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Abstract

In this paper, we propose multi-stage stochastic linear programming for asset-liability

management under time-varying investment opportunities. We use a first-order unrestricted

vector autoregressive process to model predictability in the asset returns and the state vari-

ables, where — additional to equity returns and dividend-price ratios — Nelson/Siegel pa-

rameters are included to account for the evolution of the yield curve. As objective function

we minimize conditional value at risk of the shareholder value, i.e. the difference between

the mark-to-market value of (financial) assets and the present value of future liabilities. Our

results indicate strong hedging demands to mitigate interest rate risks.

Keywords: predictability, stochastic programming, scenario generation, VAR process

JEL Codes: C61, G11

1 Introduction

One of the classical problems in finance is to derive optimal dynamic investment strategies

over a finite planning horizon, where the decision uncertainty is modeled with stochastic

processes, which drive asset returns and state variables. Early work traces back to the pio-

neering papers of Samuelson (1969) and Merton (1969, 1971). The use of a geometric Brow-

nian motion, i.e. a constant risk premia, ensures analytical tractability. If such a process is
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appropriate, investors should hold a constant asset allocation over time for a large class of

utility functions. On the one hand this result is in contrast to the prevailing common prac-

tice, where for longer investment periods more risk-taking is recommended. On the other

hand extensive empirical literature has found predictability in asset returns. A typical spec-

ification regresses an independent lagged predictor, e.g. dividend-price ratio, earnings-price

ratio, interest rates and spreads, on the stock market return or on the equity premium. Begin-

ning with contributions of Keim and Stambaugh (1986) and Campbell and Shiller (1988) the

question was again actively discussed in the last decade (e.g. Cochrane and Piazzesi, 2005;

Ang and Bekaert, 2007; Goyal and Welch, 2008; Campbell and Thompson, 2008).

Therefore, many different papers analyzed the impact of such time-varying investment

opportunities on the optimal strategy of utility maximizing investors and found deviations

from a pure myopic policy. The horizon effects in the asset allocation are called “hedg-

ing demands”. However, analytical results as e.g. in Kim and Omberg (1996) and Wachter

(2002) are the exception rather than the rule under such a setting. The overwhelming part

of the works uses numerical methods. In addition to approximate analytical approaches (see

e.g. Campbell and Viceira, 1999; Campbell et al., 2003), two main types of numerical solu-

tion techniques can be found in the literature. While the first approach discretizes the state

space and solves the problem by backward induction (see e.g. Brennan et al., 1997; Barberis,

2000), the second method is simulation-based (e.g. Brandt et al., 2005; Detemple et al.,

2003; Koijen et al., 2009).

In this paper we propose stochastic linear programming (SLP) for an asset-liability man-

agement (ALM) task where investment opportunities are time-varying. For successful appli-

cations of related problems see e.g. Cariño and Ziemba (1994); Gondzio and Kouwenberg

(2001); Geyer and Ziemba (2008). Analogous to e.g. Campbell et al. (2003) and

Brandt et al. (2005) we use a first-order unrestricted vector-autoregressive process, called

VAR(1), to model asset returns and state variables. In the SLP approach the multivari-

ate distribution of the process is approximated with a few mass points (nodes) (see e.g.

Høyland and Wallace, 2001; Pflug, 2001; Heitsch and Römisch, 2003). Optimal decisions

are then calculated for each node for the scenario tree. Given that the evolution of the whole

term structure plays a decisive role in an ALM context a parametric approach seems appro-

priate to maintain computational tractability (see Boender et al., 2005). The most widely

used one by researchers and practitioners is the Nelson and Siegel (1987) exponential com-

ponent framework. In contrast to no-arbitrage and equilibrium models the entire yield curve

is distilled into a parameter vector, which can be interpreted as level, slope and curvature

of the term structure (for a discussion see e.g. Diebold and Li, 2006).1 We use historic es-

1Similar to this approach Bertocchi et al. (2005) propose a multi-factor model to incorporate changes in credit

risk in the SLP context and to develop immunization strategies for bonds with different credit ratings. Although
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timates of Nelson/Siegel parameters with other asset returns and state variables, i.e. in our

case log equity returns and log dividend-price ratios, to estimate a VAR(1) process for the

scenario generation. To exploit predictability in the returns for the short run, we implement

a multi-stage optimization setting. The impulse-response functions give evidence that the

impact of shocks to the parameters of the VAR(1) process takes place within the first few

periods.

The key parameter to keep under control in an ALM optimization task is the difference

between the mark-to-market value of (financial) assets and the present value of future liabil-

ities (or more general cash flows). While the market value of assets depends on the initial

endowment of the fund, on past cash in- and outflows and on realized returns, the present

value of future cash flows is a function of the current term structure of interest rates. E.g.

a negative value indicates that the pension plan is underfunded. This difference can also

be interpreted as the benefit owners’ shareholder value (SV) of a pension plan. Therefore,

we choose to include this parameter in our objective function. Following Pflug (2000) and

Rockafellar and Uryasev (2000, 2002) we minimize the conditional value (CVaR) — a co-

herent risk measure (see Artzner et al., 1999) — of the SV under the constraint that some

expected value for the SV is attained at the end of the planning horizon. Further, in addition

to the classical budget, inventory and asset allocation constraints we enforce, that the possi-

ble drawdown in SV between two stages is above some prespecified level for all events in

our scenario tree. This amount can be interpreted as the maximum loss in the SV a sponsor

of the plan is willing to suffer.

The contribution to the existing literature is to propose a multi-stage ALM strategy in

the context time-varying investment opportunities given by a VAR(1) process and to analyze

horizon effects in this setting. The paper is organized as follows: In Section 2 we present

the notation and the stochasting linear programming formulation. Section 3 explains the

scenario generation procedure, which includes the estimation of Nelson/Siegel parameters,

the calibration of the VAR(1) model and the generation of arbitrage-free asset returns. In

Section 4 we present a numerical example, discuss the results and provide an economic

interpretation of the proposed strategy. Section 5 concludes the paper.

the first three factors explain more than 98% of the total variance, no financial or economic interpretation can be

attached to the factors identified from their analysis.
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2 Model

2.1 Asset liability management problem

We consider the following asset-liability-management model which is formulated as a multi-

stage stochastic linear program with recourse.

Figure 1: Overview of decision model

✲

L0 L1 L2 · · · LT−1 LT LT+1 · · · LT Cash flows

0 1 2 · · · T − 1 T T + 1 · · · T
t

Asset allocation decisions ✲✛

W
i
0 W

i,s
1 W

i,s
2 · · · W

i,s
T−1 W

i,s
T Value of i-th investment

V
s
T Shareholder value

A company plans to minimize the Conditional Value at Risk (CVaR) of its shareholder

value V s
T at at the end of a planning horizon T by making asset allocation decisions at discrete

time stages t = 0, . . . , T − 1. It can choose between i = 1, . . . , N assets where i = 1 is

an equity and i = 2, . . . , N are zero-coupon bonds. Further, a deterministic cash flow Lt is

assumed at times mt with t = 0, . . . , T, . . . T that can occur after the end of the planning

horizon.2 This kind of setting is typical for a defined benefit pension fund where the future

payouts to its contributors are fixed. The simplest way to hedge the interest rate risk is by

constructing a portfolio of zero-coupon bonds with appropriate maturities. However, this

approach would not take into account the predictability of asset returns and state variables

within the planning horizon. Therefore, we consider a set of scenarios s = 1, . . . , S and

construct a scenario tree consisting of the stochastic returns R̃
i,s
t for each asset. The scenarios

are generated with the moment matching approach which uses a VAR(1) model incorporating

stock returns, dividend-price ratios and level, slope and curvature of the term structure of

interest rates. A detailed description follows in Section 3.

The initial value of the i–th asset before transactions is given by wi
0 and the total amount

after investment by W i
0 and W

i,s
t . The non-negative variables P i

0 and P
i,s
t denote the pur-

chases and Si
0 and S

i,s
t the sales in each stage. Ls

t is the scenario-dependent present value at

time t of all cash flows occurring in the interval t < t+ τ ≤ T .

Ls
t =

T −t
∑

τ=1

Lt+τ δ(β
s
t ,mτ ) ∀s, 0 ≤ t < T , (1)

2Note that t is a time index and mt is the corresponding time in years.
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where the stochastic discount factors

δ(βs
t ,mτ ) = e−y(βs

t
,mτ )mτ

are calculated from a parametric spot rate function in (15) depending on the yield curve

parameter vector and the time to maturity mτ = mt+τ −mt.
3

2.2 Stochastic linear programming formulation

The split variable formulation of the multi-stage stochastic program with recourse is given

in (2)-(13). In the objective function (2) we minimize the Conditional Value at Risk CVaRα

of the shareholder value with confidence level α ∈]0, 1[, which is a convex function of the

assets in the portfolio. Further, it is a coherent risk measure as shown in Pflug (2000).

For discrete distributions CVaRα can be reduced to a linear programming formulation that

follows Rockafellar and Uryasev (2000, 2002).

CVaRα = min

{

φ+
1

1 − α

S
∑

s=1

psψ+s
T

}

(2)

subject to:

N
∑

i=1

W
i,s
t > 0 ∀s 0 ≤ t ≤ T − 1 (3)

li ≤
W

i,s
t

∑N
i=1W

i,s
t

≤ ui ∀i, s, 0 ≤ t ≤ T − 1 (4)

W i
0 = wi

0 + P i
0 − Si

0 ∀i (5)

N
∑

i=1

P i
0(1 + τ i

P ) =

N
∑

i=1

Si
0(1 − τ i

S) + L0 (6)

W
i,s
t = R

i,s
t W

i,s
t−1 + P

i,s
t − S

i,s
t ∀i, s, 1 ≤ t ≤ T − 1 (7)

N
∑

i=1

P
i,s
t (1 + τ i

P ) =

N
∑

i=1

S
i,s
t (1 − τ i

S) + Lt ∀i, s, 1 ≤ t ≤ T − 1 (8)

V s
t =

N
∑

i=1

W
i,s
t + Ls

t ∀s, 0 ≤ t ≤ T − 1 (9)

V s
T =

N
∑

i=1

W
i,s
T + LT + Ls

T ∀s (10)

3Also here, τ is an index and mτ measures the maturity of the future cash flow Lt+τ as the difference (in years)

between mt+τ and mt.
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V s
t δ(β

s
t−1,mτ ) − V s

t−1 + γ ≥ 0 ∀s, 1 ≤ t ≤ T, τ = 1 (11)

ψ+s
T = −V s

T − φ+ ψ−s
T ∀s (12)

S
∑

s=1

psV s
T ≥ θ (13)

In the optimal solution, φ represents the Value at Risk VaRα and the second term accounts

for the expected shortfall ψ+s
T below the VaRα for a prespecified confidence level α. The

probabilities of the different scenarios are given by ps. The variable W
i,s
t denotes the mark-

to-market value of the i-th asset in scenario s at time t. We restrict the total wealth in (3), i.e.

the sum over all assets, to be positive in all time stages were asset allocation decisions are

taken. However, the mark-to-market value of an individual asset can become negative and

lower bounds li and upper bounds ui are defined in (4).

The first-stage decision variables have to fulfill the inventory equations in (5), forcing

the mark-to-market value of each asset to equal the initial holdings wi
0 plus purchases minus

sales. The budget equations in (6) include proportional transaction costs τ i
P and τ i

S for

purchases and sales of each asset and the deterministic cash flow. While the second-stage

inventory equations in (7) also account for the gross returns R
i,s
t on the holdings of the

previous period W
i,s
t−1, the budget equation in (8) contains the scenario-dependent decision

variables for purchases and sales. Further details on the return calculation can be found

in (19) in Section 3.3.

We denote the shareholder value in (9) as sum of the total mark-to-market values of the

assets plus the present value of all future cash flows. Note that the cash flow at the current

stage is already included through the inventory equations, but these are only defined until

T − 1. Therefore, we add LT to the shareholder value at the end of the planning horizon

in (10). Constraint (11) ensures that the maximal drawdown in the shareholder value between

two adjacent periods is above a given level γ. This leads to a stronger consideration of the

interest rate risk within the planning horizon, as, in addition to the asset returns, also the

present value of the cash flows is affected by the uncertain changes in the yield curve.

Given the shareholder value at stage T in (10), the portfolio shortfall in excess of Value

at Risk4 used in the objective function is ψ+s
T = max[0,−W s

T − φ]. To determine the value

of the maximum operator in the linear programming formulation we introduce two non-

negative auxiliary variables ψ+s
T and ψ−s

T . In (13) we ensure that the expected shareholder

value exceeds some prespecified level θ, which we set to:

θ =

[

N
∑

i=1

wi
0 +

T−1
∑

t=0

Ltδ(β0,mt)

]

δ(β0,mT )−1eνmT + LT + E[Ls
T ]. (14)

4Note that with this formulation we minimize the negative value of VaRα and CVaRα.
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The term in brackets takes the initial asset allocation and discount all cash flows that occur

at future decision stages to t = 0. Then, we calculate the final value at t = T , where the

required excess return is denoted by ν. The remaining two terms account for the LT at the

end of the planning horizon and the expected present value of all remaining cash flows. In

Section 4 we derive an efficient frontier of risk return combinations by varying the level of

θ.

Further, so-called “non-anticipativity constraints” are imposed to guarantee that a deci-

sion made at a specific node is identical for all scenarios leaving that node.

3 Modeling Uncertainty

3.1 Term structure of interest rates

In an ALM context, where the main objective is controlling the shareholder value, the term

structure of interest rates plays a central role. While the evolution of the yield curve influ-

ences returns for the different bond holdings, it determines also the present value of future

cash flows. We propose to use the Nelson/Siegel model here for at least two reasons. On

the one hand, this parsimonious parametric model can represent the entire yield curve by

only four parameters, restricting the size of our scenario tree and ensuring computational

tractability. On the other hand, some extensions which include the Nelson/Siegel model as a

special case may not be superior in out-of-sample forecasting due to their potential overfit-

ting of in-sample data (see e.g. Diebold and Li, 2006). The three-factor model for the spot

rates can be written as:

y(βt,m) = β1,t + β2,t

(

1 − e−λtm

λtm

)

+ β3,t

(

1 − e−λtm

λtm
− e−λtm

)

, (15)

where y(βt,m) indicates the (continuously compounded) spot rate for maturity m at stage t

given the parameter vector βt = [β1,t, β2,t, β3,t]
⊤. Given this fixing of the loadings, the fac-

tors β1,t, β2,t and β3,t can be interpreted as the level, slope and curvature of the term structure

of interest rates. It can be seen that β1,t determines the long-term level of the spot rates as

y(βt,∞) = β1,t, while the instantaneous yield depends on both the level and the slope factor

by y(βt, 0) = β1,t + β2,t. This is due to the following facts: The factor loading of β2,t starts

form a value of one and decreases asymptotically to zero for long maturities. The factor

loading for the curvature is hump-shaped, approximating the value of zero for very short and

very long maturities. The parameter λt determines the decay rate5 and the time where the

5A small value of λt ensures a better fit for long maturities, while a large value enhances the fit for short maturi-

ties.
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factor loading of the curvature archives its maximum. Following Diebold and Li (2006) we

fix λt to 0.0609, which maximizes the factor loading at exactly 30 month. In this way, the es-

timation to the remaining parameters β1,t, β2,t and β3,t simplifies to an ordinary least square

regression (OLS) with the advantage of numerical stability.6 These estimated Nelson-Siegel

parameters are then included in the estimation of the VAR(1) process presented below.

3.2 Time-varying investment opportunities

We model time-varying investment opportunities with an unrestricted, stationary VAR(1)-

process (for an application in asset allocation decision see e.g. Barberis, 2000;

Campbell et al., 2003, 2004; Brandt et al., 2005), where stationarity is referred to time-

invariant expected values, variances, and covariances. In this paper here we use the following

(K × 1) parameter vector ξt (with K = 5):

ξt =













r1t

dt − pt

βt













,

where r1t ≡ log(R1
t ) refers to the log equity return, dt − pt to the log dividend-price ratio,

and βt to the (3 × 1) vector of the Nelson-Siegel parameters. The idea behind a vector-

autoregressive process is that an economic variable is not only related to its predecessors in

time but, in addition, it depends linearly on on past values of other variables. The functional

form of the VAR(1) process can be written as:

ξt = c + Aξt−1 + ut, (16)

where c is the (K × 1) vector of intercepts, A is the (K × K) matrix of slope coefficients

and ut the (K × 1) vector of i.i.d innovations with u ∼ N(0,Σu). The covariance of the

innovations Σu is given by E(uu
⊤). Thus, we allow the shocks to be cross-sectionally

correlated, but assume that they are homoskedastic and independently distributed over time.

If all eigenvalues of A have modulus less than 1, as in our case below, the stochastic process

in equation (16) is stable with unconditional expected mean µ and covariance Γ for the

steady state at t = ∞ of (see e.g. Lütkepohl, 2005):

µ := (I − A)−1
c (17)

vec(Γ) := (I − A⊗ A)−1vec(Σu), (18)

6We don’t have to optimize a non-linear objective function with multiple local optima.
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where I refers to the identity matrix, ⊗ the Kronecker product and vec transforms a (K×K)

matrix into an (KK × 1) vector by stacking the columns.

To estimate the intercepts and slope parameters of the VAR(1) process via OLS we use

quarterly data from 1997.Q3 to 2007.Q4. Stock returns, which refer to the S&P 500 index,

and the corresponding dividend-price ratios are taken from the Goyal and Welch (2008) data

set, while the vector for the Nelson-Siegel parameters βt are estimated from US spot rates

provided by the Federal Reserve Bank. The autoregressive order of one in our process was

selected by the Schwarz Criterion (also known as Bayesian Information Criterion). The cor-

responding parameters are reported in Table 1 (values for the t-statistics in parenthesis). The

Table 1: VAR(1) parameters and t-statistics for quarterly data 1997.Q3–2007.Q4

c r1t−1 dt−1 − pt−1 β1,t−1 β2,t−1 β3,t−1 R2

r1t 0.3649
(1.6865)

−0.0641
(-0.6250)

0.0722
(1.8580)

−0.7643
(-0.6823)

−1.0413
(-1.5652)

−0.1791
(-0.4084)

0.0920

dt − pt −0.1352
(-0.6200)

0.0970
(0.9379)

0.9658
(24.6577)

−0.2254
(-0.1997)

0.8352
(1.2461)

−0.2084
(-0.4716)

0.9631

β1,t 0.0163
(0.3082)

0.0599
(2.3858)

0.0036
(0.3795)

0.8532
(3.1141)

0.3018
(1.8548)

−0.0714
(-0.6659)

0.7807

β2,t 0.0034
(0.0719)

−0.0431
(-1.9419)

0.0002
(0.0278)

0.0401
(0.1658)

0.5919
(4.1165)

0.0655
(0.6912)

0.6181

β3,t −0.0087
(-0.0765)

−0.1190
(-2.2043)

−0.0039
(-0.1921)

0.1179
(0.2000)

−0.4921
(-1.4065)

1.0401
(4.5095)

0.8098

sample period of 80 quarters in our data set with five regression parameters and a confidence

level of 95% gives a critical (absolute) t–value of 1.99. In line with current literature, it

can be seen that the dividend-price ratio with a coefficient of 0.97 has very high persistent

dynamics and — compared to other regressors — shows the greatest t-value for predict-

ing equity returns (in Campbell et al., 2003 this value is equal to 2.32, and Brandt et al.,

2005 report 0.87). A Granger-Causality test confirms this finding. The R2 equals 9.2% (in

Campbell et al., 2003 R2 for equities is equal to 8.6%). Further, it can be seen that the first

lags of the Nelson/Siegel parameters with t-values of 3.11, 4.12 and 4.51 are statistically

significant in forecasting each of them.

In Table 2 we illustrate quarterly standard deviations (multiplied by 100) on and cross

correlations of residuals above the main diagonal. As in Campbell et al. (2003) and the liter-

ature mentioned therein, unexpected log excess stock returns are highly negatively correlated

with shocks to the log dividend–price ratio. All residuals pass the multivariate normality test

(with Cholesky orthogonalization).

In Table 3 we indicate the unconditional expected mean µ for the VAR parameters. The

expected simple return per annum for equities equals 7.20%, while the term structure of in-

terest rates (continuously compounded) given by the Nelson/Siegel parameters is illustrated

9



Table 2: Cross correlations and standard deviations of residuals for quarterly data 1997.Q3–

2007.Q4

r1t−1 dt−1 − pt−1 β1,t−1 β2,t−1 β3,t−1

r1t 6.7203 -0.9829 0.0743 0.0202 -0.1473

dt − pt – 6.7709 -0.0630 -0.0165 0.1219

β1,t – – 1.6437 -0.9091 -0.9697

β2,t – – – 1.4526 0.8513

β3,t – – – – 3.5343

in Figure 2. Furthermore, the impulse-response functions give evidence that the impact of

Table 3: Unconditional expected values µ for the steady state

r1 d− p β1 β2 β3

0.017374 -4.08700 0.011995 0.022203 0.105590

shocks to the parameters of the VAR(1) process takes place at the first few periods (quarters).

Therefore, we try to exploit predictability in the near future by setting four decision stages

with intervals of 3 months each (i.e. re-allocations at mt ∈ {0, 0.25, 0.5, 0.75}).

3.3 Scenario Generation

For the scenario generation, additionally to the parameter estimation in Section 3.2, we have

to set the starting values of our VAR(1)-process. For our exhibition here two choices are

suitable: last realized parameters versus steady state values. On the one hand, for practical

applications the SLP literature proposes a rolling-forward approach (see e.g. Dempster et al.,

2003), where in every stage the process parameters are re-estimated and a new scenario tree

is generated. In such a context, to predict and exploit returns, the starting values should

coincide with the last realized parameters. On the other hand, numerical results based on this

special setting do not allow to draw general conclusions at all. Therefore, it is not unusual to

start the investigation with the unconditional expected values of the estimated process (e.g.

Campbell et al., 2003). We follow this second approach by starting from the steady state in

our numerical part.

The multivariate process in equation (16) evolves in discrete time, and the underlying

probability distributions are approximated with a few mass-points in terms of a so-called

scenario tree. Although different approaches have been discussed in the literature (see e.g.
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Figure 2: Term structure of interest rates for the steady state

Pflug, 2001; Heitsch and Römisch, 2003), in our paper here we focus on the technique pro-

posed by Høyland and Wallace (2001) and Hoyland et al. (2003) to match the first four con-

ditional moments (including the correlations) of the process. This method uses an iterative

procedure that combines simulation, Cholesky decomposition and various transformations

to achieve the correct correlations without changing the marginal moments. More nodes em-

anating from on predecessor node (i.e. a higher branching factor) facilitate the matching of

moments but increase the number of scenarios. In this application we use a constant branch-

ing factor of ten with four decision stages, resulting in a tree with a total number of scenarios

S equal to 10, 000 (= 104).

To make a long story short: Arbitrage opportunities are present in a market whenever

investors — without investing own money and without taking risk — have a probability

greater than zero to earn a positive portfolio return. Economists agree that such a condition

is not a sound basis for financial models, as every optimization task without constraints on

the asset allocation will become unbounded (infeasible) for the primal (dual) problem. With

such constraints the asset allocation will be biased (see Geyer et al., 2009). Therefore, to

avoid such opportunities in the generated scenarios we apply the arbitrage-check proposed

by Klaassen (2002), which accounts for the return of traded assets in the different successor

nodes. However, the simulated process in (16) does not only model asset returns, but includes

also state variables in form of the dividend-price ratio as well as the Nelson/Siegel parameter

vector. The last one is important for two reasons: First, the parameters determine the whole
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term structure of interest rates, and in this way the present value of the given liabilities at

each stage and each scenario. Second, changes in the yield curve drive the realized gross

returns R
i,s
t in (7) of the different bond holdings. To check for arbitrage opportunities during

the construction of our scenario tree we have to account also for these potential bond returns.

For zero-coupon bonds these returns can be easily calculated. We define P s(t,m) as the

market price of the m-year maturity zero bond at stage t and scenario s. Then it follows, that

the gross return, i.e. R, a short time period ∆t later is given by:

Rs(t+ ∆t,m) =
P s(t+ ∆t,m− ∆t)

P s(t,m)
=

emy(βs

t ,m)

e(m−∆t)y(βs

t+∆t
,m−∆t)

, (19)

where y(βs
t ,m) defines the term structure at stage t and scenario s, see (15). Moving to log

holding-period returns results in:

rs(t+ ∆t,m) = my(βs
t ,m) − (m− ∆t)y(βs

t+∆t,m− ∆t)

= ∆t y(βs
t ,m) − (m− ∆t)

(

y(βs
t+∆t,m− ∆t) − y(βs

t ,m)
)

. (20)

Equation (20) shows that the continuously compounded return is a weighted sum given by

the yield at the beginning of the period y(βs
t ,m) multiplied by the holding period ∆t minus

the yield change
(

y(βs
t+∆t,m− ∆t) − y(βs

t ,m)
)

multiplied by the remaining maturity of

this zero bond (m − ∆t). A similar formula can be used to approximate the return of

a coupon-bearing bond by substituting the maturity m with the duration of the bond, see

Campbell et al. (1997).

We calculate these scenario-dependent returns of the different bonds7 using (20) and

include them, together with the returns modeled directly by the VAR(1) process (e.g. the

equity returns), in the arbitrage-check proposed by Klaassen (2002). In this way we ensure

an arbitrage-free scenario tree.

The evolution of the modeled yield curve in our scenario tree satisfies the most important

stylized facts (see e.g. Diebold and Li, 2006):

1. The unconditional expected yield curve is increasing and concave, see Figure 2.

2. The yield curve assumes a variety of shapes through time, including upward sloping,

downward sloping, humped, and inverted humped. In Figure 3 we illustrate different

term structures of interest rates implied by e.g. the scenarios 51–60 at stage mt =

0.75. Further, Table 4 reports quantile values of spot rates with different maturities for

cumulative probabilities pz, with pz ∈ {0.025, 0.5, 0.975}, over all scenarios at mt =

0.75. The upper and lower bounds give evidence that, although a variety of shapes are

7In the setting of Sections 4 we use bonds with three different maturities: 0.25, 5 and 10 years.
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Figure 3: Term structure of interest rates for scenario 51–60 at t = 0.75

possible, the evolution of the term structure is well-behaved and economically sound.

3. Yield dynamics, reflected by the slope parameter for β1,t−1, are much more persistent

than spread dynamics given by β2,t−1. This can be easily verified from Table 1, where

the estimated parameters for β1,t−1 and β2,t−1 are 0.8532 versus 0.5919.

Table 4: Quantile values for the term structure of interest rates at t = 0.75

Maturity 1 5 10 15 20 25 30

pz = 0.025 1.4803 2.7717 3.6415 4.0571 4.2575 4.3188 4.2879

pz = 0.5 3.6638 4.4138 5.0169 5.3405 5.4623 5.4533 5.3649

pz = 0.975 5.8811 6.1633 6.4625 6.6733 6.7106 6.6238 6.4721

4 Results

4.1 Initial setting

In this section, we give a numerical example with a cash flow structure typical for a defined

benefit pension scheme. A company with a planning horizon of one year accumulates cash

13



inflows (funding period) and takes asset allocations at the beginning of each quarter. After

that a long period of cash outflows follows, see Figure 4.

Figure 4: Cash flow structure

The company can choose from the following assets: an equity (which might be a broad

index) and three zero-coupon bonds with maturities of 3 month, as well as 5 and 10 years.

The short-term zero-coupon bond can be seen as an equivalent for a cash account. As its

maturity matches perfectly the rebalancing intervals between two stages, the riskless re-

turn is known at the beginning of the period and equals the spot rate for that maturity. We

use transaction costs for purchases and sales of τ i
P = τ i

S = [1%, 0%, 0.5%, 0.5%]. These

are set to zero for the three-month bond. Further, the company has no initial holdings in

any of the assets. For the first numerical experiment, we use the lower and upper bounds

li = [0%,−30%, 0%, 0%] and ui = [130%, 100%, 130%, 130%] in the asset allocation con-

straint (4). With such a setting, where modest leverage with a short-position in the riskless

bond is allowed, we mimic a prudent version of the well-known “130/30” strategy. Com-

pared to the traditional long-only approach, long-short strategies expand alpha opportunities

for active portfolio management. Different contributions over the last decade report benefits

from such an extensions (see e.g. Grinold and Kahn, 2000; Johnson et al., 2007).

By setting ν = 1.5% we determine a feasible target θ equal to 16.97 using (14). The

initial shareholder value is 18.82. The bound on the maximum drawdown of the shareholder

value in (11) is set to γ = 35.

The scenario generation procedure was implemented in MATLAB and we formulated the

optimization problem in AMPL. The solution time on a MacBook Pro 2.4 GHz Intel Core

2 Duo / 4 GB RAM with MOSEK was approximately 57 seconds with the interior-point
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solver.

Figure 5 shows the distribution of the shareholder value at the end of the planning

horizon. In (13) we have constrained the mean to be greater or equal than the target θ.

The first-stage solutions of the SLP are W i
0 = [10.91%,−30.00%, 0.00%, 119.09%] with

CVaR0.95 = 34.59 and VaR0.95 = 24.13. From Figure 5 we can also see the minimum

shareholder value, i.e. the worst possible scenario for our company, which is at −109.79. As

the risk measures VaRα and CVaRα can become positive or negative, it can be convenient to

calculate so-called deviation measures. These were introduced in Rockafellar et al. (2006),

and indicate the difference between the risk measure and the mean of the distribution. The

CVaR Deviation CVaR∆
0.95 = 51.56 and the VaR Deviation VaR∆

0.95 = 41.10 can easily be

calculated as shown in Figure 5. By definition these are always positive values and should

be used for example in Sharpe-like ratios.

Figure 5: Histogram of shareholder value V
s
T at the end of planning horizon
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Figure 6 shows the efficient frontier of the expected final SV (i.e. target θ) versus the

CVaR and the corresponding frontier portfolios. We can see that, even for low targets our

company prefers to hold the maximum allowed short position in bond 1. We motivate this by

hedging demands in our asset-liability management: Given the long-term payouts illustrated

in Figure 4 one of the main sources of risk to the SV are term structures at a low level, which

increases the present value of future liabilities Ls
t and decreases the SV in equation (9). To

hedge against such scenarios the optimal policy proposes a strong exposure to the long-term

bond, which will benefit from low interest rates.
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Table 5 indicates that even for a high target of θ = 20 the minimum shareholder value is

bounded by maximum drawdown constraint, i.e. with an initial shareholder value of 18.82

the minimum possible value after four periods with γ = 35 is approximately 122 (including

interest rate effects). Figure 6 shows that the company increases the equity position and

lowers the holdings of the long-term bond when the target increases.

Table 5: First-stage asset allocation with shareholder value constraint

θ CVaR0.95 VaR0.95 Min V s
T W 1

0 % W 2
0 % W 3

0 % W 4
0 %

16.00 34.20 23.55 -96.38 3.59 -30.00 0.00 126.41

17.00 34.61 24.12 -110.42 11.19 -30.00 0.00 118.81

18.00 35.66 24.97 -117.49 17.31 -30.00 0.00 112.69

19.00 37.53 26.04 -119.53 24.84 -30.00 0.00 105.16

20.00 40.39 28.18 -121.93 28.11 -30.00 0.00 101.89

4.2 Sensitivity analysis

4.2.1 Maximum drawdown constraint

The maximal drawdown of SV is restricted by constraint (11). This amount is the highest

potential loss a sponsor of the pension plan is willing or able to suffer during one period. In

our base case of Section 4.1 we set γ = 35. Figure 7 illustrates a slack variables analysis

for each rebalancing period and each scenario. If the slack variable equals zero then the

boundary is active and will condition the solution. We can see that the constraint becomes

binding from t = 0.75 on as the uncertainty in the asset returns increases. Further, to study

the impact of this shareholder value constraint on the optimal investment policy we show in

Table 6 results for the optimization task when (11) is disabled. As expected, without binding

boundaries a better objective value (i.e. a lower CVaRα) is found for all targets. However,

compared to Table 5 the minimum possible SV at the end of the planning horizon (Min V s
T )

worsens due to unfavorable scenarios.

4.2.2 Constant-mix strategies

As one might ask for the practical relevance of stochastic dynamic programming in an ALM

context, in this section here we analyze results for the setting of Section 4.1 when classical

constant-mix strategies are applied. To motivate such a comparison we consider a pension

fund manager, who erroneously neglects future cash flows (and the interest rate risk therein)
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Table 6: First-stage asset allocation without shareholder value constraint

θ CVaR0.95 VaR0.95 Min V s
T W 1

0 % W 2
0 % W 3

0 % W 4
0 %

16.00 34.19 23.55 -99.18 3.39 -30.00 0.00 126.61

17.00 34.45 23.78 -125.67 9.92 -30.00 0.00 120.08

18.00 35.13 24.41 -136.02 15.05 -30.00 0.00 114.95

19.00 36.23 25.05 -147.13 22.18 -30.00 0.00 107.82

20.00 37.67 25.47 -165.62 24.85 -30.00 0.00 105.15

as well as predictability in asset returns, or is faced with too tight bounds on the allowed

asset allocation. Table 7 shows the results for different constant-mix strategies. As one

Table 7: First-stage asset allocation of alternative strategies

Strategy θ CVaR0.95 VaR0.95 Min V s
T W 1

0 % W 2
0 % W 3

0 % W 4
0 %

Equal weights 11.96 58.15 43.78 -108.36 25.00 25.00 25.00 25.00

Bond 1 only 6.85 64.23 49.57 -115.30 0.00 100.00 0.00 0.00

40/60 13.59 65.94 49.93 -116.41 40.00 20.00 20.00 20.00

30/70 12.50 60.46 45.60 -111.04 30.00 23.33 23.33 23.34

can immediately verify, these polities are suboptimal in a risk-return sense. Although the

expected shareholder value θ is in all cases below our targets in Table 5, the CVaR0.95 and

also the maximal loss in SV is always higher. In this way pension fund managers may be

warned to copy well-established strategies from pure asset management.

4.2.3 Pure asset management

In the results of Table 5 we find for all levels of θ a short selling position of the riskless

bond W 2
0 (in all cases the lower bound of −30% became active) and a heavy investment in

the long-term bond W 4
0 . We motivate these hedging demands as a consequence of active

ALM: The huge risk of low term structures induced by the long time series of payouts can

be mitigated by long-term bond investments. Further, equity investments W 1
0 are taken into

account only when a higher expected SV is needed.

In the following, we compare these ALM-results with a pure asset management ap-

proach. To ensure comparability we take the same setting of the base case from Section

4.1 without future cash flows (i.e. Lt = 0, ∀ t > 0) and without constraints of the scenario-

dependent maximum loss in the SV, see (11). Our findings are reported in Table 8. Given
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that the interest-rate risk for payouts is no longer present in the optimization task, the short-

and medium term bonds become attractive investments for low levels of θ. By increasing this

target more wealth is allocated to the assets with higher expected returns, i.e. to long-term

bonds and equities.

Table 8: First-stage asset allocation without external cash flows

θ CVaR0.95 VaR0.95 Min V s
T W 1

0 % W 2
0 % W 3

0 % W 4
0 %

260.00 -259.45 -259.65 256.03 0.00 21.53 78.47 0.00

262.00 -259.10 -259.33 254.23 0.00 -14.42 114.42 0.00

264.00 -257.80 -258.22 239.75 2.27 -30.00 99.41 28.32

266.00 -255.53 -256.54 206.52 2.81 -30.00 0.00 127.19

268.00 -251.26 -254.26 184.43 7.79 -30.00 0.00 122.21

270.00 -243.25 -249.12 177.39 36.59 -30.00 0.00 93.41

4.2.4 Confidence level

The confidence level α in (2) determines the left tail of the SV distribution, which is included

in the objective function. Its choice clearly depends on the risk aversion of the decision

taker. Here we check the impact of this parameter on the optimal policy for our base case

in Section 4.1. From Table 9 we can see that — as expected — a higher confidence level

with more extreme scenarios increases CVaRα and VaRα. Although the first-stage asset

allocation is rather stable, an α greater than 0.9 reduces the allocation to the risky equities

and increases the worst-case SV. Further, the smooth results with the increasing confidence

level give evidence that our scenario generation of Section 3.3 is also well-suited to model

the distribution in the heavy tails.

Table 9: First-stage asset allocation with shareholder value constraint

α CVaRα VaRα Min V s
T W 1

0 % W 2
0 % W 3

0 % W 4
0 %

0.80 16.74 1.29 -117.36 10.30 -30.00 0.00 119.70

0.85 21.04 6.68 -118.76 10.97 -30.00 0.00 119.03

0.90 26.57 13.89 -118.89 11.50 -30.00 0.00 118.50

0.95 34.59 24.13 -109.79 10.91 -30.00 0.00 119.09

0.99 48.29 41.27 -70.23 0.00 -30.00 0.00 130.00
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Figure 6: Risk-return tradeoff and frontier portfolios
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Figure 7: Slack variables for shareholder value constraint
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5 Conclusion

In this paper we proposed a multi-stage dynamic strategy for ALM under time-varying in-

vestment opportunities. The uncertainty within the optimization task was driven by a first-

order unrestricted vector autoregressive process, which determines the equity returns and

state variables (i.e. the dividend-price ratio as predictor and the Nelson/Siegel coefficients

for level, slope and curvature of the term structure). We estimated the VAR parameters from

the Goyal and Welch (2008) and the Federal Reserve Bank dataset. Our analysis shows

that the VAR-process is stable and is in line with previous results of the literature: As in

Campbell et al. (2003) the dividend-price ratio indicates a high persistence and shows the

greatest t-value in predicting equity returns. Further, in analogy to other studies, unexpected

log excess returns are highly negatively correlated with shocks to the log dividend-price ra-

tio. The unconditional expectation for the steady state gives economically sound values both

for the equity returns and the term structure of interest rates.

In the SLP approach the multivariate distribution of the stochastic process is approxi-

mated with a few mass points. We applied the moment-matching algorithm proposed by

Høyland and Wallace (2001) and Hoyland et al. (2003) and ruled out potential arbitrage op-

portunities in our scenario tree. The direct integration of the three Nelson/Siegel parameters

was fascinating, as it reduces the size of tree and ensures computational tractability. The

generated term structures satisfy the most important stylized facts (see e.g. Diebold and Li,

2006).

As objective function we minimized CVaR of final shareholder value under different

asset allocation, budget and inventory constraints. The shareholder value, as the difference

between mark-to-market value of financial asset and present value of future liabilities shows

the funded status of a pension plan. It inherently includes investment risks as well as interest

rate risks given by the future cash flows.

We gave a numerical example with an asset-liability management problem typical for a

defined benefit pension scheme. A company is faced with a long stream of cash outflows

after a short period of capital accumulation. Asset allocation bounds were set to allow a

long/short “130/30” strategy. As an important result in our setting we found huge hedging

demands against interest rate risk. The optimal policy shortened the riskless bond and lever-

aged the long-term bond to protect the SV against term structures at a low level. Further, our

results indicated that an asset-liability mandate should not be misinterpreted as pure asset

management with naive constant-mix strategies. Therefore, to test the sensitivity of the solu-

tion, we solved the optimization task also without cash flows. The results confirm economic

intuition. Without the long series of future payouts the strong hedging demands for long-

maturity bond are no longer present. For low targets also short- and medium-term bonds
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became attractive. Finally, we analyzed the impact of the confidence level on the outputs,

which shows that the first-stage asset allocation remains rather stable. To sum up, our ap-

proach provides a computationally tractable method for asset-liability management and the

results are intuitive and economically meaningful.
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