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ABSTRACT: We analyze a dynamic market in which buyers compete in a sequence of auc-

tions. New buyers and objects may arrive at random times. Buyers’ private values, how-

ever, are not persistent. Instead, buyers draw new values in every period; equivalently,

objects are heterogeneous but are drawn from the same distribution.

We consider the use of the second-price auction for selling these objects. In equilibrium,

buyers do not bid their true value. Instead, they shade their bids down by their continua-

tion value, which is the option value of participating in future auctions. We show that this

option value depends not only on the number of buyers currently present on the market,

but also on anticipated market dynamics. We also generalize our results to the setting in

which values correspond to a “buyer’s market” or a “seller’s market” and market condi-

tions evolve, with persistence, from one to the other.
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1. INTRODUCTION

In this paper, we consider a model of dynamic markets in which buyers and sellers arrive ran-

domly to the market. We examine the equilibrium behavior of market participants in response to

these arrivals, as well as to changes in market conditions. In particular, we investigate the role of

current and anticipated future conditions in determining endogenous outside options in this set-

ting. We characterize the influence of these outside options on equilibrium price determination,

and study the manner in which equilibrium payoffs and behavior are affected by both current

conditions and future dynamics.

Consider the case of an individual who wants to purchase a new home. After surveying the

houses available on the market, a potential buyer will determine which house best matches her

individual preferences as well as her budgetary constraints, and will make an offer on that home.

Obviously, the amount of her offer will depend on the physical characteristics of the home: the

size of the house, the neighborhood or school district in which it lies, the potential for resale in the

future, and so on. Note that this heterogeneity is evaluated differently by different buyers. In ad-

dition, however, market conditions will play a large role. In a “seller’s market” in which demand

for housing is large relative to supply, prices will be higher. Abstracting away from immediate

housing needs, expectations about future market conditions and the dynamics governing them

will also play an important role. If high demand is expected to be only a short-lived phenomenon,

prices will be attenuated somewhat, especially if buyers are patient. Similarly, if a large number of

homes are expected to come onto the market in the near future, prices will be further depressed.

Thus, the offer of a potential homebuyer will depend on both the current competitiveness of the

market as well as the anticipated characteristics of the market in the near future.

As an alternative example, consider online auction markets. eBay, for instance, has developed

into a multi-billion dollar marketplace for the sale and resale of both new and used goods. Buyers

on eBay for any particular good have available to them a wide array of different sellers from

which they may purchase the object, with different participants in each auction and, often, slightly

differing characteristics of the object in question. For instance, there is frequently some exogenous

variation in the condition of a used object, and different sellers can, and do, ship their items from

various locations. Therefore, as individuals place their bids, they must take into account the fact

that they are not participating in a one-shot auction—they are free to costlessly participate in a

later auction if they are outbid and lose.

The present work abstracts away from many of the details of these various markets, focusing on

what we view as the essential features. In particular, we examine the situation in which buyers are

confronted with an infinite sequence of auctions for stochastically equivalent objects that arrive at

random times. Moreover, new buyers probabilistically arrive on the market in each period. Thus,

in any given auction, buyers are presented with the outside option of participating in a future

auction for an “equivalent” object, but with a potentially different number of competitors. We

provide a precise characterization of this option value, and explore the manner in which it varies

with the number of buyers currently present on the market, as well as the expectations of future

market conditions.
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Essentially, losing in an auction today yields the opportunity to participate in another auction

in the future; however, the potential for entry by additional buyers and the random arrival times

of auctions implies, in contrast to much of the literature on sequential auctions, that the compet-

itive environment in the future may differ significantly from the present one. Thus, the expected

payoff of a buyer currently present on the market is directly linked to her expected payoffs with

a different number of competitors present in future periods. This leads to a difference equation

characterizing the “outside option” available to each buyer, which is endogenously determined

in equilibrium. We show that this outside option is, in fact, an appropriately discounted sum

of expected payoffs from participating in each of the infinite sequence of auctions with differing

numbers of participants, where the weight on each auction is a combination of pure time discount-

ing and the likelihood of market dynamics leading to the corresponding state. Moreover, optimal

bidding behavior accounts for the option value in a straightforward and separable manner. Fi-

nally, this result is robust to various assumptions regarding the evolution of valuations, as well as

to changes in the trading institution employed.

The present work is related to, and complements, several strands of the literature on dynamic

markets and bargaining. In an insightful early work, Taylor (1995) examines bargaining power

and price formation as it relates to the number of traders on each side of a market. His model

assumes that agents are homogeneous—all buyers have the same commonly known value for

purchasing an object—and that trade is conducted via posted prices. Our model enriches his set-

ting by allowing for heterogeneous buyers and objects, employing an auction mechanism for price

determination. The theme and questions of this paper are also connected to those of Satterthwaite

and Shneyerov (2007). These authors consider a world in which a continuum of both buyers and

sellers enter in every period, following time-invariant strategies in a steady-state equilibrium. The

present work, on the other hand, is concerned with the behavior of agents in a dynamic environ-

ment with constantly changing conditions, and so a steady-state analysis runs counter to its goals.

Inderst (2008) considers a bargaining model in which a seller is randomly visited by hetero-

geneous buyers. If the seller is currently engaged in bargaining with one agent when another

arrives, she may choose to switch from bargaining with one buyer to bargaining with the other.

However, this switch is permanent, implying that the arrival of a new buyer either “restarts” the

game or is completely irrelevant. Fuchs and Skrzypacz (2008) take a different approach: they

consider an incomplete information bargaining problem between a buyer and a seller, and al-

low for the possibility of the arrival of various “events.” These events end the game and yield

an exogenously determined expected payoff to each agent. The suggested interpretation is that

these events may be viewed as triggers for some sort of multi-lateral mechanism involving new

entrants (a second-price auction, for example) for which the expected payoffs are a reduced-form

representation. Thus, while both works are primarily concerned with characterizing the endoge-

nous option value that results from the potential arrival of additional participants to the market,

they do this in a framework of bilateral bargaining which fails to capture the dynamic nature of

direct competition between several current and future potential market participants.
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The present work is also closely linked to certain elements of the sequential auctions literature.

Engelbrecht-Wiggans (1994) studies sequential auctions in which a fixed number of perfectly pa-

tient buyers with single-unit demand compete in a finite sequence of second-price auctions for

stochastically equivalent objects. His model, however, does not allow for several features of the

present work; in particular, it does not allow for the entry of new buyers or consider the role of

market dynamics in price determination. Said (2009) looks at a model with entry dynamics simi-

lar to the present work, but makes the complementary (and opposite) assumption of independent

private values that are fixed across time and focuses on the design of optimal (direct and indirect)

mechanisms. As in the present work, outside options are endogenously determined; however, the

presence of persistent private values introduces an element of learning that is not present herein.

Sailer (2006) and Zeithammer (2006) both conduct empirical examinations of eBay auctions

while taking into consideration the sequential nature of that market. Although the latter is dif-

ferentiated by the introduction of an assumption that buyers are able to observe their valuation

for some upcoming objects, both authors assume a fixed number of competing buyers in each

period, and therefore are unable to account for fluctuations in market conditions and competitive-

ness. Essentially, they assume away the existence of variation in market conditions. Thus, they

are closely related to the special case of our model in which an auction occurs in every period and

the winning bidder is always replaced by exactly one new buyer, ensuring that market conditions

remain stationary.1

The paper is organized as follows. Section 2 presents our model, and Section 3 solves for the

equilibrium. Section 4 discusses some comparative statics results. Section 5 demonstrates the

robustness of the model in a setting where market characteristics may vary from one period to the

next. Finally, Section 6 concludes and suggests some avenues for further research. All proofs are

found in the Appendix.

2. THE MODEL

We consider the continuous-time limit of a discrete-time market model; periods of length ∆ are

indexed by t ∈ N. There is a finite number nt of risk-neutral buyers with single-unit demand

on the market in any given period t. Each buyer i ∈ {1, . . . , nt} has a valuation vt
i , where vt

i

has distribution F on R+, where we assume that F has finite variance and a continuous density

function f . Valuations are private information, and are independently and identically distributed,

both across buyers and across objects over time. Thus, each buyer’s valuation for a given object is

a different independent draw from the distribution F; the objects are, as in Engelbrecht-Wiggans

(1994), stochastically equivalent. Finally, we assume that buyers discount the future exponentially

with discount factor δ = e−r∆, where the discount rate is r > 0.

In each period, there is at most one seller present. The arrival of sellers is stochastic; in partic-

ular, there is some exogenously fixed probability p = λ∆, λ > 0 that a new seller arrives on the

market in each period. Similarly, additional buyers may arrive on the market in each period. For

simplicity, we will assume that at most one buyer arrives at a time, and that this arrival occurs

1Nekipelov (2007) also models eBay auctions, taking into account the random nature of entry in that market. However,
his model is concerned with the role of new entrants within a single auction, and hence is best viewed as complementary
to the present work.
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with some exogenously given probability q = ρ∆, ρ > 0. In the event that a seller has arrived on

the market, each buyer i observes both vt
i and the number of competing buyers present. The seller

then conducts a second-price auction to allocate their object.

Note that we assume that sellers are not strategic—they are unable to set a reserve price and

are not permitted to remain on the market for more than one period.2 Conversely, buyers must

participate in each auction that takes place when they are present on the market, but may submit

negative bids. The only exception is the case in which a buyer would be the sole participant in an

auction; in such situations, the buyer is given the option of receiving the object at a price of zero or

waiting for a new draw from the distribution F in the subsequent period. This may be viewed as

the reduced-form version of a bargaining game between the buyer and the seller: since the seller

is impatient, she is willing to accept any offer made by the buyer. The buyer, however, may wish

to exercise her own outside option and wait for a new draw from the distribution F.

We will write Y
(n)
k to denote the k-th highest of n independent draws from F, and G

(n)
k and

g
(n)
k will denote the corresponding distribution and density functions, respectively, of this random

variable. In addition, we will define, for all n ∈ N,

Ŷ(n) := E

[
Y

(n)
1

]
− E

[
Y

(n−1)
1

]
.

This is the expected difference between the highest of n and n − 1 independent draws from the

distribution F, where, by convention, we let E

[
Y

(0)
1

]
= 0.

3. EQUILIBRIUM

Let V(vt
i , n) denote the expected payoff to a bidder when her valuation is vt

i and she is one

of n bidders present on the market. Recall that a seller must be currently present on the market

for buyers to be aware of their valuations. Furthermore, let W(n) denote the expected value to

a buyer when she is one of n buyers present on the market at the beginning of a period, before

the realization of the buyer and seller arrival processes. At the beginning of a period when there

are n buyers present, there are four possible outcomes: with probability pq, both a buyer and a

seller may arrive, leading to an auction with n + 1 participants; with probability p(1 − q) only

a seller arrives, yielding an auction with n participants; with probability (1 − p)q only a buyer

may arrive, leading to the next period starting with n + 1 participants; or, with the remaining

probability (1− p)(1− q), neither a buyer nor a seller may arrive, leading to the next period being

identical to the current one. Thus,

W(n) := pqE[V(vt
i , n + 1)] + p(1 − q)E[V(vt

i , n)]

+ (1 − p)qδW(n + 1) + (1 − p)(1 − q)δW(n).
(1)

Let us now consider the problem facing buyer i when there are n > 1 buyers on the market

and an object is currently available (and, hence, an auction is “about” to occur). This buyer, with

valuation vt
i must choose her bid bt

i . If she wins the auction, she receives a payoff of vt
i less the

2This assumption of no reserve prices is ultimately motivated by technical factors—if reserve prices (even one at zero)
were permitted, then the equations characterizing equilibrium in this model form a second-order non-homogeneous
and nonlinear difference equation. Solving such a difference equation numerically, let alone analytically, appears to be
an exercise in futility.
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second-highest bid. On the other hand, if she loses, she remains on the market as one of n − 1

buyers tomorrow, yielding her a payoff of δW(n − 1). Therefore,

V(vt
i , n) = max

bt
i





Pr
(

bt
i > maxj 6=i{bt

j}
)

E

[
vt

i − maxj 6=i{bt
j}|bt

i > maxj 6=i{bt
j}
]

+ Pr
(

bt
i < maxj 6=i{bt

j}
)

δW(n − 1)



 .

We may use this expression in order to determine equilibrium bid functions, as demonstrated in

the following result.

LEMMA 1 (Equilibrium bids).

In equilibrium, a buyer with value vt
i who is one of n > 1 buyers on the market bids bt

i = b∗(vt
i , n), where

b∗(vt
i , n) := vt

i − δW(n − 1). (2)

Given this bidding strategy and the fact that continuation payoffs do not differ across buyers,

the probability of i winning the auction in period t is simply Pr(vt
i > maxj 6=i{vt

j}), and the surplus

gained in this case becomes vt
i − maxj 6=i{vt

j}. Therefore, we may rewrite V as

V(vt
i , n) = Pr(vt

i > max
j 6=i

{vt
j})E

[
vt

i − max
j 6=i

{vt
j}|vt

i > max
j 6=i

{vt
j}
]

+ δW(n − 1)

= Pr
(

Y
(n−1)
1 < vt

i

)
E

[
vt

i − Y
(n−1)
1 |Y(n−1)

1 < vt
i

]
+ δW(n − 1)

= G
(n−1)
1 (vt

i)
(

vt
i − E

[
Y

(n)
2 |Y(n)

1 = vt
i

])
+ δW(n − 1), (3)

where the equivalence between the second and third lines relies on the properties of the highest

and second-highest order statistics.3

Note that, ex ante, any one of the n > 1 buyers present on the market in any period is equally

likely to have the highest value amongst her competitors (and hence win the object). We may use

this fact, along with the result above, to show that the ex ante expected utility of a buyer when

there is an object available for sale is simply the sum of her probability of winning the object

multiplied by her expected payoff, conditional on winning, and the discounted option value of

losing the object and remaining on the market in the next period. Formally, we are able to prove

the following result.

LEMMA 2 (Expected auction payoffs).

The expected payoff to a bidder from an auction with n > 1 participants is

E[V(vt
i , n)] = Ŷ(n) + δW(n − 1). (4)

With this result in hand, we may rewrite Equation (1) for n > 1 in terms of W and Ŷ alone:

W(n + 1) =
1 − δpq − δ(1 − p)(1 − q)

δ(1 − p)q
W(n) − p(1 − q)

(1 − p)q
W(n − 1)

− p

δ(1 − p)
Ŷ(n + 1) − p(1 − q)

δ(1 − p)q
Ŷ(n).

(5)

3See, for example, David and Nagaraja (2003, Chapter 3).
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In the case in which n = 1, however, the expression differs due to a lone buyer’s ability to “pass”

on purchasing an object. In particular, we have

V(vt
i , 1) = max

{
vt

i , δW(1)
}

.

Therefore,

W(1) = pq
(
Ŷ(2) + δW(1)

)
+ p(1 − q) (F (δW(1)) δW(1) + (1 − F (δW(1)) E [v|v > δW(1)])

+ (1 − p)qδW(2) + (1 − p)(1 − q)δW(1).
(6)

Thus, the expected payoff to a buyer is given by a solution to the second-order non-homogenous

linear difference equation in Equation (5) and boundary condition in Equation (6). While it is pos-

sible to find a solution to this system, the continuous-time limit is much more tractable. Recalling

that δ = e−r∆, p = λ∆, and q = ρ∆ and taking the limit as ∆ goes to zero yields

W(n + 1) =
r + λ + ρ

ρ
W(n) − λ

ρ

(
Ŷ(n) + W(n − 1)

)
for all n > 1, and (7)

W(1) =
λ (1 − F(W(1)))

r + λ(1 − F(W(1))) + ρ
E [v|v > W(1)] +

ρ

r + λ(1 − F(W(1))) + ρ
W(2). (8)

We may then rewrite this second-order difference equation as a first-order system of difference

equations. In particular, we have, for all k > 0,
(

W(k + 2)

W(k + 1)

)
=

[
r+λ+ρ

ρ −λ
ρ

1 0

](
W(k + 1)

W(k)

)
+

(
−λ

ρ Ŷ(k + 1)

0

)
. (9)

Note that there exist an infinite number of solutions (in general) to this difference equation;

indeed, even accounting for the boundary condition in Equation (8), there is a continuum of solu-

tions which satisfy the difference equation. However, we are able to rule out solutions in which

expected utility diverges to infinity (positive or negative) as the number of buyers on the market

grows—it is possible to show that there exists a unique bounded (and hence “sensible”) solution

to the difference equation. To characterize this solution, define

ζ1 :=
r + λ + ρ −

√
(r + λ + ρ)2 − 4λρ

2ρ
and ζ2 :=

r + λ + ρ +
√

(r + λ + ρ)2 − 4λρ

2ρ
.

These two constants are the eigenvalues of the “transition” matrix in Equation (9). It is straight-

forward to show that ζ1ζ2 = λ
ρ and 0 < ζ1 < 1 < ζ2 for all r, λ, ρ > 0.

PROPOSITION 1 (Equilibrium payoffs with buyer arrivals).

The unique symmetric equilibrium of this infinite-horizon sequential auction game is defined by the ex ante

expected payoff function given by

W(n) = ζn−1
1 W(1) +

ζn
1 ζ2

ζ2 − ζ1

n−1

∑
k=1

(
ζ−k

1 − ζ−k
2

)
Ŷ(k + 1) +

ζ1ζn
2 − ζn

1 ζ2

ζ2 − ζ1

∞

∑
k=n

ζ−k
2 Ŷ(k + 1), (10)

where W(1) solves

r + λ(1 − F(W(1))) + ρ

ρ
W(1) − λ

ρ
(1 − F(W(1)))E[v|v ≥ W(1)] = ζ1W(1) + ζ1ζ2

∞

∑
k=1

ζ−k
2 Ŷ(k + 1).
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(A) Uniformly distributed values
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(B) Exponentially distributed values

FIGURE 1. W(n) with r = 0.1, λ = 2, and ρ = 1.

We may now calculate the expected payoffs of buyers for each value of n ∈ N. Figure 1 dis-

plays an example of these paths for two distributions of values: the uniform and the exponential.

A consistent feature of the plot of W is the “hump” shape, in which buyer values are initially in-

creasing in n and then decreasing asymptotically towards zero. The reason for this is the manner

in which buyers shade their bids downwards; in particular, when a buyer is alone on the market

and chooses to purchase an object, she receives the object for free, while if she were to be one of

several buyers present, the amount she would have to pay when winning an object may be nega-

tive. Thus, for low levels of n, a buyer’s expected payoff may be increasing in n. However, as the

number of buyers present on the market increases, the likelihood of winning an object decreases,

as does the likelihood of the second-highest value being low enough for the price to be negative. It

is important to note that this observation is not an artifact of the second-price auction, as revenue

equivalence implies that any standard auction format will lead to identical expected payments.

Rather, this is due to the assumption that sellers may not set reserve prices and are willing to

accept negative prices.4

Note that this solution is easily generalized to trading institutions other than the sequential

second-price auction. By revenue equivalence, Ŷ(n) is the ex ante expected payoff of a buyer in

any standard one-shot auction mechanism with n buyers. Therefore, Equation (10) continues to

hold, as is, for markets in which objects are sold via, for instance, sequential first-price auctions—

while buyers’ bids will differ, their expected payoffs will remain the same, and hence Equation (10)

continues to characterize equilibrium payoffs.

On the other hand, if a different trading institution were to be employed, then replacing Ŷ(n)

by the appropriate ex ante expected payoff of a buyer in that mechanism would yield the corre-

sponding solution for that institution. For example, suppose that each seller employs a (fixed)

multi-lateral bargaining game for allocating her object. Letting Ỹ(n) denote the ex ante expected

payoff to each of n buyers from participating in this one-shot bargaining game, equilibrium in

4Recall that this assumption is motivated by technical factors—in the presence of reserve prices, then the characteriza-
tion in Equation (5) of W(n) would become a second-order non-homogeneous and nonlinear difference equation. Such
systems are notoriously intractable, even in the face of numerical approaches.
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Ρ=1
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FIGURE 2. W(n) with exponentially distributed values, r = 0.05, λ = 2, and ρ ∈ { 1
2 , 1, 3

2}.

the resulting dynamic market is then characterized by the analogue to Equation (10) where Ŷ is

replaced by Ỹ.

4. COMPARATIVE STATICS

In order to better understand the effects of time and entry on the payoffs of agents in this mar-

ket, we consider some comparative statics. Unfortunately, changes in the parameters often have

countervailing effects, and clean comparative statics results are difficult, if not impossible to de-

rive. In particular, the effect of changes in the parameters depends upon the relationship between

them as embodied in ζ1 and ζ2, and such effects may go in either direction.

Moreover, the changes in the parameters have, in addition to scale effects on W(n), shape effects:

the size, or even existence, of the “hump” described above is affected by changes in these param-

eters. This is most clearly seen by considering Figure 2, which plots W for various values of ρ. It

is immediately apparent that the relationship between ρ and W is non-monotonic and dependent

upon n and the other parameters.

More positive results are possible for understanding the effects of changes in the distribution of

values on payoffs. Notice that buyer welfare is an increasing function of Ŷ(k) for all k ∈ N, and

recall that

Ŷ(k) = E

[
Y

(k)
1

]
− E

[
Y

(k−1)
1

]
=

1

k

(
E

[
Y

(k)
1

]
− E

[
Y

(k)
2

])
.

Thus, a distributional change that systematically affects this difference will effectively lead to a

change in buyer welfare. Notice, however, that replacing F by a distribution G such that stochasti-

cally dominates F is not sufficient for increasing Ŷ. Although such a change increases both E

[
Y

(k)
1

]

and E

[
Y

(k)
2

]
, it may decrease the difference between the two.5 Thus, standard stochastic domi-

nance is not sufficient for our purposes, as the ordering of the distributions is reversed when

considering the difference between order statistics.6

5This difference is referred to by the statistics literature as a “sample spacing.” The curious reader is referred to Boland
and Shanthikumar (1998) for an overview of stochastic ordering of order statistics, and to Xu and Li (2006) for additional
results on the stochastic ordering of sample spacings.
6We should point out that the bounded support of these two distributions is not essential to this argument.
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The statistics literature, however, has identified two different conditions that are sufficient for

our purposes. First, Kochar (1999) shows that if G dominates F in terms of the hazard rate order

and either F or G display a decreasing hazard rate, then Ŷ(k|G) ≥ Ŷ(k|F) for all k ∈ N. Recall

that the hazard rate of a distribution H with density h is given by

λH(t) =
h(t)

1 − H(t)
.

Therefore, G dominates F in terms of the hazard rate if

λG(t) ≤ λF(t) for all t.

Note that hazard rate dominance implies first-order stochastic dominance. Second, Bartoszewicz

(1986) demonstrates that, if G dominates F in terms of the dispersive order, then we again have

Ŷ(k|G) ≥ Ŷ(k|F) for all k ∈ N. A distribution G dominates the distribution F in terms of the

dispersive order if, for all 0 ≤ x < y ≤ 1,

G−1(y) − G−1(x) ≥ F−1(y) − F−1(x).

This is a variability ordering, in the sense that it requires the difference of quantiles of F to be

smaller than the difference of the corresponding quantiles of G. Intuitively, when the quantiles of

a distribution are more spread out, there is greater variance in the upper tail, and hence a larger

difference between the first- and second-order statistics.

5. MARKOVIAN VALUES

Throughout, we have assumed that objects are stochastically equivalent; in effect, this implies

that history is irrelevant except for its role in determining the current number of market partici-

pants. While this is a convenient assumption for the sake of tractability—implying, for instance,

that we need not worry about issues of learning and the standard results of the second-price

sealed-bid auction apply—it is somewhat limiting in its scope.

We therefore generalize the model and consider a world in which history does matter, although

in a manner that still allows for a similar form of analysis. In particular, we consider a model

in which buyers’ values are drawn from one of two different distributions, and the distributions

are “persistent” in the sense that the distribution is chosen according to a (known) Markov pro-

cess. In particular, if the values are drawn from one distribution today, then they are likely to be

drawn from the same distribution again tomorrow. The impetus behind such a modeling choice

is the idea of a “buyer’s” or “seller’s” market; one distribution corresponds to the case in which,

for some unmodeled exogenous reason, demand (and hence willingness to pay) is higher, inde-

pendent of the number of current competitors, whereas the second corresponds to the case in

which demand is relatively low. As the external forces driving value distributions typically do not

change overnight, a buyer’s market is likely to persist for some time.

Thus, we consider the case in which there are two states of the world {ω1, ω2} ∈ Ω. In state ωi,

values are drawn from the distribution Fi (with corresponding density fi). The state of the world

is assumed to be commonly knowledge in each period. In addition, the (symmetric) probability

of transitioning from one state to the other is τ = π∆, π > 0. Note that the model is easily
9
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generalized to a greater number of states or asymmetric transitions; doing so would, however,

greatly complicate notation and explication while providing little in the way of additional insight.

We will denote by W(n, ωi) the expected payoff to a buyer when the state of the world is ωi ∈ Ω

and there are n total buyers present in the market; recall that this is an ex ante payoff, as this is

before a seller has arrived on the market in the period and the buyers do not yet know their valu-

ations. We will denote by V(vt
i , n, ω) the expected payoff to a buyer when a seller has arrived, and

hence the buyer knows her value vt
i , and, slightly abusing notation, we will write E[V(vt

i , n, ωi)]

to denote the expected value to a buyer when a seller is present but the buyer does not (yet) know

her value; the expectation is taken with respect to the distribution Fi.

Thus, for i ∈ {1, 2}, we have

W(n, ωi) = pqE[V(vt
i , n + 1, ωi)] + p(1 − q)E[V(vt

i , n, ωi)]

+ δ(1 − p)

[
(1 − τ)qW(n + 1, ωi) + τqW(n + 1, ω−i)

+ (1 − τ)(1 − q)W(n, ωi) + τ(1 − q)W(n, ω−i)

]
.

Furthermore, it is relatively straightforward (using the same methods as in previous sections) to

see that Lemma 1 again applies in this setting—a buyer’s optimal behavior is to bid her true value

less her continuation value. This implies that

E[V(vt
i , k, ωi)] = Ŷ(k, ωi) + δ [(1 − τ)W(k − 1, ωi) + τW(k − 1, ω−i)] .

Combining these two expressions leads to a system of (coupled) second-order difference equa-

tions. Once again, the arithmetic becomes cumbersome due to the interaction of the various pa-

rameters; therefore, we pass to the continuous time limit as ∆ approaches zero. This yields

W(n + 2, ωi) =
r + π + λ + ρ

ρ
W(n + 1, ωi) −

π

ρ
W(n + 1, ω−i)

− λ

ρ
Ŷ(n + 1, ωi) −

λ

ρ
W(n, ωi) for all n > 1.

(11)

Notice that this expression is, in fact, a difference equation that is second-order in W(·, ωi). How-

ever, W(·, ω−i) also appears in the equation, implying that we have a coupled system of difference

equations.

As in the previous section, we are interested in finding a solution to this system of difference

equations. Moreover, we require that this solution be bounded, as well as that the solution satisfies

the appropriate boundary conditions. These boundary conditions may be found in a manner

analogous to those discussed previously. Specifically, a buyer who is alone on the market may

choose to wait, taking into account the possibility of the state switching before another seller

arrives on the market. This leads to

(r + λ(1 − Fi(W(1, ωi))) + ρ + π) W(1, ωi)

= λ (1 − Fi(W(1, ωi))) E[v|v > W(1, ωi)] + ρW(2, ωi) + πW(1, ω−i). (12)

Once again, this system of difference equations has a continuum of solutions when we ignore

the boundedness constraint; however, we can show, in a manner similar to that of the previ-

ous sections, that there exists a unique bounded solution that satisfies the boundary conditions of
10
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Equation (12). To characterize this solution, define

ξ1 =
r + λ + ρ + 2π −

√
(r + λ + ρ + 2π)2 − 4λρ

2ρ
and

ξ2 =
r + λ + ρ + 2π +

√
(r + λ + ρ + 2π)2 − 4λρ

2ρ
,

as well as

ξ3 =
r + λ + ρ −

√
(r + λ + ρ)2 − 4λρ

2ρ
and

ξ4 =
r + λ + ρ +

√
(r + λ + ρ)2 − 4λρ

2ρ
.

Note that 0 < ξ1, ξ3 < 1 < ξ2, ξ4 and ξ1ξ2 = λ
ρ = ξ3ξ4. We then have

PROPOSITION 2 (Equilibrium payoffs with Markovian values).

The unique symmetric equilibrium with bounded payoffs of this infinite-horizon sequential auction game is

determined by the ex ante expected payoff functions given by, for i = 1, 2,

W(n, ωi) = ξn−1
1

(
W(1, ωi) − W(1, ω−i)

2

)

+
ξn

1 ξ2

ξ2 − ξ1

(
n−1

∑
k=1

(
ξ−k

1 − ξ−k
2

) Ŷ(k + 1, ωi) − Ŷ(k + 1, ω−i)

2

)

+
ξ1ξn

2 − ξn
1 ξ2

ξ2 − ξ1

(
∞

∑
k=n

ξ−k
2

Ŷ(k + 1, ωi) − Ŷ(k + 1, ω−i)

2

)

+ ξn−1
3

(
W(1, ωi) + W(1, ω−i)

2

)

+
ξn

3 ξ4

ξ4 − ξ3

(
n−1

∑
k=1

(
ξ−k

3 − ξ−k
4

) Ŷ(k + 1, ωi) + Ŷ(k + 1, ω−i)

2

)

+
ξ3ξn

4 − ξn
3 ξ4

ξ4 − ξ3

(
∞

∑
k=n

ξ−k
4

Ŷ(k + 1, ωi) + Ŷ(k + 1, ω−i)

2

)
,

(13)

where W(1, ωi) and W(1, ω−i) solve the boundary conditions derived from Equation (12).

Note that when π = 0 or when the distributions F1 and F2 are identical, the solution in Equa-

tion (13) collapses to becomes identical to Equation (10); in particular, we have the case studied

in earlier sections with only one state of the world. Moreover, the difference in expected payoffs

between the two states is determined solely by the difference in sample spacings between the

11
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FIGURE 3. W(n, ωi) with F1(v) = 1 − e−v, F2(v) = 1 − e−2v, r = 0.05, λ = 1, ρ = 1,
and π = 0.05.

distributions in the two states. Note that

W(n, ωi) − W(n, ω−i) = ξn−1
1 (W(1, ω1) − W(1, ω−i))

+
ξn

1 ξ2

ξ2 − ξ1

(
n−1

∑
k=1

(
ξ−k

1 − ξ−k
2

) (
Ŷ(k + 1, ωi) − Ŷ(k + 1, ω−i)

))

+
ξ1ξn

2 − ξn
1 ξ2

ξ2 − ξ1

(
∞

∑
k=n

ξ−k
2

(
Ŷ(k + 1, ωi) − Ŷ(k + 1, ω−i)

))
.

Whenever this difference is positive, buyers strictly prefer to be in state ωi than in state ω−i; the

converse of this is, of course, that bidding is more aggressive in state ωi than in state ω−i in the

sense of absolute magnitude of bid shading away from the true values.7 Figure 3 demonstrates

an example of this in the case that F1 dominates F2 in terms of the dispersive order as discussed

earlier. Note that W(n, ω1) > W(n, ω2) for all n. Moreover, as may be seen in Figure 4, buyer’s

payoffs in state ω1 are lower than they would be if there were no transitions to state ω2, while the

payoffs in state ω2 are higher than they would otherwise be in a one-state model. In essence, the

possibility of transitioning to an unambiguously better state improves buyer utility in state ω2,

while the possibility of transitioning to an unambiguously worse state decreases buyer utility in

state ω1.

6. CONCLUSION

This paper characterizes the manner in which current market conditions, as well as anticipated

future conditions, create an endogenous option value for bidders in a dynamic market. Since buy-

ers must trade off purchasing in the present against participating in the future, the value of this

future option is crucial for current-period bidding; however, the value of the option is itself deter-

mined by equilibrium bidding behavior. We show that this endogenous option value is, in fact,

the expected discounted sum of the potential payoffs from individual transactions in the infinite

7Note that since ∂ξ1/∂π < 0 < ∂ξ2/∂π, as the rate of state-to-state transitions increases without bound, there is enough
churning between the two states that the differential between the state-contingent payoffs goes to zero.

12
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WHn,Ω1L

WHnL

5 10 15 20
n

1

2

3

4

WHnL

(A) State ω1
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(B) State ω2

FIGURE 4. W(n, ωi) and W(n) with distribution Fi, r = 0.05, λ = 1, ρ = 1, and π = 0.05.

sequence of possible states of the world, each differentiated by the potential number of buyers

present on the market at that time. When the trading institution is an auction mechanism, buyers

are therefore willing to bid their true values less the discounted option value of participating in

this future sequence of auctions.

There are several directions for extending our analysis. One possibility is dropping the assump-

tion of stochastic equivalence and endowing each buyer with a fixed private value for obtaining

an object. There are several technical difficulties in conducting such an analysis in a model with

sealed-bid auctions. These complications are discussed in Said (2009). In particular, the sequen-

tial second-price auction is not efficient in the presence of buyer arrivals, so instead we examine

a model in which objects are sold using the ascending auction format. Another potentially inter-

esting line of research involves allowing for multiple simultaneous auctions, or allowing sellers

to remain on the market for several periods and overlapping with one another. Additional pos-

sibilities include endogenizing the entry behavior of buyers and sellers in response to market

conditions and dynamics, or allowing for the setting of reserve prices by sellers; in particular, con-

sidering the limit behavior of a model with a cap on the number of market participants may be

particularly useful. These extensions are, however, left for future work.

13
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APPENDIX

PROOF OF LEMMA 1. Note that, since

Pr(bt
i < max

j 6=i
{bt

j}) = 1 − Pr(bt
i > max

j 6=i
{bt

j}),

we may rewrite V(vt
i , n) as

max
bt

i

{
Pr(bt

i > maxj 6=i{bt
j})E

[
vt

i − δW(n − 1) − maxj 6=i{bt
j}|bt

i > maxj 6=i{bt
j}
]

+δW(n − 1)

}
.

Since the trailing δW(n − 1) in the above expression is merely an additive constant, the maximiza-

tion problem above is corresponds to that of a second-price auction with n bidders in which each

bidder i’s valuation is given by vt
i − δW(n − 1). The standard dominance argument for second-

price auctions then implies that b∗(vt
i , n) = vt

i − δW(n − 1). �

PROOF OF LEMMA 2. Recall that Equation (3) provides an expression for V(vt
i , n). Taking the

expectation of this expression with respect to vt
i yields

E
[
V(vt

i , n)
]

=
∫ ∞

−∞

((
x − E

[
Y

(n)
2 |Y(n)

1 = vt
i

])
G

(n−1)
1 (x) + δW(n − 1)

)
f (x) dx

=
1

n

(∫ ∞

−∞
xg

(n)
1 (x) dx −

∫ ∞

−∞
E

[
Y

(n)
2 |Y(n)

1 = vt
i

]
g

(n)
1 (x) dx

)
+ δW(n − 1)

=
1

n

(
E

[
Y

(n)
1

]
− E

[
Y

(n)
2

])
+ δW(n − 1).

Moreover, it is straightforward (see Krishna (2002, Appendix C), for instance) to show that

1

n

(
E

[
Y

(n)
1

]
− E

[
Y

(n)
2

])
= E

[
Y

(n)
1

]
− E

[
Y

(n−1)
1

]
.

This is exactly the quantity previously defined as Ŷ(n), implying that

E
[
V(vt

i , n)
]

= Ŷ(n) + δW(n − 1),

as desired. �

PROOF OF PROPOSITION 1. Define

wm := (W(m + 1), W(m))′ and ym :=
(
−ζ1ζ2Ŷ(m + 1), 0

)′

for all m ∈ N. Then Equation (9) becomes

wn+1 = Awn + yn,

where A is the matrix in Equation (9). Applying Elayedi (2005, Theorem 3.17) yields the general

solution

wn = An−1w1 +
n−1

∑
k=1

An−k−1yk.

Recalling that ζ1 and ζ2 are the eigenvalues of the matrix A, it is straightforward to show that

Ak =
1

ζ2 − ζ1

[
ζk+1

2 − ζk+1
1 ζk+1

1 ζ2 − ζ1ζk+1
2

ζk
2 − ζk

1 ζk
1ζ2 − ζ1ζk

2

]
,

14
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implying that the general solution to this second-order system may be (after some rearrangement)

written as

W(n) =
ζn−1

2

ζ2 − ζ1

(
W(2) − ζ1W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
2 Ŷ(k + 1)

)

− ζn−1
1

ζ2 − ζ1

(
W(2) − ζ2W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
1 Ŷ(k + 1)

)
.

(A.1)

Consider the second term in the above expression. Since 0 < ζ1 < 1, the first two parts of it

are clearly bounded; in particular, we have ζn−1
1 (ζ2 − ζ1)

−1(W(2) − ζ2W(1)) → 0 as n → ∞. The

third part of this term may be rewritten as

ζn
1 ζ2

ζ2 − ζ1

n−1

∑
k=1

ζ−k
1 Ŷ(k + 1) =

ζ2

ζ2 − ζ1

n−1

∑
k=1

ζk
1Ŷ(n − k + 1)

≤ ζ2

ζ2 − ζ1

n−1

∑
k=1

ζk
1σ <

ζ2

ζ2 − ζ1

∞

∑
k=1

ζk
1σ <

ζ1ζ2σ

(ζ2 − ζ1)(1 − ζ1)
,

where σ2 is the (assumed finite) variance of the distribution F. This follows from Arnold and

Groeneveld (1979), who show that

E

[
Y

(m)
1

]
− E

[
Y

(m)
2

]
≤ mσ√

m − 1
for all m > 1.

Recalling the definition of Ŷ, we then have

Ŷ(m) ≤ σ√
m − 1

< σ

for all m > 1, implying that the second term in Equation (A.1) is bounded.

The first term in Equation (A.1), however, is multiplied by positive powers of ζ2 > 1, implying

that an appropriate choice of W(2) is crucial for ensuring the boundedness of our solution. One

such choice is to let

W(2) = ζ1W(1) + ζ1ζ2

∞

∑
k=1

ζ−k
2 Ŷ(k + 1). (A.2)

Note that, for any W(1) ∈ R, W(2) is well-defined by the expression above, as ζ2 > 1 and {Ŷ(m)}
is a bounded sequence. The first term in Equation (A.1) then becomes

ζ1ζn
2

ζ2 − ζ1

∞

∑
k=n

ζ−k
2 Ŷ(k + 1) =

ζ1

ζ2 − ζ1

∞

∑
k=n

ζn−k
2 Ŷ(k + 1)

=
ζ1

ζ2 − ζ1

∞

∑
k=0

ζ−k
2 Ŷ(n + k + 1) < ∞,

where we again rely on the boundedness of the sequence {Ŷ(m)} when F has finite variance.

Thus, for any choice of W(1), choosing W(2) in accordance with Equation (A.2) leads to a bounded

solution of the difference equation.

To show that this is the unique bounded solution, consider any fixed W(1), and denote by c̄ the

choice of W(2) corresponding to Equation (A.2). Fix any arbitrary α ∈ R, and let W(2) = αc̄.
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Then, denoting by W̄ the solution when W(2) = c̄, Equation (A.1) becomes

W(n) =
ζn−1

2

ζ2 − ζ1

(
αc̄ − ζ1W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
2 Ŷ(k + 1)

)

− ζn−1
1

ζ2 − ζ1

(
αc̄ − ζ2W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
1 Ŷ(k + 1)

)

=
ζn−1

2

ζ2 − ζ1

(
c̄ + (α − 1)c̄ − ζ1W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
2 Ŷ(k + 1)

)

− ζn−1
1

ζ2 − ζ1

(
c̄ + (α − 1)c̄ − ζ2W(1) − ζ1ζ2

n−1

∑
k=1

ζ−k
1 Ŷ(k + 1)

)

= W̄(n) +
(

ζn−1
2 − ζn−1

1

) (α − 1)

ζ2 − ζ1
c̄.

Since ζ2 > 1 > ζ1 > 0, the above expression remains bounded if, and only if, α = 1. Note that

we also have boundedness for arbitrary α if c̄ = 0. However, this would imply that W(1) =

−ζ2 ∑
∞
k=1 ζ−k

2 Ŷ(k + 1) < 0, contradicting the boundary condition in Equation (8).

Thus, for any choice of W(1), choosing W(2) in accordance with Equation (A.2) leads to a

bounded solution. The only remaining free variable is then W(1), which is then determined

by the boundary condition derived from single-buyer behavior; that is, W(1) may be found by

combining Equation (8) and Equation (A.2), leading to the condition stated in the proposition, as

desired. �

PROOF OF PROPOSITION 2. Letting a := r+π+λ+ρ
ρ , b := −π

ρ , and c := −λ
ρ , we may then write the

coupled system defined by Equation (11) as



W1(n + 2)

W2(n + 2)

W1(n + 1)

W2(n + 1)


 =




a b c 0

b a 0 c

1 0 0 0

0 1 0 0







W1(n + 1)

W2(n + 1)

W1(n)

W2(n)


+




cŶ1(n + 1)

cŶ2(n + 1)

0

0


 , (A.3)

where the subscripts on W and Ŷ denote the state of the world. Writing A for the matrix of

coefficients above, and letting

wk := (W1(k + 1), W2(k + 1), W1(k), W2(k))′

and

yk := (cŶ1(k + 1), cŶ2(k + 1), 0, 0)′,

we can write Equation (A.3) more compactly as

wn+1 = Awn + yn.

Applying Elayedi (2005, Theorem 3.17), we then may conclude that the general solution to this

system is

wn = An−1w1 +
n−1

∑
k=1

An−k−1yk. (A.4)
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In particular, if we denote by a
(k)
ij the ij-th element of Ak, this may be rewritten as

(
W1(n)

W2(n)

)
=

[
a
(n−1)
31 a

(n−1)
32 a

(n−1)
33 a

(n−1)
34

a
(n−1)
41 a

(n−1)
42 a

(n−1)
43 a

(n−1)
34

]



W1(2)

W2(2)

W1(1)

W2(1)




+ c
n−1

∑
k=1

[
a
(n−k−1)
31 a

(n−k−1)
32

a
(n−k−1)
41 a

(n−k−1)
42

](
Ŷ1(k + 1)

Ŷ2(k + 1)

)
.

(A.5)

Note that A is diagonalizable: defining D := diag [ξ1, ξ2, ξ3, ξ4] and P := [v1, v2, v3, v4] to be

the diagonal matrix of eigenvalues of A the matrix formed from the corresponding eigenvectors,

respectively, we may write A = PDP−1. Therefore, Ak = PDkP−1, allowing for the explicit

calculation of Ak for all k. In particular, we have

P =




−ξ1 −ξ2 ξ3 ξ4

ξ1 ξ2 ξ3 ξ4

−1 −1 1 1

1 1 1 1


 ,

which implies that

a
(k)
31 = a

(k)
42 =

ξk
2 − ξk

1

2(ξ2 − ξ1)
+

ξk
4 − ξk

3

2(ξ4 − ξ3)
, a

(k)
33 = a

(k)
44 =

ξ1ξk
2 − ξk

1ξ2

2(ξ2 − ξ1)
+

ξ3ξk
4 − ξk

3ξ4

2(ξ4 − ξ3)
,

a
(k)
32 = a

(k)
41 =

ξk
1 − ξk

2

2(ξ2 − ξ1)
+

ξk
4 − ξk

3

2(ξ4 − ξ3)
, a

(k)
34 = a

(k)
43 =

ξk
1ξ2 − ξ1ξk

2

2(ξ2 − ξ1)
+

ξ3ξk
4 − ξk

3ξ4

2(ξ4 − ξ3)
.

Notice that (due to the symmetry detailed above), we need concentrate only on the value function

from one state. Thus, we may (after some rearrangement) write

W1(n) =

ξn−1
2

ξ2 − ξ1

(
W1(2) − W2(2)

2
− ξ1

W1(1) − W2(1)

2
− ξ1ξ2

n−1

∑
k=1

ξ−k
2

Ŷ1(k + 1) − Ŷ2(k + 1)

2

)

− ξn−1
1

ξ2 − ξ1

(
W1(2) − W2(2)

2
− ξ2

W1(1) − W2(1)

2
− ξ1ξ2

n−1

∑
k=1

ξ−k
1

Ŷ1(k + 1) − Ŷ2(k + 1)

2

)

+
ξn−1

4

ξ4 − ξ3

(
W1(2) + W2(2)

2
− ξ3

W1(1) + W2(1)

2
− ξ3ξ4

n−1

∑
k=1

ξ−k
4

Ŷ1(k + 1) + Ŷ2(k + 1)

2

)

− ξn−1
3

ξ4 − ξ3

(
W1(2) + W2(2)

2
− ξ4

W1(1) + W2(1)

2
− ξ3ξ4

n−1

∑
k=1

ξ−k
3

Ŷ1(k + 1) + Ŷ2(k + 1)

2

)
.

Since 0 < ξ1, ξ3 < 1 and both F and G are assumed to have finite variance, it is straightforward to

verify that for any choices of W1(1), W1(2), W2(1), and W2(2) that the second and fourth terms in

this expression are bounded. As in the main text, however, the fact that ξ2, ξ4 > 1 implies that the

first and third terms may be unbounded if W1(2) and W2(2) are not chosen carefully. Therefore,
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let

W1(2) :=
ξ1 + ξ3

2
W1(1) +

ξ3 − ξ1

2
W2(1) (A.6)

+
λ

ρ

∞

∑
k=1

ξ−k
2 + ξ−k

4

2
Ŷ1(k + 1) +

λ

ρ

∞

∑
k=1

ξ−k
4 − ξ−k

2

2
Ŷ2(k + 1) and

W2(2) :=
ξ3 + ξ1

2
W2(1) +

ξ3 − ξ1

2
W1(1) (A.7)

+
λ

ρ

∞

∑
k=1

ξ−k
4 + ξ−k

2

2
Ŷ2(k + 1) +

λ

ρ

∞

∑
k=1

ξ−k
4 − ξ−k

2

2
Ŷ1(k + 1).

Verifying that these values lead to a bounded solution for W1(n) and W2(n) for any choices of

W1(1) and W2(1) follows in a manner directly analogous to that used in the proof of Proposition 1.

Finally, the values of W1(1) and W2(1) are given by the joint solution to the system of equations

derived by equating the definitions of W1(2) and W2(2) above with the boundary condition from

Equation (12):

r + λ(1 − Fi(W(1, ωi)) + ρ + π

ρ
W(1, ωi) −

π

ρ
W(1, ω−i)

− λ(1 − Fi(W(1, ωi))

ρ
E[v|v > W(1, ωi)]

=
ξ1 + ξ3

2
W(1, ωi) +

ξ3 − ξ1

2
W(1, ω−i) (A.8)

+
λ

ρ

∞

∑
k=1

ξ−k
2 + ξ−k

4

2
Ŷ(k + 1, ωi) +

λ

ρ

∞

∑
k=1

ξ−k
4 − ξ−k

2

2
Ŷ(k + 1, ω−i).

Uniqueness of the solution to the system of difference equations may then be shown in exactly

the same manner as in the proof of Proposition 1. Thus, after some rearrangement, the unique

bounded solution is given, as desired, by the expression found in Equation (13). �
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