(s), (22)

where the column vector x(0), representing the state of the system at time zero, contains the
probabilities that the system starts off in various states.

To start with, consider a two-state system for one credit name with u = (1, 0)T representing
the undefaulted and d = (0, 1)T representing the defaulted states, and with

G(t) = λ(t)A, A =

(

1 −1
0 0

)

. (23)

Note that v is a right eigenvector of A with zero eigenvalue. Another right eigenvector is u with
eigenvalue one. If we are interested in the probability that the system is in the defaulted state d
at time t, we can express d in terms of v and u as d = v − u to determine that probability,

xT (t)d = xT (0)e−
∫ t

0
dsλ(s)A(v − u) = xT (0)

(

v − e−
∫ t

0
dsλ(s)u

)

= 1 − e−
∫ t

0
dsλ(s)xT (0)u. (24)

That is, if the credit name started off at time zero in the undefaulted state with x(0) = u, it would

end up in the defaulted state at time t with probability 1 − exp
(

−
∫ t
0 dsλ(s)

)

.

3Markov chains have been used in credit risk modeling. See Jarrow, Lando and Turnbull [1997] and more recently
Schönbucher [2005], Albanese, Chen and DAlessandro [2005], Di Graziano and Rogers [2005].
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This approach can be extended to a collection of n credit names, the state space of which is a
tensor product of individual state spaces spanned by

⊗n
i=1(ui or di), (25)

where ui and di represent respectively the ith individual undefaulted and defaulted states. For the
vector v in the collective state space with ones for all its entries, we have v = ⊗n

i=1vi. Motivated
by our results in the previous sections, in particular equation (11), we set

G(t) =
n
∑

i=1

λi(t)Ai +
m
∑

r=1

ζr(t)

[

1 −
n
∏

i=1

(1 − γir(t)Ai)

]

. (26)

Here Ai acts as A on the ith individual state space and as identity on all others. It is easily checked
that G(t)v = 0. For the parameter constraints discussed earlier, it can be verified that the diagonal
and the off-diagonal requirements on G(t) are also satisfied. Eigenvalues of G(t) are given by πij...(t)
as expressed in (11) with the right eigenvector as a tensor product of u’s for each of the names in
the list {i, j, ...} and v’s for the rest of the names. The probability that credit names, say 1, 2, ..., ν,
are in the defaulted state at time t and the rest are not is given by

xT (t) [⊗ν
r=1dr]

[

⊗n
r=ν+1ur

]

= xT (0)e−
∫ t

0
dsG(s) [⊗ν

r=1(vr − ur)]
[

⊗n
r=ν+1ur

]

. (27)

This can be evaluated by expanding the product containing (v − u)’s. Because each state vector
in the expansion is a right eigenvector of G(t), the result is a sum of exponentials. For a collection
with all the names starting off as undefaulted, this result agrees with our earlier result of equation
(5). For a homogeneous collection of credit names, one finds for this probability

P[ν] =
ν
∑

r=0

(−1)r (ν
r ) pn−ν+rQ[ν−r], (28)

where P and Q are as defined earlier, but with only the number of names as subscripts. Each credit
name is assumed to have started off at time zero in the undefaulted state with probability p. For
p = 1, this result agrees with equation (7). When concerned with only the number of defaults, it
should be multiplied by the number of combinations of ν out of n credit names.

To appreciate the usefulness of this approach, let us allow for some probability that the defaulted
state can recover to become undefaulted, with

A =

(

1 − ǫ −1 + ǫ
−ǫ ǫ

)

. (29)

Note that v is still a right eigenvector of A with eigenvalue zero. The other right eigenvector is
w = (1 − ǫ,−ǫ)T with eigenvalue one. In terms of these, u and d can be expressed as

u = ǫv + w, d = (1 − ǫ)v − w. (30)

For the probability that given ν names in a homogeneous collection are in the defaulted state at
time t and the rest are not, we find

P[ν] =
ν
∑

r=0

n−ν
∑

s=0

(−1)r (ν
r )
(

n−ν
s

)

(1 − ǫ)ν−rǫn−ν−s(p − ǫ)r+sQ[n−r−s], (31)
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where again each credit name is assumed to have started off at time zero in the undefaulted state
with probability p. It is not straightforward to obtain this result from our earlier approach.

Given a homogeneous collection at time t with ν names defaulted, the probability of additional
k names defaulting during (t, t + dt) is

[

1 − (n − ν)λdt −
m
∑

r=1

ζrdt

]

δk0 +
[

(n − ν)λdt
]

δk1 +
(

n−ν
k

)

m
∑

r=1

ζrγ
k
r (1 − γr)

n−ν−kdt, (32)

where 0 ≤ k ≤ n−ν and the parameters could in general be time dependent. This perhaps obvious
result can be obtained from a Markov chain representation of the model discussed above. These
transition probabilities, from ν defaults at time t to ν + k defaults at time t + dt, can be used to
simulate default paths from time zero onwards. Average of prices computed for these default paths
gives the desired price as an alternative to the sem-analytical approach. One can also derive an
evolution equation for the joint default probability from these transition probabilities,

dP{ν}

dt
= −

[

(n − ν)λ +
m
∑

r=1

ζr

]

P{ν} +(n− ν +1)λP{ν−1} +
m
∑

r=1

ζr(1 − γr)
n−ν

ν
∑

k=0

(

n−ν+k
k

)

γk
r P{ν−k},

(33)
where P{ν} is the probability that ν names are in the defaulted state at time t summed over all
combinations of ν out of n credit names. This equation is also in the form of a continuous time
Markov chain as can easily be verified.

For a general collection of credit names, a recursion relation can be derived from the expression
for G(t) to obtain the probability that any ν credit names are in the defaulted state at time t and
the rest are not. Considering the cases where, say, the nth credit name is in the un or dn = vn −un

states, we get

P{ν,n}(λ, ζ) = P{ν−1,n−1}(λ, ζ) + e−
∫ t

0
dsλn(s)

[

P{ν,n−1}(λ, ζ ′) − P{ν−1,n−1}(λ, ζ ′)
]

, (34)

where a subscript {ν, n} denotes sum of all combinations of ν out of n credit names, λn in the
exponential is to be expressed in terms of λn and ζr’s, and

ζ ′r = ζr (1 − γnr) . (35)

The recursion relation can be used to update the default probability distribution recursively, adding
the credit names one by one to the collection. With the appropriate boundary conditions, for
instance P{0,0} = 1, P{ν,n} = 0 for ν < 0 and ν > n, and continuing through the recursion, all
the credit names can be taken care of to yield the desired probability. These recursive procedures
are computationally intensive and are expected to be useful for a small number of credit names, or
when a few hazard rates are either all smaller or larger in an otherwise homogeneous collection of
credit names.

Though we have confined ourselves to two-state systems for each of the credit names, the
approach is extendable to a collection of credit names with more than two states for each, such as
a collection of credit names with different ratings, to obtain probability distributions at time t for
defaulted states or states under various ratings. The expressions for G could be generalized further
by introducing new matrices to replace Ai in γirAi, or perhaps γirAi itself, but this is expected to
make the analysis much more complicated.
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4 Instantaneous Correlation Matrix

The model in general contains a large number of parameters. They are however necessary to
account for a rich structure of default correlations. Note that equation (12) for ρij(t) specifies
only off-diagonal elements to a matrix of correlations. To make it complete, one could introduce
diagonal elements ρi(t) by

ρi(t)λi(t) =
m
∑

r=1

γir(t)
2ζr(t). (36)

Together with ρij(t)
√

λi(t)λj(t)’s, these form a symmetric matrix Σ, referred to in the following

as the correlation matrix. An n × m matrix Γ can be formed with Γir(t) = γir(t)
√

ζr(t), so that
we can write (12) in matrix notation as Σ = ΓΓT where a superscript T denotes transpose. Thus,
given a general set of γ and ζ parameters, Σ is of rank m or n whichever is smaller. In order to
generate correlations that can form a matrix of rank not less than r, one would need a multi-factor
model with at least as many factors as r. The equation Σ = ΓΓT relates a subset of the parameters
to Σ. Others play a role in higher order correlations.

The matrix relation Σ = ΓΓT implies that the model generates an instantaneous correlation
matrix that is completely positive. A completely positive matrix is one that can be decomposed
as ΓΓT where Γ is (entry-wise) non-negative. Consequently, it is both positive semidefinite and
non-negative (called doubly non-negative). Characterizing a given matrix so that it is completely
positive is an open problem in matrix theory. It is known however that diagonal dominance is
sufficient for a non-negative symmetric matrix to become completely positive. Thus, an instanta-
neous correlation matrix, if supplied, can be diagonally completed to become completely positive.
But not all diagonally completed completely positive Σ’s are acceptable to the model as correlation
matrices. In order that the implied λ(t)’s can be non-negative, the matrix Γ should obey

m
∑

r=1

Γir(t)Maxk(Γkr(t)) =
m
∑

r=1

γir(t)ζr(t)Maxk(γkr(t)) ≤
m
∑

r=1

γir(t)ζr(t) ≤ λi(t), (37)

where, for each r, Maxk(Γkr) is the largest of Γkr, k = 1, ..., n. Because a non-negative Γ solving
Σ = ΓΓT is in general not unique, Γ itself should be made available to the model when Σ is supplied.

Instantaneous correlations are subject to certain constraints as a consequence of (37) besides
being part of a completely positive matrix. One of them is an upper bound on ρij inferred earlier
from the requirement on the conditional two-point joint default probability density, pij ≤ λi. In
general, the requirement on a higher order conditional joint default probability density is pijk... ≤
pij... where the later list {i, j, ...} is a subset of the former {i, j, k, ..}. Analogous requirement holds
for the dual density, πijk... ≥ πij..., since having another name in the list can not decrease the
probability of at least one name defaulting. For three-point joint defaults, πijk ≥ πij implies

pij ≥ pijk ≥ pik + pjk − pk,

or pi + pj − 2pij ≤ (pi + pk − 2pik) + (pj + pk − 2pjk). (38)

This is the triangle inequality for a distance measure dij between names i and j given by

dij = pi + pj − 2pij = λi + λj − 2ρij

√

λiλj . (39)

Equality holds only when pij = pijk. Credit name k is then maximally correlated with the two-
name cluster {i, j} and the three names i, j, k can be said to be collinear. Because ρij can take
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values from zero to
√

λi/λj when λi ≤ λj , dij takes values from |λi − λj | to λi + λj . This distance

measure is also derivable from (37) because of

Σik + Σjk − Σij =
m
∑

r=1

[gkr − girgjr(1 − gkr) − (1 − gir)(1 − gjr)gkr] zr ≤
m
∑

r=1

gkrzr, (40)

where zr = (Maxk(Γkr))
2 and gir = Γir/

√
zr ≤ 1. Using (37) and identifying Σij with pij , this

relation can be rearranged to obtain the triangle inequality.
The distance measure (39) is a special case of a distance measure PA +PB − 2PAB between two

binomial events A and B where PA and PB are probabilities of A and B respectively and PAB is
their joint probability. We could define other distance measures for credit names making use of,
for instance, default probability densities of i and j given that some other names have defaulted.
A distance measure that has the familiar look is the distance between two “vectors” of lengths

√
λi

and
√

λj with ρij as the cosine of the angle between them. This is the square root of dij that does
satisfy the triangle inequality because of dij but the triangle inequality for dij is stronger. However,
dij is not a good distance measure for determining a correlated neighborhood to a credit name
when there are significant variations in the hazard rates, since it is not just the correlations that
define it but the hazard rates as well.

5 A Scaled Correlation Model

A simple generalization of the homogeneous model to heterogeneity is to allow for non-uniform haz-
ard rates but to keep the γ parameters uniform accross all credit names, so that the instantaneous
default correlations are

ρij(t) =
1

√

λi(t)λj(t)

m
∑

r=1

γr(t)
2ζr(t). (41)

These form part of a rank one matrix. However, in this framework, ρij can not reach its upper bound
discussed earlier unless one of the names i or j has the lowest hazard rate. Hence this approach
could run into trouble for collections with widely varying hazard rates and relatively large default
correlations. A maximally correlated collection of credit names could be the limiting case of a
suitably defined uniform correlation structure, but one would need n factor names to model even
such a simple setup because differing hazard rates would result in a correlation matrix of rank n.
An upper bound on the correlations suggests a coupling of the two aspects of heterogeneity, namely,
non-uniform hazard rates and a non-uniform structure of default correlations. Let us discuss here
one possible approach addressing the issue of non-uniform hazard rates by decoupling them from
the correlations. This could be applicable, for instance, to collection of directly dependent credit
names forming a chain of supplier-consumer dependency. With the credit names ordered according
to λ1(t) ≤ λ2(t)... ≤ λn(t), let us rewrite the correlations as

ρij(t)
√

λi(t)λj(t) = λi(t)ρ
′
ij(t), i < j, (42)

so that the scaled correlations ρ′ij(t) can take values from zero to one. Now consider n × m factor
names, a cross product of two sets, the first responsible for the hazard rate structure and the second
for the correlations. With a = 1, ..., n and r = 1, ...,m together labeling the factor names, let

γir(t) → γiar(t) = γir(t) for a ≤ i, 0 for a > i,

ζr(t) → ζar(t) = (λa(t) − λa−1(t))ζr(t), (43)
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with λ0(t) = 0. This makes ζ’s “dimensionless”. In this setup, the equations for the first two
conditional probability densities read

λi(t) = λi(t) + λi(t)
m
∑

r=1

γir(t)ζr(t),

ρ′ij(t) =
m
∑

r=1

γir(t)γjr(t)ζr(t). (44)

Hazard rates are now decoupled from the scaled correlations as expected. For the higher order
conditional probability densities, we get

pij...(t) = λi(t)
m
∑

r=1

(γir(t)γjr(t)...) ζr(t), i < {j, ...}. (45)

The π-densities in equation (11) can now be expressed as

πij...(t) =
∑

k



λk(t) + λk(t)
m
∑

r=1

γkr(t)ζr(t)
∏

l>k

(1 − γlr(t))



, (46)

where k and l run over only those credit names that are in the subscripted list {i, j, ...}. Thus,
out of the n×m factor names, n of the component factors are now “forgotten” and the model has
become what may be simply called a m-factor model.

For a homogeneous collection of credit names, this formalism reduces to the homogeneous model
discussed in section 2. It can now be used to model non-uniform hazard rates with a “uniform”
correlation structure, that is, a uniform structure of scaled correlations. Dropping the subscripts for
the credit names for all the parameters, except for the hazard rates, one obtains expressions looking
very similar to those for the homogeneous names. Parameterization could be done along the same
lines as in equations (18) or (20) for homogeneous names. The approach however is computationally
slow while computing Pij...’s in (5) where one needs to keep track of all combinations of credit
names. Recursive approach discussed below, though still computationally intensive, could be a
better alternative.

Our remarks of the previous section on the correlation matrix Σ are applicable to the scaled
correlation matrix Σ′ as well. That is, a scaled correlation matrix, if supplied, should be completely
positive with the matrix Γ′ obeying

m
∑

r=1

Γ′
ir(t)Maxk(Γ

′
kr(t)) ≤ 1. (47)

When these hold, it can be shown along steps similar to (43) that there exists a Γ satisfying (37),
yielding a completely positive correlation matrix Σ = ΓΓT . When the system admits a decoupling
of the hazard rates from the correlations as discussed above, we can also deduce from (47) a
stronger distance measure d′ij = 1− ρ′ij (that implies dij of equation (39)) based on just the scaled
correlations, perhaps a better candidate for determining correlated neighborhoods.

In this model, the expression for G(t) of the Markov chain formulation is

G(t) =
n
∑

i=1



λi(t)Ai + λi(t)Ai

m
∑

r=1

γir(t)ζr(t)
n
∏

j=i+1

(1 − γjr(t)Aj)



, (48)
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where again the credit names are ordered according to λ1(t) ≤ λ2(t) ≤ ...λn(t). Eigenvalues of G(t)
are given by πij...(t) as expressed in (46) with the right eigenvector as a tensor product of u’s for
each of the names in the list {i, j, ...} and v’s for the rest of the names. Recursion relation (34),
that has been derived for a general G(t), can be used to update the default probability distribution,
but in terms of our original γ and ζ parameters. For a “uniform” correlation structure discussed
above, it can be used in terms of our new γ and ζ parameters with

ζ ′r = ζr
1 − γr

1 −∑m
s=1 γ2

sζs
. (49)

Here the default probability distribution is updated by adding to the collection a credit name with
the next largest hazard rate. Analogous, but less convenient, recursion relations can be derived
for adding credit names with the next smallest hazard rates or for the case of non-uniform scaled
correlation structures.

6 Conclusion

In this article, a semi-analytical parametric model for dependent defaults is presented. It is based
on instantaneous default correlation and is hence capable of handling a term structure of default
correlations that could be helpful in accommodating a series of instruments of increasing maturities
into a single framework. It involves a probability parameter representing higher order correlations
that could explain clustering tendency of credit defaults known as default contagion. It admits
a formulation in terms of a continuous time Markov chain that could be useful for incorporating
additional dynamical features such as stochasticity of model parameters.

It is a multi-factor model but multiplicity of factors does not introduce major complexities. A
two factor model with four free parameters and a constant hazard rate is used to provide perfect
fits to the four non-equity tranches of CDX.NA.IG and iTraxx Europe CDOs of 5, 7 and 10 year
maturities. Allowing for log-linear time dependence for the hazard rate enables us to obtain perfect
fits to all the five tranches of both CDX.NA.IG and iTraxx Europe CDOs for all three maturities.
These fits could be useful for pricing non-standard products and performing sensitivity analysis for
hedging purposes.

The model is based on the assumption of conditional independence of defaults at differing times.
That is, if a credit name has survived an instant, an event at that instant does not have any further
influence on the credit name. This ignores response times to events causing defaults and the model
as such is expected to be applicable at relatively larger time scales. The unrealistic implication that
all defaults associated with an event would occur instantaneously could be addressed by introducing
time delays in responding to events. This issue will be discussed elsewhere.

The approach pursued in the article could be applicable in other situations where a collection
of events influence taking certain decisions. Usually such situations are handled with Gaussian
distributions, but it is not straightforward to incorporate higher order correlations into such a
framework. Higher order correlations have a direct impact on the distribution along the tail.
Tail distributions have turned out to be important under various disciplines in different contexts
as in, for instance, the computation of value-at-risk. The present approach provides a simpler,
but a powerful, framework to address tail distributions by incorporating higher order correlations.
Perhaps even an individual company could be modeled as a collection of correlated units so that
the volatility smile exhibited by the options on the company’s stocks could be explained. These
and other issues remain to be investigated.
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A Expression for Joint Survival Probability

Here, let us derive expression (2) for the joint survival probability Q(t1, ..., tn). As discussed in
the article, let us assume that defaults at differing times are conditionally independent. In other
words, given that credit names i and j have survived up to times ti and tj respectively, ti 6= tj ,
their respective defaults at ti and tj are independent of each other. This means

Q−1(ti, tj)
∂2Q(ti, tj)

∂ti∂tj
dtidtj =

[

−Q−1(ti, tj)
∂Q(ti, tj)

∂ti
dti

]

[

−Q−1(ti, tj)
∂Q(ti, tj)

∂tj
dtj

]

, (50)

where we have shown only the dependence on ti and tj for simplicity. Rearranging the terms,
[

∂Q(ti, tj)

∂ti

]−1
[

∂2Q(ti, tj)

∂ti∂tj

]

= Q−1(ti, tj)

[

∂Q(ti, tj)

∂tj

]

. (51)

This can be simplified to read

∂

∂tj
Ln

(

−∂Q(ti, tj)

∂ti

)

=
∂

∂tj
LnQ(ti, tj). (52)

Further simplification leads to

∂

∂tj
Ln

(

− ∂

∂ti
LnQ(ti, tj)

)

= 0. (53)

This implies, for ordered times, as long as time ordering is maintained, that −∂LnQ/∂t(i) is inde-
pendent of t(j) for all j 6= i. With all the t(j)’s reaching t(i) in the limit, it becomes a function of
t(i) only. It is in fact the probability density that credit name (i) defaults at t(i), given that names
(i + 1)... have not defaulted at t(i) while names (1)...(i − 1) are not looked at (considering models
where it is independent of the ordering among names not defaulted, or not looked at). In terms of
πij...(t)’s introduced in (2), we may write

∂

∂t(i)
LnQ(t(1)...) = −

(

π(i)...(n)(t(i)) − π(i+1)...(n)(t(i))
)

. (54)

To see this, note that 1 − π(i+1)...(t)dt is the conditional probability that none of the credit names
(i + 1)... default during the interval (t, t + dt) (names (1)...(i) are not looked at). It exceeds
1 − π(i)...(t)dt (here, names (1)...(i − 1) are not looked at) by exactly the probability density that
credit name (i) defaults at t, given that names (i + 1)... have not defaulted. Let us first integrate
the above for i = 1 from time zero to t(1). We do not encounter other t(i)’s during this since t(1) is
the smallest of the ordered times. We get

LnQ(t(1)...) = LnQ(1)(t(2)...) −
∫ t(1)

0
ds π(1)...(n)(s) +

∫ t(1)

0
ds π(2)...(n)(s), (55)

where Q(1) is obtained from Q by setting t(1) = 0. Equation (54) holds for Q(1) as well, because,
for i ≥ 2, its right hand side is independent of t(1) and we can set t(1) = 0 in Q. Integrating it for
i = 2 from time zero to t(2), we get an expression for Q(1) as an integral up to t(2),

LnQ(1)(t(2)...) = LnQ(1)(2)(t(3)...) −
∫ t(2)

0
ds π(2)...(n)(s) +

∫ t(2)

0
ds π(3)...(n)(s), (56)

where Q(1)(2) has both t(1) and t(2) set to zero. Combining the two equations, we get

LnQ(t(1)...) = LnQ(1)(2)(t(3)...) −
∫ t(1)

0
ds π(1)...(n)(s) −

∫ t(2)

t(1)

ds π(2)...(n)(s) +

∫ t(2)

0
ds π(3)...(n)(s).

(57)
Continuing this procedure, we obtain expression (2) for the joint survival probability Q(t1, ..., tn).
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B Expressions for Homogeneous Pricing

Here, let us derive some simplified results for homogeneous names useful in the computation. For
a νthto default premium leg, the probability that less than ν names have defaulted before t can be
obtained from (7). Keeping only the number of names as subscripts, it reads

ν−1
∑

r=0

(n
r ) P[r] =

ν−1
∑

r=0

(n
r )

r
∑

s=0

(−1)s (r
s) Q[r−s] =

ν−1
∑

r=0

(n
r ) CνrQ[r],

where Cνr =
ν−1−r
∑

s=0

(−1)s
(

n−r
s

)

. (58)

For the default leg, we need the probability that less than ν names have defaulted before t and the
number of defaults during (t, t + dt) makes it ν or more. This is obtained by differentiating the
above with respect to time. The results are a weighted sum of exponentials. For unit notional per
name, uniform constant recovery rate R, and spread premium s, the legs can be computed as a
sum of one-name CDS expressions,

Default Leg = (1 − R)
ν−1
∑

r=0

(n
r ) CνrD

(

π[n−r]

)

,

Premium Leg = s
ν−1
∑

r=0

(n
r ) CνrP

(

π[n−r]

)

, (59)

where, for constant model parameters, constant interest rate r, time to maturity T and uniform
period lengths δ, the one-name CDS expressions are

D(λ) =
λ

λ + r

[

1 − e−(λ+r)T
]

, P(λ) = δ

(

1 + λ
δ

2

)

1 − e−(λ+r)T

e(λ+r)δ − 1
. (60)

Next consider a CDO tranche. Under the homogeneous setting with uniform notionals and a
uniform constant recovery rate, we can determine νL and νH , the number of defaults corresponding
to the attachment and detachment points of the tranche respectively, the next closest integers if
they turn out to fractional. Then the legs can be computed as a sum of νthto default legs,

Default Leg =
νH
∑

ν=νL

wν

(

νthto Default Leg
)

, (61)

where wν = 1, except perhaps for ν = νL or νH where it could be a fraction wνL
or wνH

respectively.
Substituting for the νthto default leg and simplifying,

Default Leg = (1 − R)
νH−1
∑

r=0

(n
r ) C ′

rD
(

π[n−r]

)

,

Premium Leg = s(1 − R)
νH−1
∑

r=0

(n
r )C ′

rP
(

π[n−r]

)

,

where C ′
r =

νH
∑

ν=Max(νL,r+1)

wνCνr. (62)

These can be used to obtain the upfront fee or the par spreads for the CDO tranches.
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C Structure of the Default Distribution

Here, let us try to undertsand the structure of the joint default probability distribution, in partic-
ular the bumps visible on its long tail. The probability of finding ν defaults over time T in the
homogeneous case with constant parameters can be expressed as

P{ν} = (n
ν )

ν
∑

k=0

(−1)k (ν
k) Q[ν−k] = (n

ν )
ν
∑

k=0

(−1)k (ν
k) exp

(

−π[n−ν+k]T
)

= (n
ν )

ν
∑

k=0

(−1)k (ν
k) exp

{

−(n − ν + k)λT −
m
∑

r=1

ζrT
[

1 − (1 − γr)
n−ν+k

]

}

= (n
ν )

ν
∑

k=0

(−1)k (ν
k)
(

e−λT
)n−ν+k

m
∏

r=1

e−ζrT exp
[

ζrT (1 − γr)
n−ν+k

]

= (n
ν )

ν
∑

k=0

(−1)k (ν
k)
(

e−λT
)n−ν+k

∞
∑

i1...im=0

m
∏

r=1

e−ζrT (ζrT )ir

ir!

[

(1 − γr)
ir
]n−ν+k

=
∞
∑

i1...im=0

m
∏

r=1

[

e−ζrT (ζrT )ir

ir!

]

(n
ν )

[

e−λT
m
∏

r=1

(1 − γr)
ir

]n−ν [

1 − e−λT
m
∏

r=1

(1 − γr)
ir

]ν

.(63)

This is a mixture of binomial distributions. This result can also be inferred from our assumption
of conditional independence of defaults given the factor states, by writing it down as binomial dis-
tributions conditional on the arrival of a number of events generated by the factor names, summed
over the Poisson distributed probabilities of arrival of those events. The binomial distributions are
positioned at

νi ≈ n

[

1 − e−λT
m
∏

r=1

(1 − γr)
ir

]

(64)

with the mixing weights

wi =
m
∏

r=1

[

e−ζrT (ζrT )ir

ir!

]

. (65)

These contribute to the bumps in our joint default probability distribution. The width of the
bumps are ≈ 2σi where σi =

√

νi(n − νi)/n, that increases with νi for νi < n/2. The peaks are
≈ wi/

√
2πσi. The width increases only as

√
n with n, making the bumps more pronounced as n

increases. For very large n, one could approximate the joint default probability distribution as a
set of weights concentrated at the above positions.

In a two-factor model with γ1 > γ2, the positions of the bumps as a fraction of n are

1 − e−λT , 1 − e−λT (1 − γ2), ... 1 − e−λT (1 − γ2)
i2 , 1 − e−λT (1 − γ1), ... (66)

The first bump is due to λ. It is followed by γ2−bumps due to the second factor name. The number
of γ2−bumps before we encounter a γ1−bump due to the first factor name is given by the largest i2
such that (1−γ2)

i2 > 1−γ1. As an example, if γ1=26% and γ2=7%, we get four γ2−bumps before
we encounter a γ1−bump. These bumps may not be all visible unless we go to sufficiently large n.
We thus see that the second factor name attempts to fill up the gaps left over by the first factor
name. Additional factors in the model only provide more fine structure to the default probability
distribution.
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D Arbitrary Precision Code for CDO Pricing

The code below is written for a simple to use, but a powerful, arbitrary precision calculator available
from “http://directory.fsf.org/calc.html”. On copying into a file, say “cdo.txt”, and running the
command “calc -f cdo.txt”, it prints out iTraxx Europe 5-year CDO tranche premiums.

m = 2; n = 125; R = 0.40;

T = 5; ir = 0.035; dc = 0.25; dt = 1.0;

mat tra[] = {0.0,0.03,0.06,0.09,0.12,0.22};

mat gam[m]; mat zta[m]; mat tht[m];

rho = 1.862/100; gam[0] = 26.150/100;

if (m > 1) gam[1] = 7.047/100;

tht[0] = 39.606*pi()/180;

lam0 = 29.2121/10000; mulam = 0.25985;

for (r = 0; r < m; r++) {

tmp = (r<m-1)? power(cos(tht[r]),2) : 1.0;

for (s = 0; s < r; s++) tmp *= power(sin(tht[s]),2);

zta[r] = tmp*rho/(gam[r]*gam[r]);

}

expmu = exp(mulam*dt);

ntraL = 0; ntraH = 4; eps = epsilon(1.0e-10);

for (ntra = 0; ntra < ntraL; ntra++) epsilon(epsilon()*1e-10);

for (ntra = ntraL; ntra <= ntraH; ntra++) {

dleg = pleg = 0.0; epsilon(epsilon()*1e-10);

atL = n*tra[ntra]/(1-R); nuL = ceil(atL+eps);

atH = n*tra[ntra+1]/(1-R); nuH = ceil(atH-eps);

for (r = 0; r < nuH; r++) {

cprr = 0; nufr = (r < nuL)? nuL : r+1;

for (nu = nufr; nu <= nuH; nu++) {

cnur = 0; sign = 1;

for (s = 0; s < nu-r; s++) { cnur += sign*comb(n-r,s); sign *= -1; }

cprr += cnur*((nu<atL+1)?(nu-atL):(nu>atH)?(atH-nu+1):1);

}

mult = comb(n,r)*cprr;

for(pinr = n-r, s = 0; s < m; s++)

pinr += zta[s]*(1.0-(n-r)*gam[s]-power(1.0-gam[s],n-r));

for (pinr *= lam0, t = 0.0; t < T-eps; t += dt) {

temp = exp(-(pinr+ir)*dt);

dleg += mult*(1.0-temp)*(pinr/(pinr+ir));

pleg += mult*(1.0-temp)*dc*(1.0+0.5*pinr*dc)/(exp((pinr+ir)*dc)-1.0);

mult *= temp; pinr *= expmu;

}

}

premium = (atL<eps)? 100*(dleg-0.05*pleg)/atH : 10000*dleg/pleg;

printf("%2.0f -%2.0f%%: %6.2f\n", 100*tra[ntra], 100*tra[ntra+1], premium);

}
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Table 1: Two-factor perfect fits to the four non-equity tranches of CDX.NA.IG and iTraxx Europe
CDOs for the market quotes on June 2, 2006 computed in the semi-analytical approach assuming
a constant hazard rate. There are 125 names with a uniform recovery rate of 40%. Premiums are
paid quarterly. Interest rate is assumed at a constant 5% for CDX.NA.IG and 3.5% for iTraxx
Europe CDOs. Equity tranche is quoted as an upfront fee in percent (plus 500bp per year running)
and the other tranches are quoted as spreads per year in bp.

CDX.NA.IG Series 6
Tranches : 0-3% 3-7% 7-10% 10-15% 15-30% 0-100%

5y Quotes : 30 97 20 10 5 40.3
ρ = 2.74%, γ1 = 36.32%, γ2 = 7.46%, θ = 34.570, λ = 66.75, 0-3%: 34.0

7y Quotes : 48 240 45 20 7 49.5
ρ = 3.09%, γ1 = 31.24%, γ2 = 6.42%, θ = 33.810, λ = 81.99, 0-3%: 53.1

10y Quotes : 55 575 114 52 16 62.5
ρ = 4.00%, γ1 = 27.29%, γ2 = 3.70%, θ = 22.200, λ = 103.52, 0-3%: 68.1

iTraxx Europe Series 5
Tranches : 0-3% 3-6% 6-9% 9-12% 12-22% 0-100%

5y Quotes : 23 70 19 9 4 31.0
ρ = 1.89%, γ1 = 26.19%, γ2 = 7.07%, θ = 39.85o, λ = 51.44, 0-3%: 23.9

7y Quotes : 41 186 46 25 8 41.0
ρ = 2.40%, γ1 = 22.14%, γ2 = 5.81%, θ = 32.32o, λ = 68.03, 0-3%: 46.4

10y Quotes : 50 515 119 54 21 51.9
ρ = 3.27%, γ1 = 21.52%, γ2 = 2.25%, θ = 25.94o, λ = 86.12, 0-3%: 64.0
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Table 2: Two-factor perfect fits to all the five tranches of CDX.NA.IG and iTraxx Europe CDOs for
the market quotes on June 2, 2006 computed in the semi-analytical approach assuming a log-linear
time dependence for the hazard rate. There are 125 names with a uniform recovery rate of 40%.
Premiums are paid quarterly. Interest rate is assumed at a constant 5% for CDX.NA.IG and 3.5%
for iTraxx Europe CDOs. Equity tranche is quoted as an upfront fee in percent (plus 500bp per
year running) and the other tranches are quoted as spreads per year in bp.

CDX.NA.IG Series 6
Tranches : 0-3% 3-7% 7-10% 10-15% 15-30% 0-100%

5y Quotes : 30 97 20 10 5 40.3
ρ = 2.47%, γ1 = 35.95%, γ2 = 7.64%, θ = 31.260, λ(0) = 0.012, κλ = 2.560

7y Quotes : 48 240 45 20 7 49.5
ρ = 3.30%, γ1 = 52.84%, γ2 = 14.08%, θ = 33.870, λ(0) = 13.34, κλ = 0.491

10y Quotes : 55 575 114 52 16 62.5
ρ = 7.09%, γ1 = 65.72%, γ2 = 14.21%, θ = 25.330, λ(0) = 30.23, κλ = 0.246

iTraxx Europe Series 5
Tranches : 0-3% 3-6% 6-9% 9-12% 12-22% 0-100%

5y Quotes : 23 70 19 9 4 31.0
ρ = 1.86%, γ1 = 26.15%, γ2 = 7.05%, θ = 39.61o, λ(0) = 29.21, κλ = 0.260

7y Quotes : 41 186 46 25 8 41.0
ρ = 2.08%, γ1 = 22.52%, γ2 = 8.87%, θ = 30.25o, λ(0) = 5.52, κλ = 0.633

10y Quotes : 50 515 119 54 21 51.9
ρ = 4.58%, γ1 = 41.79%, γ2 = 10.65%, θ = 27.79o, λ(0) = 12.46, κλ = 0.351

Figure 1: Joint default probability distributions over 5, 7 and 10 years for 125 credit names for the
model parameters from Table 2 calibrated to iTraxx Europe CDOs of corresponding maturities.
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Figure 2: Logarithmic plot of the joint default probability distributions over 5, 7 and 10 years for
125 credit names for the model parameters from Table 2 calibrated to iTraxx Europe CDOs of
corresponding maturities.

Figure 3: Logarithmic plot of the 5-year joint default probability distributions for different numbers
of credit names for the model parameters from Table 2 calibrated to 5-year iTraxx Europe CDOs.
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