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Abstract

This paper describes a flexible and tractable bottom-up dynamic correlation modelling framework
with a consistent stochastic recovery specification. In this modelling framework, only the joint distri-
butions of default indicators are determined from the calibration to the index tranches; and the joint
distribution of default time and spread dynamics can be changed independently from the CDO tranche
pricing by applying one of the existing top-down methods to the common factor process. Numerical re-
sults showed that the proposed modelling method achieved good calibration to the index tranches across
multiple maturities under the current market conditions. This modelling framework offers a practical
approach to price and risk manage the exotic correlation products.

Keywords: Credit, Correlation, CDO, Dynamic, Copula, Stochastic Recovery, Bottom-up, Top-down

1 Introduction

The base correlation model remains the most common method to price and risk manage synthetic CDOs
(O’Kane & Livesey, 2004). It is well known that the base correlation model is not arbitrage free, and it
cannot produce a consistent joint default time distribution; therefore the base correlation model cannot be
used to price and risk manage any default path-dependent or spread-dependent products. Not too long
ago, the deterministic recovery assumption was the common practice within the base correlation framework.
However, in the recent market environments, models with the deterministic recovery often fail to calibrate to
the index tranche market because it forces the senior most tranches to be risk free, leaving too much risk in
the junior part of the capital structure. (Andersen & Sidenius, 2004) first proposed the stochastic recovery
for Gaussian Copula. Recently, a number of stochastic recovery specifications were suggested for the base
correlation framework, e.g. (Amraoui & Hitier, 2008) and (Krekel, 2008). With these stochastic recovery
specifications, the senior most tranches become risky, allowing the base correlation model to calibrate.
However, most of the existing stochastic recovery specifications are not internally consistent, i.e., they can’t
be used to drive a Monte Carlo simulation and match the underlying CDS curves’ expected recovery across
time. The stochastic recovery specifications therefore introduced another source of inconsistency to the
already inconsistent base correlation framework.
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There have been a lot of efforts in developing alternative models to the base correlation model in order to
better price and risk manage the exotic correlation products whose payoff may depend on the default paths
and tranche spreads. One alternative modelling approach is to find a consistent static copula, which can
produce the joint default time distribution in order to price default path-dependent instruments. Random
Factor Loading (Andersen & Sidenius, 2004) and the Implied Copula (Hull & White, 2006) (Skarke, 2005)
are examples of the alternative static copulas. Another alternative modelling approach is to develop dynamic
correlation models, which can price the spread-dependent correlation instruments, e.g., tranche options.

There are two main categories of dynamic correlation models: the top-down approach and the bottom-up
approach. The top-down approach directly models the dynamics of the portfolio loss distribution and ignores
all the single name identities. The advantages of the top-down models include: 1) it is relatively easy to
implement and calibrate and 2) it offers very rich spread dynamics. The main disadvantages of the top-down
models include: 1) it lacks the single name risk and sensitivity 2) it can’t be used to price a bespoke CDO
from the index tranches because the spread dispersion, which is a critical factor in CDO pricing, is not
captured by the top-down models. (Shonbucher, 2006), (Sidenius et al., 2006), (Bennani, 2005), (Errais
et al., 2009) and (Arnsdorf & Halperin, 2007) are some representative examples of the top-down models.

The bottom-up approach, on the other hand, starts with the single name spread dynamics and a cor-
relation structure; and then computes the portfolio and tranche spread dynamics as functions of the single
name spread dynamics and the correlation structure. The advantage of the bottom-up approach is that
it preserves the single name identities and the spread dispersion, and offers the single name sensitivity. A
bottom-up model can produce the joint distribution of default times and spreads; therefore, it can cover a
wider range of exotic correlation products than a top-down model. For example, any exotic contract whose
payoff depends on the identity of an underlying issuer1 cannot be easily handled with a top-down model.
However, a bottom-up model is much more difficult to implement and calibrate. Often, the model parameters
that control the spread dynamics also affect the tranche prices; therefore the calibration to the index tranche
prices can put severe restrictions on the resulting spread dynamics, making it difficult to produce the desired
spread dynamics and the goodness of fit to the index tranches simultaneously. Due to these difficulties, there
is no known bottom-up model that can produce good index tranche calibration and flexible spread dynamics
to the best knowledge of the author. (Mortensen, 2006), (Chapovsky et al., 2006) and (Kogan, 2008) are
some representative bottom-up dynamic correlation models.

Under the current market conditions, the stochastic recovery is required for a bottom-up dynamic corre-
lation model to achieve good calibration to the index tranche prices. Most of the existing stochastic recovery
specifications cannot be directly used by a bottom-up dynamic correlation model because of their intrinsic
inconsistencies. Defining a consistent and tractable stochastic recovery specification remains a challenge.

This paper proposes a very flexible bottom-up dynamic correlation modelling framework, along with a
consistent and tractable stochastic recovery specification. The proposed dynamic modelling framework can
be easily calibrated to the index tranche prices across multiple maturities; and it also allows the spread
dynamics to change independently from the tranche pricing, thus being able to produce very rich spread
dynamics.

2 Consistent Stochastic Recovery

This section first describes the generic properties of recovery rates; then proposes a tractable and consistent
stochastic recovery specification.

Define τ as the default time of an issuer, and 1τ<t as the indicator that the issuer defaults before time
t. The recovery rate r(t1, t2) is a conditional random variable that represents the recovery rate conditioned
on the issuer defaults between time t1 and t2, i.e. τ ∈ (t1, t2). r(t, t) is used to denote the instantaneous

1For example, a vanilla bespoke CDO traded against a risky counterparty who does not post the full collateral. In this case,
the identity of the counterparty is important.
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recovery rate when the issuer defaults exactly at time t, i.e., τ ∈ (t, t + dt).

Definition 2.1 The following terms are defined to simplify the explanation:

1. instantaneous mean: µ(t, t) = E[r(t, t)]
2. instantaneous variance: σ2(t, t) = Var[r(t, t)] = E[r2(t, t)] − µ2(t, t)
3. cumulative mean: µ(0, t) = E[r(0, t)]
4. cumulative variance: σ2(0, t) = Var[r(0, t)] = E[r2(0, t)] − µ2(0, t)

The cumulative mean and variance of recovery rate are important for building the loss distribution at a
given time horizon t using the semi-analytical method (Andersen et al., 2003). The instantaneous mean and
variance are useful inside a Monte Carlo simulation.

Proposition 2.2 The recovery rate has the following properties:

1. The recovery rate is range bounded: r(t1, t2) ∈ [0, 1], µ(t1, t2) ∈ [0, 1]
2. The variance of the recovery rate is range bounded: σ2(t1, t2) ∈ [0, µ(t1, t2)(1 − µ(t1, t2))]

The lower bound 0 of the recovery rate variance corresponds to the deterministic recovery. The upper
bound of the recovery variance corresponds to a two point distribution with recovery rate values of {0, 1}
and probabilities of {1 − µ, µ}, whose variance is the largest among all recovery distributions with mean µ.

Consider two consecutive time periods of (0, t1) and (t1, t2), the following equation holds because both
sides are the recovery amount between time (0, t2):

r(0, t2)1τ∈(0,t2) = r(0, t1)1τ∈(0,t1) + r(t1, t2)1τ∈(t1,t2) (1)

Take the expectation on the previous equation:

p(t2)µ(0, t2) = p(t1)µ(0, t1) + (p(t2) − p(t1))µ(t1, t2) (2)

where p(t) = E[1τ<t] is the default probability over time. Squaring both sides of (1), the cross term disappears
because the two periods do not overlap, also note 12 = 1:

r2(0, t2)1τ∈(0,t2) = r2(0, t1)1τ∈(0,t1) + r2(t1, t2)1τ∈(t1,t2) (3)

Then taking the expectation yields:

p(t2)E[r2(0, t2)] = p(t1)E[r2(0, t1)] + (p(t2) − p(t1))E[r2(t1, t2)] (4)

Dividing the period between (0, t) into infinitesimal time intervals, (2) and (4) can be written in the following
continuous form:

Proposition 2.3 Suppose the default probability of the issuer p(t) = E[1τ<t] is continuous and differentiable
with t. The following relationship exists between the instantaneous mean recovery µ(t, t) and the cumulative
mean recovery µ(0, t):

µ(0, t) =
1

p(t)

∫ t

0

µ(s, s)p′(s)ds =
1

p(t)

∫ p(t)

0

µ(p, p)dp (5)

It is always possible to write the µ(t, t) as µ(p, p) because the inverse function t−1(p) always exists since the
p(t) is monotonic and continuous. Similarly:

µ2(0, t) + σ2(0, t) =
1

p(t)

∫ t

0

[µ2(s, s) + σ2(s, s)]p′(s)ds =
1

p(t)

∫ p(t)

0

[µ2(p, p) + σ2(p, p)]dp (6)
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Note that the σ2(0, t) is not just an integration of the σ2(p, p), it also includes the contribution from
changes in the µ(p, p). An observation that immediately follows the Proposition 2.3 is that if the µ(p, p)
and σ2(p, p) are chosen to be analytical functions of the default probability p, the µ(0, t) and σ2(0, t) can be
computed just from the value of p(t) at time t using (5) and (6) regardless of the detailed shape of the p(t)
over time. This property is critical in developing the dynamic correlation modelling framework in the next
section of this paper.

Considering a basket of n credits indexed by the subscript i = 1...n, the notional amount of each
credit is wi. The portfolio loss at time t is the sum of all the individual losses L(t) =

∑n

i=1 wili, where
li = 1τi<t(1 − ri(0, t)) is the loss for a unit notional amount of name i. The mean and variance of the li is
easy to compute:

E[li] = pi(t)(1 − µi(0, t)) (7)

Var[li] = pi(t)σ
2
i (0, t) + pi(t)(1 − pi(t))(1 − µi(0, t))2 (8)

If the 1τi<t and ri(0, t) are independent between names, it is well known that the portfolio loss distribution
at time t can be approximated by a normal distribution according to the central limit theorem (Shelton,
2004). The normal approximation to the loss distribution is fully characterized by the mean and variance of
the portfolio loss L(t), which can be computed as:

E[L(t)] = E[

n∑
1

wili] =

n∑
1

wiE[li] =

n∑
1

wipi(t)[1 − µi(0, t)] (9)

Var[L(t)] = Var[

n∑
1

wili] =

n∑
1

w2
i Var[li] =

n∑
1

w2
i pi(t)[σ

2
i (0, t) + (1 − pi(t))(1 − µi(0, t))2] (10)

Therefore, the only recovery rate measures that are required to compute the loss distribution with the
independent defaults and recovery rates are the µi(0, t) and σ2

i (0, t). The fine details of the recovery rate
distribution other than the first two moments do not affect the portfolio loss distribution if n is reasonably
large so that the normal approximation is sufficiently accurate. The same argument can be made for any
conditional independent correlation models, e.g., Gaussian Copula.

Proposition 2.4 Given a conditional independent correlation model, the loss distribution at time t is only
sensitive to the first two moments of the cumulative recovery distribution, i.e., µi(0, t), σ2

i (0, t). The higher
moments of the recovery rate distribution’s have very limited impact on the portfolio loss distribution.

The effects of the higher moments of the stochastic recovery distribution are quantified in section 5.3 of
this paper. Since the σ2

i (0, t) enters the variance of the portfolio loss in (10), a stochastic recovery model
has to specify both the mean and variance of the recovery rate in order to correctly reproduce the portfolio
loss distributions over time. Any stochastic recovery specification that does not capture the variance of
recovery is inconsistent by construction. Also, the stochastic recovery models that directly specify the
cumulative µi(0, t) and σ2

i (0, t), or the distribution of ri(0, t) are generally not consistent because their
implied instantaneous recovery ri(t, t) is not guaranteed to satisfy the constraints in the Proposition 2.2.
Most of the popular stochastic recovery specifications for the base correlation model, such as (Amraoui &
Hitier, 2008) and (Krekel, 2008), are not internally consistent for the reasons above.

In conclusion, a consistent and tractable stochastic recovery specification can be easily constructed by
defining the analytical functions for the µi(p, p) and σ2

i (p, p). In a conditional independent model, the µi and
σ2

i can be defined as functions of the conditional default probability. It is natural to choose the µ(p, p) to
be a decreasing function of conditional default probability p, since it forces the recovery rates to be lower in
the bad states of the economy when a lot of names default. In a conditional independent model, the overall
unconditional recovery rate is a weighted average of the conditional recovery rates over all possible states of
the market factor.

One implication of this stochastic recovery specification is that the expected recovery does not remain
constant over time unless the µ(p, p) is a constant. Today, the CDS curves are usually quoted with a constant
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expected recovery term structure, which is largely a result of the trading and quoting convention rather than
any economic reasons. Therefore in practice, the requirement of a constant expected recovery rate over time
can be relaxed to allow the µ(p, p) to be a non-constant function of p. The function µ(p, p) can be chosen so
that the µ(0, t) matches the CDS curve recovery rate at the most liquid tenor, e.g., 5Y for the high grade
names and 1Y for the distressed names. With this approach, the default probabilities at the less liquid
tenors have to be adjusted so that the underlying names’ expected losses are preserved. Given the lack of
justification for a constant expected recovery term structure, allowing µ(p, p) to be non-constant is a good
compromise since it allows more flexible term structure of the recovery rate, and it also helps the model
calibration to the index tranches.

One advantage of this stochastic recovery specification is that it gives user control of the recovery variance
through the parameter µ(p, p) and σ2

i (p, p). The recovery variance is very important to the CDO tranche
pricing and risk especially when a name is very close to default.

3 Dynamic Correlation Modelling Framework

In this section, a bottom-up dynamic correlation modelling framework is described. In this framework, the
spread dynamics can be changed independently from the CDO tranche pricing. The decoupling of CDO
tranche pricing and spread dynamics offers great flexibility in constructing the desired spread dynamics, and
it also greatly reduces the complexity of the model calibration. The decoupling of CDO tranche pricing and
spread dynamics is achieved by defining a set of copula functions on the default indicators:

Definition 3.1 Denote the unconditional default probability of the i-th name in the portfolio as pi(t). A set
of copula functions on default indicators can be defined by the following three components:

1. A non-negative and increasing stochastic process X̃(t) that represents the common market factor. The
cumulative distribution function of the X̃(t) is denoted as F (x, t) = P{X̃(t) < x} and its density
function is denoted as f(x, t) = ∂F (x, t)/∂x. The f(x, t) is also referred as the marginal distribution
of X̃(t). A increasing X̃(t) implies that its cumulative distribution function F (x, t) has to be decreasing
over time:

∂F (x, t)

∂t
≤ 0 (11)

2. A conditional default probability function pi(x, t) = E[1τi<t|X̃(t) = x] that satisfies the following
constraints:

pi(x, t) ∈ [0, 1] (12)

pi(t) = E[pi(x, t)] =

∫
pi(x, t)f(x, t)dx (13)

∂pi(x, t)

∂x
≥ 0 (14)

∂pi(x, t)

∂t
≥ 0 (15)

The pi(x, t) function needs to have some name specific parameters so that it can be calibrated to the
individual names’ unconditional default probabilities according to (13). Constraints (14) and (15)
ensure that the conditional default probability pi(x, t) are increasing for any possible path of X̃(t) given
that the X̃(t) itself is increasing.

3. conditional independence: individual names’ default indicators 1τi<t are independent conditioned on
X̃(t) = x. The conditional independence ensures the uniqueness of the joint distribution of default
indicators.

The copula functions of default indicators in Definition 3.1 uniquely determines the joint distribution of
default indicators at any time horizon from the unconditional single name default probabilities pi(t). In
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Figure 1: JDDI(t) vs JDDT

A Set of JDDI(t)

1τ1<t 1τ2<t JDDI(t = 1) JDDI(t = 2)
0 0 40% 20%
0 1 30% 30%
1 0 20% 20%
1 1 10% 30%

Two JDDT s

τ1 Range τ2 Range JDDT1 JDDT2

(2,∞) (2,∞) 20% 20%
(2,∞) (1,2) 0% 10%
(1,2) (2,∞) 0% 10%
(1,2) (1,2) 20% 0%
(2,∞) (0,1) 30% 20%
(1,2) (0,1) 0% 10%
(0,1) (2,∞) 20% 10%
(0,1) (1,2) 0% 10%
(0,1) (0,1) 10% 10%

practice, any pi(x, t) function that satisfies the constraints (12) to (15) can be used to construct the copula
functions of default indicators. A sample specification of pi(x, t) is given in section 4.

There is an important distinction between the copula function of default indicators, as in Definition 3.1,
and a typical copula function of default time, as in the Gaussian Copula, Random Factor Loading or Implied
Copula. A copula function of default time fully specifies the joint distribution of default time (abbreviate
as JDDT ), whereas a copula function on default indicators only specifies the joint distribution of default
indicators (abbreviate as JDDI(t)) at a given tenor. The argument t in JDDI(t) indicates that it is specific
to a given time, while JDDT does not take any time argument as it is globally applicable to all time horizon.
A set of JDDI(t) over time is always less restrictive than the JDDT in the sense that there can be infinitely
many JDDT s that are compatible with a set of JDDI(t).

To illustrate the difference between the JDDI(t) and the JDDT , Figure 1 showed a sample set of
JDDI(t) for a portfolio with two names over two time periods, as well as two different JDDT s which are
compatible with the same set of JDDI(t). Please note that both the JDDT and JDDI(t) are based on the
time zero information only; and the JDDT always have more information than the JDDI(t). For example
in Figure 1, considering an instrument that pays $1 only if both name default within the time period (1, 2),
this instrument cannot be priced by the JDDI(t), but it can be priced by the JDDT s. It is also interesting
to note that the two JDDT s in Figure 1 produce different prices for this instrument. The fact that the
JDDT contains more information than the JDDI(t) is not a result of the discrete sampling in time. Even
if the JDDI(t) were specified in the continuous time, it still couldn’t price the instrument that pays $1 only
if both name default within a specific future time period.

Definition 3.1 is very general, and it can produce the JDDI(t) of typical one-factor default time copulas.
For example, Gaussian Copula’s JDDI(t) can be produced by choosing:

f(x, t) = φ(x) (16)

pi(x, t) = Φ(
Φ−1(pi(t)) −

√
ρx√

1 − ρ
) (17)

where ρ ∈ [0, 1) is the correlation, φ(x) is the normal distribution density function and Φ(x) is the normal
cumulative distribution function. Since the common factor x in Gaussian Copula can take negative values, a
change of variable on the common factor such as z = e−x is required for the common factor to be non-negative
as required by Definition 3.1. In general, the non-negative and increasing constraints on X̃(t) in Definition
3.1 can be relaxed as long as pi(x, t) is increasing for any possible path of X̃(t). In the case of Gaussian
Copula, the common factor X̃(t) remains constant, so that (11), (14) and (15) are trivially satisfied.

The transition from 1 to 0 is forbidden for the default indicators since a default event is irreversible.
The irreversibility of default events create certain restrictions on the JDDI(t) across time, for example, the
probability of zero default in the portfolio has to be decreasing over time. If the irreversibility constraint is
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violated, the set of JDDI(t) would not qualify for the distributions of default indicators, and it does not admit
any valid JDDT . The conditional independence of the 1τi<t and the monotonicity of the pi(x, t) ensures
that the resulting set of the JDDI(t) over time from Definition 3.1 is always consistent and conforming to
the irreversibility constraint:

Proposition 3.2 The copula functions of default indicators in Definition 3.1 uniquely determines a valid
and consistent set of JDDI(t) over time, which is fully consistent with the unconditional single name default
probability term structures pi(t) and it admits infinitely many JDDT for practical purposes2.

Because the individual name’s default indicators 1τi<t are independent conditioned on X̃(t) = x, the
semi-analytical method can be applied to build the portfolio loss distribution at time t. In Definition 3.1,
the pi(x, t) is only a function of the value x = X̃(t) but not the path of the common factor X̃(t) over time.
In the stochastic recovery specification described in section 2, the cumulative mean and variance of the
recovery rate, i.e. the µi(0, pi(x, t)) and σ2

i (0, pi(x, t)), are not functions of the X̃(t) path either. Therefore
the conditional portfolio loss distribution at time t can be well approximated by a normal distribution with
the mean and variance in (9) and (10) regardless of the path of the common factor X̃(t).

Property 3.3 Given the conditional probability function pi(x, t) and µ(p, p), σ2
i (p, p) of recovery rates, the

conditional loss distribution at time t is only a function of the value x = X̃(t), but not the path of the
common factor X̃(t) over time. Since the unconditional loss distribution is an integration of the conditional
loss distribution over all the possible values of x = X̃(t), the unconditional loss distribution is fully determined
by the marginal distribution function f(x, t); and it does not depend on any other property of the process
X̃(t).

The Property 3.3 is very convenient because it simplifies the model calibration across multiple maturities.
At a given maturity t, the model can be calibrated to the expected tranche loss (ETL) by changing the
marginal distribution f(x, t). The pi(x, t) has to be recalibrated using (13) when changing the f(x, t) in order
to maintain the consistency with the input single name default probability pi(t). The distribution f(x, t)
can be represented either as a non-parametric distribution or a parametric distribution such as a mixture
of Gamma processes3. Numerical optimization routines work quite well for a one-dimensional distribution
function, and it is not difficult to find a suitable marginal distribution f(x, t) that matches the index ETL
at time t using either the parametric or the non-parametric representation. A bootstrap procedure can be
readily applied to calibrate the model sequentially across multiple maturities. The only constraints on the
calibration to later maturities are the monotonic constraint from (14), (15) and (11), which are technical
in nature and normally do not pose a serious limitation. Without the Property 3.3, the loss distribution
would depend on the path of the X̃(t), and the calibration to multiple maturities becomes difficult because
the calibration procedure has to consider all the possible paths in X̃(t) over time instead of just its value
at t. A bootstrap calibration without the Property 3.3 is therefore very difficult to implement because the
state space of all the possible paths of X̃(t) often becomes too large for numerical optimization routines to
be effective at later maturities.

Proposition 3.4 With deterministic discount factors4, the JDDI(t) and the stochastic recovery specifi-
cation fully determine the value of instruments whose payoffs are not default path-dependent or spread-
dependent, such as vanilla bespoke CDO, long short CDO, CDOn, long short CDOn or NTD basket. There-
fore, no information beyond the JDDI(t) and the recovery can be obtained by observing the market prices
of these instruments.

2There can be certain extreme situations where a set of JDDI(t) admit only one valid JDDT , for example, when all names’
default time are deterministic and are known at time zero. These extreme situations are clearly irrelevant in practice

3The Gamma process is convenient because it is increasing.
4It is possible to incorporate stochastic interest rates and correlate them with the X̃(t) in this framework, but that is of very

limited practical interests.
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Figure 2: Progressive Calibration of the Model

Steps Model Info. Model Parameters Market Input Products Covered

1 JDDI(t) f(x, t)
Single name CDS and in-
dex tranches, very liquid

Bespoke CDOs, NTD Bas-
ket, long/short CDO and
CDOn

2 JDDT
static Markov chain
on X̃(t)

Some market observ-
ables on default path
dependent instruments,
illiquid

All default path-dependent
instruments, such as wa-
terfall synthetics, forward
starting or step-up tranches,
loss triggered LSS

3
JDDT + sys-
temic spread
dynamics

Full dynamics of
X̃(t)

Very few market observ-
ables on tranche options,
almost no liquidity

Products that depend on
systemic spread dynamics:
such as senior tranche op-
tions, spread triggered LSS
etc

4

JDDT +
systemic and
idiosyncratic
spread dynam-
ics

Dynamics in X̃(t) +
idiosyncratic dynam-
ics compatible with
pi(x, t)

Some market observ-
ables on single name
swaption, some liquidity

Products that depend on
both systemic and idiosyn-
cratic spread dynamics, such
as junior tranche options,
etc.

The Proposition 3.4 suggests that it is a dangerous practice for any correlation model to determine the
JDDT purely from the calibration to the index tranche prices because the index tranche prices have no
information beyond the JDDI(t). All default time copulas have this problem because a default time copula
by definition fully specifies the JDDT from the index tranche calibration. Therefore, the JDDT and the
spread dynamics from default time copulas are not based on the relevant market information, and great
caution is required when pricing default path-dependent instruments with the static copulas. Most bottom-
up dynamic correlation models also have this problem of specifying the JDDT prematurely from the index
tranche calibration, e.g. (Mortensen, 2006), (Chapovsky et al., 2006) and (Kogan, 2008). Therefore, their
JDDT and spread dynamics are severely limited by the index tranche calibration. The modelling framework
proposed in this paper circumvents this limitation by only constructing the JDDI(t) and f(x, t) from the
calibration to the index tranche and thus lends great freedom to the choice of JDDT and spread dynamics.

After obtaining the f(x, t) from the index tranche calibration, any X̃(t) process can be used to construct
an arbitrage free dynamic bottom-up model that reproduce the index tranche and underlying single name
CDS prices as long as the following two conditions are met:

1. The X̃(t) is non-negative and increasing.
2. The X̃(t) reproduces the calibrated marginal distribution f(x, t).

These requirements are exactly the same as those of a typical top-down model on the portfolio loss process,
where the portfolio loss is non-negative and increasing, and the marginal distributions of the portfolio loss
have to be preserved. Therefore, top-down models that were developed for the portfolio loss process can be
applied to the X̃(t) process, and producing a full bottom-up dynamic correlation model. In this approach, the
JDDT and the systemic spread dynamics can be freely adjusted by the top-down method without affecting
the underlying single name and tranche prices. The top-down process on the X̃(t) should be constructed
using market observables that contain additional information beyond the JDDI(t), e.g., forward-starting
tranche or tranche options.

Figure 2 suggests a progressive calibration procedure within this modelling framework. In this progressive
calibration procedure, each step adds only the necessary restrictions to the model in order to accommodate
additional market information. The earlier steps do not limit the generality of the later steps; and the later
steps always preserve all the model parameters and properties from the earlier steps. In step 2, the static
Markov chain on X̃(t) fully specifies the JDDT . In general, the X̃(t) process is not Markovian. For example,
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X̃(t) could be a path-dependent function (e.g. integral) of an underlying process y(t); in which case, the
static Markov chain in step 2 only gives the transition probability of X̃(t) based on time zero information;
the step 3 then specifies the full dynamics of (X̃(t), y(t)), which determines the systemic spread dynamics
in addition to the JDDT .

The copula functions in Definition 3.1 also admit the idiosyncratic spread dynamics that are independent
of the systemic process X̃(t). The pi(0, t) term structure defines the default probability from the idiosyncratic
spread dynamics because there is no systemic default risk if X̃(t) remains constant at 0. The idiosyncratic
spread dynamics could have a strong impact on the pricing of certain exotic instruments, e.g., junior tranche
options. The calibration of the idiosyncratic spread dynamics is also quite difficult because the CDS swaption
is only liquid for very few names, and they have only very short maturities.

The progressive calibration procedure in Figure 2 is very attractive in practice because it allows instru-
ments to be priced from the most necessary and the most reliable market information. For example, if the
model is calibrated to the step 2 and is used to risk manage a book containing bespoke CDOs and loss
triggered LSS, it is certain that the bespoke CDO prices are fully determined by the liquid index tranches
and underlying CDS curves; and they are not affected by the views or observations on the forward losses
which may be used to calibrate the step 2. Suppose there is new market information on the forward losses,
then only step 2 of the model calibration needs to be updated, which affects only the pricing of the loss
triggered LSS.

The step 3 and 4 of the calibration procedure are not yet feasible under the current market conditions
because of the lack of reliable market observations. Therefore, exotic correlation instruments whose payoff
depends on the spread dynamics, e.g. tranche options, cannot be exactly priced due to the incompleteness
of the market. However, if the model can be calibrated to the step 2, the model implied JDDT often
imposes range bounds on the valuation of these spread dependent instruments. The range bounds of spread
dependent instruments can be very useful in practice given the inability to obtain the exact pricing of these
instruments.

4 Model Implementation

This section describes the details of a non-parametric implementation of this modelling framework, where
the pi(x, t) function in Definition 3.1 is chosen to follow that of (Chapovsky et al., 2006):

pi(x, t) = 1 − ci(t)e
−βi(t)x (18)

The βi(t) ≥ 0 is a loading factor on the systemic process. For simplicity, βi(t) is chosen so that the systemic
process contributes a constant fraction to the cumulative hazard:

log(E[e−βi(t)x]) = γi log(1 − pi(t)) (19)

The γi ∈ [0, 1] denotes the constant systemic fraction, which directly affects the correlation between individual
name’s spread movements. 1− ci(t) is the default probability from the idiosyncratic dynamics, which has to
make up the rest of the cumulative hazard according to (13):

log(ci(t)) = (1 − γi) log(1 − pi(t)) (20)

This pi(x, t) specification is convenient because (12) to (14) are automatically satisfied. (15) is satisfied as
long as the βi(t) is increasing in t. A constant γi in (19) implies that the βi(t) is not guaranteed to be
increasing for all possible f(x, t). Therefore, the choice of either f(x, t) or γi has to be constrained in order
to maintain the monotonicity of the βi(t).

Consider two time periods t1 < t2 and suppose f(x, t1) and βi(t1) are already calibrated to market prices
at time t1. With a constant γi, a βi(t2) ≥ βi(t1) can always be found when the f(x, t2) is very close to the
f(x, t1) since in the limiting case of f(x, t2) = f(x, t1), the βi(t2) cannot be less than the βi(t1) given the
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Figure 3: Stochastic Recovery
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default probability in (19) is increasing: pi(t2) ≥ pi(t1). Therefore, the monotonicity of βi(t) can always be
enforced by making the f(x, t2) close to the f(x, t1).

In a diverse portfolio, the distressed names usually impose more constraints on the choice of f(x, t2)
since their default risk are concentrated in the front end before time t1, and their pi(t2) can be very close
to pi(t1). A constant γi may force f(x, t2) to be very close to f(x, t1) in order to satisfy the monotonicity
constraint of βi(t) for the most distressed names in the portfolio, which could undermine the model’s ability
to calibrate to the index tranches. Therefore for distressed names, it is better to have a time dependent γi(t)
which starts with a low value and increases over time, thus leaving more freedom in the choice of f(x, t2). It
also makes economic sense for very distressed names to have lower systemic dependencies in the short time
horizon.

The γi factors have to be high (> 80%) for the majority of the names in order to obtain good calibration
to the index tranches, which suggests that the main risk factor in current market is the systemic risk. For
simplicity, γi is chosen to be 90% for all names except for very distressed names in this implementation.

As discussed in section 2, only the µi(p, p) and σ2
i (p, p) of the recovery rate need to be specified in order

to price CDO tranches consistently. For simplicity, all credits are assumed to have the same functional form
of µ(p, p) and σ2(p, p). Figure 3 shows the mean and standard deviation of the recovery function used in
the non-parametric model implementation. The choice of µ(p, p) function is somewhat arbitrary, its overall
trend is chosen to be decreasing in p because it is desirable for the recovery to be lower in the bad states of
the market factor. A peak is created in µ(p, p) at 15% default probability just to show the ability to create
an arbitrary shape of the recovery term structure. The σ2(p, p) is assumed to be a fixed percentage of the
maximum variance for the given µ(p, p): σ2(p, p) = αµ(p, p)(1 − µ(p, p)), where the α is chosen to be 25%
somewhat arbitrarily. If there are observations or views about the variance of a name’s recovery rate, the α
parameter can be changed to match those.

The µ(p, p) function in Figure 3 is multiplied by a name specific scaling factor to match the individual
credits’ CDS curve recovery at the 5Y tenor. Since the µ, σ2 are functions of the conditional default proba-
bility, the unconditional cumulative recovery rate at time t for name i can be computed by integrating over
all the possible market factor values:

Ri(0, t) =
1

pi(t)

∫
µi(0, pi(x, t))pi(x, t)f(x, t)dx (21)

Even though µ(0, p) has a strong trend over p as shown in the Figure 3, the unconditional recovery rate
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Figure 4: Model Calibration to CDX-IG9 on Jan. 15, 2009

Market Input ETL

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.51% 87.23% 91.12%
2.6% 6.7% 57.22% 64.36% 71.28%
6.7% 9.8% 30.05% 41.47% 54.94%
9.8% 14.9% 18.02% 26.07% 36.49%

14.9% 30.3% 4.87% 7.20% 10.57%
30.3% 61.0% 4.05% 6.24% 8.54%
0.0% 100.0% 8.72% 10.96% 13.47%

ETL from Model Calibration

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.54% 87.11% 90.62%
2.6% 6.7% 57.27% 64.10% 70.43%
6.7% 9.8% 30.16% 41.42% 54.52%
9.8% 14.9% 18.03% 25.83% 35.57%

14.9% 30.3% 5.02% 7.73% 11.01%
30.3% 61.0% 3.98% 5.74% 7.42%
0.0% 100.0% 8.72% 10.96% 13.47%

Figure 5: Calibrated F (x, t)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − e−x

P
ro

ba
bi

lit
y

 

 

5Y
7Y
10Y

Ri(0, t) would exhibit a much milder trend over time due to the averaging effects through the integral in
(21). More results about the unconditional recovery rates are shown in the following sections.

The pi(x, t), µ(p, p) and σ2(p, p) given in this section are just one example of possible model specifications.
There could be many different specifications which are equally valid and effective under the general principles
of Definition 3.1.

5 Model Results

In this section, some numerical results are presented from the non-parametric implementation described in
section 4.

5.1 Calibration to Index Tranches

The non-parametric implementation of this model is calibrated to the expected tranche loss (ETL) of CDX-
IG9 index as of the close of Jan. 15, 2009. Figure 4 shows the input ETL from the tranche market and the
model calibration results. The model calibration is quite close to the input ETL across the three maturities.
Figure 5 showed the calibrated cumulative distribution function F (x, t) at 5Y, 7Y and 10Y. The constraint
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Figure 6: Expected Recovery Change
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(11) is built into the bootstrap process so that the resulting marginal distributions are compatible with a
increasing process. It is clear that the calibrated F (x, t) does satisfy (11) since the three CDF curves never
cross each other.

Since the model expected recovery matches only the CDS curve recovery at the 5Y tenor, the single name
default probabilities at the 7Y and 10Y tenors are adjusted to preserve the expected loss of the individual
CDS curve. The calibration results showed that the total portfolio losses of the 0-100% tranche are exactly
preserved at all the maturities.

In this example, the calibration inputs are the ETL at the 5Y, 7Y and 10Y maturities. It is easy to
extend the calibration to all other quarterly dates if their ETLs are available. However in reality, the only
market observables are tranche prices at 5Y, 7Y and 10Y, the ETLs are not directly observable. This issue
can be addressed with one of the following two methods:

1. use another model, e.g., base correlation, to extract the ETL surface at each quarterly date and
calibrate the model to the full ETL surface. This ensures the maximum consistency to the existing
base correlation framework. This method works better if the f(x, t) is specified as a non-parametric
distribution.

2. create an interpolation method on the distributions of the f(x, t) so that the distributions at all
quarterly dates can be interpolated from the distributions at the market maturities of 5Y, 7Y and
10Y. This allows the model to be directly calibrated to the market tranche prices instead of the ETLs.
This approach is most suited if the f(x, t) is specified as a parametric distribution.

Method 1 is ideal if it is required to maintain maximum consistency with the existing base correlation model.
Method 2 is preferred if it is desirable to preserve the possibility of pricing a bespoke CDO from the liquid
index tranche prices.

5.2 Implied Recovery Rate Term Structure

The calibrated model matches the CDS curve recovery exactly at the 5Y tenor. The expected recoveries
from the model are different from the CDS curve recoveries at other tenors because the µ(p, p) function is not
a constant. The default probabilities at 7Y and 10Y are adjusted according to the model implied recovery
rate so that the expected losses of individual curves are preserved. Figure 6 showed the scatter plots of the
difference between the 7Y and 10Y model implied recoveries from their CDS curve recoveries for all the 122
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Figure 7: Monte Carlo Simulation of Tranche Loss

Co-monotonic Markov Chain

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.59% 87.15% 90.64%
2.6% 6.7% 57.18% 64.10% 70.46%
6.7% 9.8% 30.12% 41.35% 54.48%
9.8% 14.9% 18.02% 25.81% 35.49%

14.9% 30.3% 5.02% 7.73% 11.01%
30.3% 61.0% 3.97% 5.73% 7.40%
0.0% 100.0% 8.71% 10.95% 13.46%

Maximum Entropy Markov Chain

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.54% 87.08% 90.62%
2.6% 6.7% 57.18% 64.08% 70.46%
6.7% 9.8% 30.16% 41.36% 54.47%
9.8% 14.9% 18.00% 25.84% 35.52%

14.9% 30.3% 4.97% 7.70% 11.00%
30.3% 61.0% 3.93% 5.72% 7.39%
0.0% 100.0% 8.68% 10.94% 13.45%

names in the CDX-IG9 portfolio. The horizontal axis is the default probability at the corresponding tenor.

As shown in Figure 6, the model expected recoveries at 7Y and 10Y do not deviate too much from the
CDS curve recoveries. The scatter plots in Figure 6 roughly follow the shape of the µ(0, p) in Figure 3,
but at a much milder pace because of the averaging effects in the (3). The slight difference between the
model expected recoveries and the CDS curve recoveries should not be a problem in practice as long as
individual name’s expected losses are preserved, since there is very little reliable market information on the
term structure of recoveries.

5.3 Monte Carlo Simulation

A simple Monte Carlo simulator is implemented in this section to verify the consistency and correctness of the
proposed modelling framework. In order to drive the default time simulation, the model has to be calibrated
at least to the step 2 in Figure 2, i.e., a static Markov chain has to be built from the calibrated marginal
distribution f(x, t). Two different methods of building the static Markov chain on X̃(t) are implemented:
co-monotonic and maximum entropy. A detailed description of these two methods can be found in (Epple
et al., 2006), where both of these methods were applied to the portfolio loss process following the typical
top-down approach. The f(x, t) distributions are taken from the calibration in section 5.1.

Figure 7 showed the simulated ETLs at the three maturities from drawing 1,000,000 independent default
time and recovery paths from both of the Markov chains. The default time and recovery paths are drawn
using the following steps:

1. Draw a full path of X̃(t) over time from the Markov chain.
2. Use the pi(x, t) function to compute the conditional default probability term structures of all the

underlying names for the given path of X̃(t).
3. For each name, draw an independent uniform random number di which represents the conditional

default probability. di is then used to determine the default period of the corresponding name according
to the conditional default probability term structure.

4. For each name defaulted before the final maturity (10Y), compute its instantaneous recovery mean
and variance µi(di, di), σ2

i (di, di).
5. Draw an independent recovery rate for any defaulted name from a two point distribution whose mean

and variance are given by the µi(di, di), σ2
i (di, di).

After drawing the default time and recovery path, the tranche losses at all tenors are computed from the
same default time and recovery path to ensure full consistency across all maturities. Then the tranche losses
from these independent default time and recovery paths are averaged to produce the ETL.

The simulated ETLs from the two Markov chains are very close to each other, which is expected since they
have identical JDDI(t) by construction. Both of the simulated ETLs are very close to the semi-analytical
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Figure 8: Temporal Correlation of Incremental Portfolio Losses

Co-monotonic Markov Chain

- 0-5Y 5Y-7Y 7Y-10Y

0-5Y 1 .5027 .4887
5-7Y .5027 1 .2109

7-10Y .4887 .2109 1

Maximum Entropy Markov Chain

- 0-5Y 5Y-7Y 7Y-10Y

0-5Y 1 .4199 .3936
5-7Y .4199 1 .1227

7-10Y .3936 .1227 1

Figure 9: Simulated Single Name Expected Loss
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calibration results shown in Figure 4, where the normal approximation is used to build the conditional
loss distribution. The maximum difference in the ETL between the Monte Carlo simulation and the semi-
analytical pricing with normal approximation is less than 0.1%. The ETL difference of this magnitude
is clearly negligible for practical purposes. It is also verified that a different instantaneous recovery rate
distribution, such as the beta distribution, produces very similar results to those in Figure 7, as long as the
µ(p, p) and σ2(p, p) of the recovery rate are matched.

However, the two Markov chains lead to very different JDDT s. Figure 8 showed the correlation matrix
between the simulated incremental portfolio losses in the three periods (0-5Y, 5Y-7Y and 7Y-10Y), condi-
tioned on the portfolio loss before 5Y is less than 10%. It is evident that the temporal loss correlation from
the co-monotonic Markov chain is much stronger than that of the maximum entropy Markov chain. The
temporal loss correlation is a critical factor in pricing exotic correlation instruments such as forward-starting
tranche and loss-triggered LSS.

Figure 9 showed two scatter plots of the simulated vs. the CDS curve expected losses for all 122 underlying
names over the three maturities. All the dots in Figure 9 are perfectly aligned along the diagonal line in this
scatter plot, which showed that the Monte Carlo simulation correctly preserves all the single names’ expected
losses across all three maturities. Because the recovery rates can be different from the CDS curve recovery
at tenors other than 5Y, the default probabilities are not preserved at 7Y and 10Y. However, keeping the
expected losses consistent with the underlying CDS curves is often good enough in practice since the PV01
change caused by the recovery rate shift is usually small. This simulation exercise confirms the following
claims made in this paper:

1. The stochastic recovery and dynamic correlation modelling framework proposed in this paper is fully
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consistent and arbitrage free5.
2. A full bottom-up dynamic correlation model can be obtained by applying a top-down method to the

X̃(t) process.
3. Different ways of building the X̃(t) process can lead to very different JDDT s and temporal loss

correlations even if their JDDI(t)s are identical over time.
4. Single name expected loss term structures are correctly preserved in this modelling framework.
5. The details of the recovery distribution do not affect CDO pricing as long as their first two moments

are preserved.
6. The normal approximation to the conditional loss distribution is very accurate under the current market

conditions.

6 Conclusion

This paper described a tractable and consistent stochastic recovery specification, and a very generic dy-
namic correlation modelling framework that could combine the best features of the top-down and bottom-up
approaches. The modelling framework is equipped with the important Property 3.3, which allows easy cali-
bration to the index tranche prices across multiple maturities. Close calibration to the index tranches across
multiple maturities in a consistent model is a very difficult problem in its own right.

This modelling framework also circumvents a serious problem found in all default time copulas and a
number of existing bottom-up dynamic spread models, where the JDDT is determined prematurely from
the calibration to the index tranche prices which contain only information on JDDI(t). The proposed
modelling framework specifies only the JDDI(t) from the calibration to the index tranches; thus allowing
all the compatible JDDT to be considered in the later calibration steps in Figure 2. Therefore, the model
can produce a very rich set of JDDT s and spread dynamics by applying a top-down method on the common
factor process X̃(t). Changing the dynamics of X̃(t) does not change the calibrated CDO tranche prices as
long as the marginal distribution f(x, t) remains intact.

The affine jump diffusion (AJD) process is a popular choice in building the bottom-up dynamic correlation
models. Models based on AJD processes also suffer the same problem of determining JDDT prematurely
from the index tranche calibration, therefore their JDDT and spread dynamics are not generic enough.
For example, the jump in the AJD intensity process is usually modelled as an independent Poisson jump
process with a deterministic hazard rate and random jump sizes for tractability, as in (Chapovsky et al.,
2006). Under an AJD model, the senior tranches only suffer loss if a large jump in the intensity arrives.
Since the jump arrivals in a Poisson process are totally unexpected and stateless, the probability of large
jump arrivals does not change with the filtration of the common process and default events. Therefore the
senior tranche’s expected loss and spread often exhibit very low volatility in an AJD dynamic model. In
the proposed modelling framework, the X̃(t) process can have large jumps, and the probability of large
jump arrivals can be a function of the states of the common process, therefore this modelling framework can
produce very high senior tranche volatility as observed in the current market.

(Giesecke & Goldberg, 2005) and (Halperin & Tomecek, 2008) suggested random thinning as a possible
method to incorporate the single name dynamics in a top-down model. In the random thinning approach,
the dynamics of the portfolio loss process are determined first, then the random thinning technique is
applied to retrofit the single name identity and spread dynamics to the portfolio loss process. The random
thinning technique often requires the Monte Carlo simulation, which is numerically expensive. One notable
drawback with the random thinning approach is that the portfolio loss process has to be fully specified
before the random thinning. However, under the current market conditions, there is very little reliable
observations to calibrate the dynamics of the portfolio loss process. Therefore, the portfolio loss dynamics

5In theory, the difference between the model expected recovery and the underlying CDS curve recovery at tenors other than
5Y is an arbitrage violation, but that is almost impossible to exploit in practice. The µ(p, p) can be set to be a constant if
matching the constant term structure of the curve recovery is a requirement. The σ(p, p) has to increase over p to push the risk
to the senior most tranche if the µ(p, p) is kept constant.
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are often determined by ad hoc model assumptions or unreliable market observations or views. With random
thinning, even the most basic multi-name instruments, such as vanilla bespoke CDO or NTD basket, can be
numerically expensive to price and risk manage via a mapping method to the index tranches; the resulting
prices and single name risks are also susceptible to the ad hoc model assumptions or unreliable market inputs
on the portfolio loss dynamics.

In the modelling framework proposed in this paper, only the most reliable market information like the
single name CDS spreads and the index tranche prices are used to calibrate the model in the first step
in Figure 2. The valuation and single name risks of vanilla instruments such as bespoke CDOs and NTD
baskets do not depend on any model assumptions, observations or views about the portfolio loss dynamics.
Also, the semi-analytical method is supported because of the conditional independence in Definition 3.1.
Therefore the pricing and single name risk of vanilla instruments are very straight forward and numerically
efficient in the proposed modelling framework.

Another notable advantage of this modelling framework is its ease of implementation. There are no
requirements for complicated numerical techniques other than the simple one-dimensional optimization of
the marginal distribution of f(x, t), where standard optimization techniques work very well. After finding
f(x, t), existing top-down methodologies can be applied to build the JDDT and spread dynamics. In
comparison, existing bottom-up models based on AJD often require solving PDEs with finite difference
methods.

The proposed modelling framework is also very flexible, the functional form of the µi(p, p) and σ2
i (p, p) can

be changed to match the observations or views on the underlying credits’ recovery distributions. The copula
functions on the default indicators are also very flexible because any function pi(x, t) can be used as long as
the technical constraints in (14), (15) are met. The model can also be implemented either parametrically
or non-parametrically. A non-parametric approach makes it easy to reproduce the full ETL surface from a
base correlation model, thus keeping the exotic correlation products consistent with the vanilla CDOs which
are normally managed under the base correlation modelling framework. On the other hand, a parametric
approach makes it possible to price a bespoke CDO from the index tranches, and easier to compute risk
measures to the model parameters.

The specification and calibration of the full spread dynamics are not attempted in this paper due to the
lack of reliable market observables on spread dynamics to calibrate the model beyond the initial steps in
Figure 2. However, just calibrating the model to initial steps would be very useful in practice since reliable
range bounds in valuation can often be derived for spread-dependent exotic instruments once the JDDT is
specified. This could be a practical approach to manage very exotic correlation instruments in an incomplete
market.
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