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1 Introduction

The now classic paper by Deaton and Muellbauer (1980) established a standard for applied

demand analysis in the “Almost Ideal Demand System” or AIDS model. The fundamental

demand model established by this paper has realized very widespread application in con-

sumption analysis. The Social Science Citation Index shows that this paper has been cited

822 times (as of January 23, 2009). A closely related alternative—the “Transcendental Log-

arithmic” or “translog” demand system has also realized widespread application in demand

analysis. The classic paper by Christensen, Jorgenson, and Lau (1975) that introduced the

translog consumer demand system has been cited 361 times according to the Social Science

Citation Index. In both cases, the tabulated citations clearly understate the impact of these

two pioneering demand models. As is often the case, such classics become standard, accepted

practice and thus many practitioners fail to cite the papers that originated the methods and

instead depend upon widespread recognition of the models and methods.

As we discuss in this chapter, both demand system models are often motivated within the

context of “flexible functional forms” that provide certain advantages in terms of minimizing

specification biases in representing demand systems of unknown forms. In addition to its

flexibility properties as a first-order approximation to any demand system, the AIDS model

also possesses certain nonlinear aggregation properties that make it “almost ideal” for applied

work.

In this chapter, we provide a broad overview of the AIDS and translog demand systems.

We discuss practical issues relating to their utilization in applied demand analysis. We also

outline a number of closely related issues that typically arise in the application of these mod-

els. These issues include incorporation of seasonality and structural change, representation

of autocorrelation within a singular system of equations of the sort inherent in the AIDS and

translog models, and inequality restrictions that are implied by concavity of the underlying

utility function. We illustrate these practical issues associated with applying each model

through empirical examples using a set of quarterly U.S. meat demand data. The focus of
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this paper is on the practical and applied issues associated with the use of these demand

models and thus we refer the reader to the original sources as well as to a very large collection

of other applied papers for greater detail on many of the issues that we address.

2 Specification of the Almost Ideal Demand System

The basic AIDS model is developed from a particular cost (expenditure) function taken from

the general class of “price-independent, generalized logarithmic” or PIGLOG cost functions.

In the case of the AIDS the cost function is of the form

ln C(p, U) = (1 − U) ln(a(p)) + U ln(b(p)) (1)

where p is a nx1 vector of unit prices, U denotes the utility index, a(p) is a translog price

index given by

ln a(p) = α0 +
∑

k

αk ln(pk) + 1

2

∑

k

∑

j

γ∗

kj ln pk ln pj, (2)

and

ln b(p) = ln a(p) + β0

∏

k

pβk

k . (3)

As well, k, j = 1, . . . , n. Note that the utility index can be scaled to correspond to cases of

subsistence (U = 0) and bliss (U = 1), in which case, a(P ) and b(P ) can be interpreted as

representing the cost of subsistence and bliss, respectively.

Application of Shephard’s Lemma through differentiation of the logarithmic cost function

with respect to a logarithmic price yields budget (expenditure) share equations for each good

in the utility function. We can “uncompensate” the share equations to remove utility by

noting that total expenditure, (y), for a utility-maximizing consumer will equal the value of

the cost function. We may therefore invert the cost function and solve for U , the indirect

utility function υ(p, y). Finally, υ(p, y) may be used to substitute for U in each share

equation, thereby obtaining the share–equation forms of corresponding Marshallian demands.
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Doing so yields share equations of the form:

wi = αi +
∑

j

γij ln pj + βi(ln(y) − ln(P )) (4)

where wi = piqi

y
, i = 1, . . . , n, and P is a price index defined by

ln P = α0 +
∑

k

αk ln(pk) + 1

2

∑

k

∑

j

γkj ln pk ln pj, (5)

and where γij = 1

2
(γ∗

ij + γ∗

ji).

Linear homogeneity of the cost function, symmetry of the second–order derivatives, and

adding–up across the share equations implies the following set of (equality) restrictions:

n
∑

i=1

αi = 1,
n
∑

i=1

γij =
n
∑

j=1

γij = 0,
n
∑

i=1

βi = 0, γij = γji. (6)

As required for a locally flexible functional form, there are n(n− 1)/2 free parameters in the

Slutsky matrix for the AIDS model.

Using the familiar result that uncompensated (Marshallian) price elasticities in any de-

mand system are given by −δij + ∂ ln wi

∂ ln pj
, where δij is the Kronecker delta term, the price

elasticities in the AIDS model are given by

ηij = −δij +
γij − βi(αj +

∑

k γjk ln pk)

wi

. (7)

Note here also that in practice the term given by (αj +
∑

k γjk ln pk) may sometimes be

replaced by the equivalent (wj −βj ln(y/P )) in elasticity expressions. Expenditure (income)

elasticities are given by:

ηiy =
βi

wi

+ 1. (8)

As always, Hicksian or compensated price elasticities may be obtained by using the familiar
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Slutsky equation. In elasticity form this equation yields:

ηc
ij = ηij + wjηiy, (9)

where ηc
ij denotes the compensated price elasticity for ith good with respect to the jth price.

Deaton and Muellbauer (1980) proposed replacing the nonlinear AIDS price index in 5

with an appropriately specified price index that can be defined outside of the AIDS system,

thus leaving a purely linear system of share equations. Specifically, they suggest Stone’s

share-weighted geometric mean price index as an obvious candidate:

ln P ∗ =
N
∑

i=1

wi ln(pi). (10)

This version became known as the “Linear–Approximate” AIDS model, or LA–AIDS. This

suggestion by Deaton and Muellbauer (1980) led to much consternation and debate over,

among other things, the appropriate specification of the LA–AIDS elasticities and the overall

properties of the LA–AIDS model. For example, Moschini (1995) shows that the Stone in-

dex in (10) is not invariant to units of measurement, although normalizing all prices by their

respective sample means does circumvent this problem. As well, Eales and Unnevehr (1988)

note that when Stone’s index is used that budget shares also appear on the right–hand side

of the equations. Likewise, Buse (1998) comments on the “errors in variables” problems in-

troduced by using the Stone index in lieu of the true translog index. Finally, Lafrance (2004)

examines the integrability properties of the LA–AIDS, finding that very restrictive forms are

implied for the underlying expenditure function when symmetry conditions are imposed. In

any event, all issues pertaining to the specification, estimation, and interpretation of the

LA–AIDS are rendered moot if instead the translog price index a(p) in (5) is simply used in

estimation. Even so, it is often useful to estimate the LA–AIDS for purposes of obtaining

starting values in estimation of the AIDS model with the nonlinear price index (Browning

and Meghir 1991).
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3 Specification of the Translog Demand System

A closely related demand model is found in the “Transcendental Logarithmic” or “translog”

(TL) demand system of Christensen, Jorgenson, and Lau (1975). The translog consumer de-

mand system is usually derived by applying Roy’s Identity to a quadratic, logarithmic specifi-

cation of an indirect utility function written in terms of expenditure-normalized prices. Nor-

malizing each price by dividing by total expenditures imposes homogeneity. The quadratic,

logarithmic indirect utility function is given by:

ln Ψ(p, y) = α0 +
∑

k

αk ln(pk/y) + 1

2

∑

k

∑

j

γkj ln(pk/y) ln(pj/y), (11)

k, j = 1, . . . , n. It is relevant to note the similarity of the translog specification to the price

index inherent in the AIDS model as specified in (2). Applying the logarithmic version of

Roy’s identity to the indirect utility function in (11) yields share equations of the form:

wi =
αi +

∑

k γik ln(pk/y)
∑

m(αm +
∑

k γmk ln(pk/y)
, (12)

where again i = 1, . . . , n. Note that the denominator of the share equation in (12) is the

sum of the numerators across all shares. This is often written in an equivalent form as:

wi =
αi +

∑

k γik ln(pk/y)

αM +
∑

k γMk ln(pk/y)
, (13)

where αM =
∑M

i=1
αi and γMk =

∑M

i=1
γik and where, of course, M = n. Note also that

the parameters are given in ratio form and thus are only identified to scale. A common

normalization to allow identification is to set αM =
∑

i αi = −1.

Homogeneity is necessarily guaranteed in the standard translog model in light of the use

of expenditure-normalized prices. Symmetry requires γij = γji. In the case of the TL there

are n(n+1)/2 free parameters in the Slutsky matrix, thereby implying that the translog has

more parameters than are necessary to qualify as a second–order locally flexible functional
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form.

Uncompensated price elasticities in the translog are given by:

ηij = −δij +
γij/wi −

∑

j γij

−1 +
∑

k γMk ln(pk/y)
. (14)

Expenditure elasticities are given by:

ηiy = 1 +
−
∑

j γij/wi +
∑

i

∑

j γij

−1 +
∑

k γMk ln(pk/y)
. (15)

As in the case of the AIDS, compensated (Hicksian) price elasticities may be determined by

using (9).

There is a variant of the translog model that is often used in practice, the log tranlog

(log TL) or aggregatable tranlog. See, Pollak and Wales (1992). The basic log TL may be

derived from the TL by simply imposing the additional restriction that
∑

k γMk = 0. Of

course doing so reduces the number of free parameters in the model by one so that now

there are n(n + 1)/2 − 1 free parameters in the Slutsky matrix. In any event even the log

LT has more free parameters then are required for the system to satisfy the properties of a

second–order (locally) flexible functional form.

Finally, any discussion of the AIDS and translog models would be remiss without explicit

mention of the fact that the two models are of a very similar analytical structure. This

similarity has led to efforts to directly compare the two closely–related specifications. A

notable example exists in the work of Lewbel (1989), who developed a demand model that

nests both the AIDS and the translog demand systems. Lewbel (1989) develops a more

general model that nests both the AIDS and the translog systems as special cases defined

by parametric restrictions which can, in turn, be used to pursue nested specification testing

of each alternative. Lewbel (1989) applied this model to aggregated U.S. expenditure data

and found that the explanatory power and statistical fit of the alternative models were very

similar in every instance. This finding is especially interesting in light of the nearly identical
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conclusions reached in our own empirical example presented below.

4 Issues in Applying the AIDS and Translog Models

A variety of issues and concerns may apply to any specific application of the AIDS and

translog models. These issues may arise as a result of characteristics of the data. For

example, issues relating to seasonality and structural change may arise in applications using

data collected over time. Likewise, data aggregated across households may raise questions

regarding the aggregation properties of a particular demand model. Methods for imposing

the curvature constraints inherent in the aforementioned conditions required for concavity

also raise important modeling questions. The treatment of autocorrelation in a singular

system of share equations may be important in applications to time-series data. Both the

AIDS and translog demand systems are nonlinear in the parameters, though practice has

shown the AIDS model to be relatively straightforward to estimate while the degree of

nonlinearity inherent in the translog model may result in additional estimation challenges.

4.1 Aggregation Properties

Empirical applications of demand system models typically proceed according to one of two

approaches. The first uses data collected from individuals or, more commonly, from house-

holds. Such paths to analysis typically assume a common underlying structure for tastes

and preferences and commonly apply various demographic shifters or adjustments to reflect

differences across individuals. A second approach to empirical analysis involves the use of

more aggregate data collected over groups of individuals or households and most often taken

across multiple time periods. In this case, one must consider aggregation properties that

reflect the extent to which the demand estimates accurately represent the underlying pref-

erence structure reflecting the optimizing choices of individuals making up the aggregate.

We most commonly consider a structure that represents the aggregate or a representative
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consumer defined at average values of prices and income. In their text, Deaton and Muell-

bauer (1980) note that “. . . in general, it is neither necessary, nor necessarily desirable, that

macroeconomic relations should replicate their microfoundations so that exact aggregation

is possible.”

It is common to assume that perfectly integrated goods markets result in a common price

for a good of a certain defined (homogeneous) quality. However, when aggregating across

households, differences in income will clearly exist and thus conditions for exact aggregation

should be considered. One of the AIDS model’s “almost ideal” properties relates to its

aggregation properties. In particular, the AIDS model satisfies exact nonlinear aggregation

because the cost function upon which it is based is of a specific functional form for underlying

preferences known as a “price independent generalized logarithmic” (or PIGLOG) form. This

allows one to work with a representative measure of household expenditure, defined as y0.

Deaton and Muellbauer (1980) show that, in the AIDS model case, y0 is given by y0 = κ0ȳ,

where κ0 = H/Z where H is the number of households or individuals making up the aggre-

gate and Z is Theil’s entropy measure of dispersion of income across individual units. Note

further here that, if the number of households and the distribution of income is constant

across individual aggregate measures (i.e., aggregated time-series observations), the AIDS

model satisfies exact nonlinear aggregation without further adjustment. If either the number

of households or the distribution of income varies across the sample of aggregated data, a

straightforward adjustment to the average level of household income can be applied to main-

tain desirable aggregation properties. Some applications of the AIDS model to aggregate

data apply Theil’s entropy index correction to average income levels to ensure valid aggre-

gation properties. One example can be found in Eales and Unnevehr (1988), who adjusted

average income levels to account for changes in the distribution of income over time.
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4.2 Flexibility and Model Extensions

The AIDS model is derived from an expenditure function that can be interpreted as a second-

order approximation to an arbitrary unknown function. As Deaton and Muellbauer (1980)

note, the AIDS demand system can thus be interpreted as a first-order approximation to

any demand system. Having noted these desirable flexibility properties, other authors have

considered amendments to the basic AIDS structure in an effort to improve or enhance its

flexibility properties.

Banks, Blundell, and Lewbel (1997) introduced a quadratic version of the standard AIDS

model that adds a quadratic logarithmic income term and nests the standard AIDS model

specification. The resulting QUAIDS model is given by share equations of the form

wi = αi +
∑

j

γij ln pj + βi ln(y/P ) +
λi

∏

i p
βi

i

(ln(y/P ))2 (16)

where P is the AIDS price index.

Other approaches to adding flexibility to the standard AIDS model have been proposed

in other research. Chalfant (1987) augmented the AIDS expenditure function by replacing

the translog cost function terms with Fourier series expansion terms. This specification also

nests a standard AIDS model and thus permits straightforward specification testing. As

Gallant (1981) has shown, the Fourier flexible form may offer more global flexibility than is

the case for the translog demand system.

Another extension to the standard AIDS model was proposed by Eales and Unnevehr

(1994), who considered applications where the quantities tended to be fixed in the short-run

and thus where prices adjusted to clear the market. Eales and Unnevehr (1994) discussed

specific applications where exogenous quantities may be more reasonable than exogenous

prices. Specific examples include short-run demand for perishable commodities, commodities

which are subject to long production lags and thus are essentially in fixed supply in the

short-run, and goods for which government policies set consumption quotas that effectively
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exogenously fix quantities.

The inverse AIDS model (IAIDS) is entirely analogous to the standard AIDS model. The

model is defined using a logarithmic distance function that is specified in a manner that is

entirely analogous to the expenditure function. Differentiation of the logarithmic distance

function yields share equations that are expressed as a function of quantities and utility.

Substitution of the inverted distance function uncompensates the functions and yields a

system of inverse demand share equations of the form:

wi = αi +
∑

j

γij ln qj + βi ln(Q) (17)

where Q is a quantity index defined by

ln Q = α0 +
∑

k

αk ln(qk) + 1

2

∑

k

∑

j

γkj ln qk ln qj. (18)

As illustrated by Christensen and Manser (1977), an inverse counterpart to the translog

model, the ITL, is also available. Specifically, the direct utility function as being of a translog

form. Specifically, the utility function may be specified as:

− ln U = α0 +
∑

k

αk ln(qk) + 1

2

∑

k

∑

j

γkj ln qk ln qj, (19)

where γij = γji. By maximizing (19) subject to the budget constraint p′q = y, and then

applying the so–called Hotelling–Wold identity (Hotelling 1935), a system of inverse demand

equations of the general form

wi =
αi +

∑

k γik ln(qk)

αM +
∑

k γMk ln(qk)
, (20)

obtains. As with the IAIDS, the ITL in (20) is in every respect analogous to the direct TL

system in (13).
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4.3 Seasonality, Demographics, and Structural Change

In applications of the AIDS and translog demand systems to time-series data, one may need

to be concerned with the potential for exogenous shifts in the underlying structure of the

economic relationships represented by the model. The tastes and preferences underlying

observed demand relationships may be subject to temporary or permanent structural shifts.

This may reflect a change in preferences or the arrival of new information that is embed-

ded in prices. Alternatively, if one is working with quarterly data, seasonal patterns may

characterize consumption. It is important to recognize that any such adjustment necessarily

implies analogous changes in the underlying utility maximization behavior of agents.

It is common practice to include exogenous intercept shifters in the basic AIDS and

translog share equations to capture the effects of structural change, seasonality, or other

exogenous shifters. In doing so, one must be careful to pay attention to the adding up

conditions represented above in order to ensure that the addition of such shifters does not

violate adding up across equations. A common approach to representing a linear shift in

expenditure shares that does not reflect changes in prices or income is to add a simple

linear trend to the share equations, which is analogous to allowing the intercept term of

each share equation to trend such that αit = αi0 + αitt where t = 1, . . . , T . In such a case,

one would recover the trend of the last omitted equation from the adding up condition that

requires
∑

k αkt = 0. This same general intuition carries over to more complex shifters

that allow the intercept to shift according to the quarter of the year of the observation or

even other shifters such as demographic terms. We should note that an entire literature

has developed to address the incorporation of demographic translation and scaling terms in

empirical demand models. For our purposes here, it suffices to note that attention to adding

up must accompany any amendments to the underlying AIDS or translog share equations

intended to allow the structure to vary outside of price and income changes. In the case of

adjustments for seasonality, one may add a series of indicator variables intended to capture

the fixed, seasonal effects. For example, for quarterly data, the share equations may be
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amended to incorporate seasonality by expressing the intercept terms as αis = αi0+
∑

3

s=1
δsS

where S is one if the quarter is dated s = S and is zero otherwise.

4.4 Imposing Curvature

One issue that arises frequently in estimation of demand systems is the imposition of cur-

vature (negativity) conditions (Barten and Geyskens 1975). Basic microtheoretic results

indicate that in order for integrability of the system to hold that the n × n Slutsky matrix

will be symmetric and that it will be, at most, of rank n−1. As well, quasi–concavity of the

utility function implies that the Slutsky matrix will be negative semi–definite. One immedi-

ate implication is, of course, that Hicksian (compensated) demands will be non–increasing

in own price. In any event, whether or not curvature conditions are satisfied at all or even

for any points in the sample data is a relevant issue, and one that should be examined in

any empirical investigation.

As illustrated by Moschini (1998) and Ryan and Wales (1998), the Slutsky matrix for the

AIDS and the TL models assume rather simple forms when evaluated at the points p∗ = ι

and y∗ = 1, where ι is a n×1 unit vector. Specifically, the ijth element of the Slutsky matrix

for the AIDS model is given by

Sij = γij − (αi − βiα0)δij − (αj − βjα0)(αi − βiα0) + βiβjα0, (21)

where δij is the Kronecker delta term. Moreover, if α0 is restricted to zero–a normalization

that is often used in empirical applications of the AIDS model–the ijth element of the Slutsky

matrix in (21) reduces to

Sij = γij − αiδij − αjαi. (22)

In similar fashion the ijth element for the TL Slutsky equation, again evaluated at the point
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p∗ = ι and y∗ = 1, is given by

Sij = −γij + αiαj + αiδij − αi

∑

k

γkj − αj

∑

k

γik − αiαj

∑

k

∑

j

γkj. (23)

Of course for the log TL model the ijth element of the Slutsky equation simply reduces to

Sij = −γij + αiαj + αiδij − αi

∑

k

γkj − αj

∑

k

γik. (24)

The expressions in (21)–(24) can be used to construct the relevant n×n Slutsky matrix. From

here it is then possible to calculate the eigenvalues of the Slutsky matrix and to determine

whether or not the lead eigenvalue is zero at the point of approximation.

Aside from checking to determine whether or not the curvature conditions are satisfied,

it may be desirable to impose the non–negativity conditions during estimation. There are

various ways of accomplishing this task, including both classical and Bayesian approaches.

For example, Gallant and Golub (1984) propose imposition of inequality constraints directly

on eigenvalues in the context of a maximum likelihood estimation routine. Alternatively,

Chalfant, Gray, and White (1991) build off of a Bayesian approach introduced originally by

Geweke (1993) that uses importance sampling in conjunction with Monte Carlo simulation to

impose curvature in an AIDS demand system. An essentially identical approach was adopted

by Terrell (1996) for purposes of imposing curvature conditions in a TL cost function.

More recently, several authors have investigated ways of reparameterizing the Slutsky

matrix so that curvature may be directly imposed at a point during estimation. All of these

procedures essentially build on results presented initially by Diewert and Wales (1988a,

1988b) in the context of imposing curvature globally in their normalized quadratic (NQ)

demand system. For example, Moschini (1998) and Ryan and Wales (1998) show how the

Diewert and Wales approach may be adopted to impose curvature at a point in the AIDS

model.

To illustrate, assume that the Slutsky matrix, S, may be rewritten as S = −ÃÃ′, where
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Ã is a n × n lower triangular matrix. Of course, due to the fact that Hicksian demands

are homogeneous of degree zero in prices, all relevant price vectors lie in the null space of

Slutsky matrix, S. If, for example, prices are normalized to have a unit mean, then it would

necessarily be true that Sι = 0 as well. The implication is that the Slutsky matrix can be

written in terms of its Cholesky decomposition as

−S = AA′ =

(

ÃÃ′ ã

ã′ −ι′ã′

)

(25)

where

Ã =
[

aij

]

, aij = 0 ∀j > i, i, j = 1, . . . , n − 1,

and where the kth element of the (n − 1) × 1 vector ã is given by ãk =
∑n−1

j akj. Now, let

(−ÃÃ′)ij denote the ijth element of −ÃÃ′. Then (22), after solving for γij, may be expressed

alternatively as

γij = (−ÃÃ′)ij + αiδij − αjαi. (26)

Specifically, it is the coefficients in the (n − 1) × (n − 1) lower triangular matrix Ã that are

estimated in lieu of the γij terms when curvature is imposed at the p∗ = ι and y∗ = 1 point.

As discussed originally by Diewert and Wales (1988b), if it is necessary to impose curva-

ture by using the Cholesky decomposition, then the leading non–zero eigenvalue in −AA′,

while negative, will often be near zero. Diewert and Wales (1988b) show that the rank of

−ÃÃ′ can be restricted to some K < (n − 1) by setting aij = 0 for all i > K. In turn re-

stricting −ÃÃ′ in this manner will, via (25), restrict the rank of S to K < n−1, resulting in

what Diewert and Wales refer to as a semiflexible form when combined with their normalized

quadratic demand system. An interesting feature of this approach is that once curvature is

imposed the rank of the Slutsky matrix can be successively reduced until noticeable harm is

done to model fit, perhaps as measured by the Akaike information criterion (AIC) or some

other model selection criterion. In his 1998 study Moschini used these results in conjunction

with (25) to develop the semiflexible almost ideal demand system.
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Finally, Moschini (1999) show shtat similar procedures may be applied to reparmaterized

versions of the TL and log TL models, again for purposes of imposing curvature at a point.

Furthermore, Ryan and Wales (1998) illustrate that in many instances curvature conditions

may be forced to hold at all sample points if the sample point for which the violation is most

stringent is used as the point for data normalization, that is, the point for which prices and

expenditure are normalized to have unit values.

4.5 Stochastic Specification and Autocorrelation

An area of key interest in demand system estimation, at least when time series data are em-

ployed, is the inclusion of autocorrelation terms in stochastic share equation specifications.

Because share equations must necessarily satisfy adding–up properties at all data points,

it is not possible to specify autocorrelation terms without imposing additional restrictions

(Berndt and Savin 1975). Here we briefly review the unique requirements of autocorrelation

specifications in systems of singular share equations along with several popular autocorrela-

tion models used in practice.

To begin, we follow Barten (1969) who illustrates that, for system’s of equations subject

to adding–up conditions, that: (1) in estimation an equation must be deleted since the

resultant n × n covariance matrix is not of full rank, and therefore an equation must be

omitted in estimation; and (2) that iterative Seemingly Unrelated Regression (SUR) yields

maximum likelihood estimates of the system’s parameters that are, moreover, invariant with

respect to the equation that is deleted. Specifically, let a superscripted n applied to a vector

(matrix) denote an operator that deletes the last row (row and column) of a vector (matrix).

In this case we might then represent the n − 1 equation system to be estimated as:

wn
t = fn(zt, θ) + en

t , t = 1, . . . , T, (27)

where wn
t is an (n − 1)–vector of shares at time t, zt is a vector of explanatory variables,
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including prices and income, θ is a vector of unknown parameters to be estimated, and en
t is

an (n − 1)–vector of mean zero random error terms.

Now assume that the errors in (27), that is, the elements in en
t , are autocorrelated, as is of-

ten the case when time series data are employed. Moreover, assume that the autocorrelation

follows a first–order vector autoregressive process. That is,

en
t = R

n
et−1 + εn

t , t = 2, . . . , T, (28)

where R is an (n − 1) × (n − 1) autocorrelation matrix and εn
t is a (n − 1) × 1 error vector

such that E(εn
t ) = 0, E(εn

t (εn
t )′) = Ω, and E(εn

t (εn
s )′) = 0 ∀t 6= s. By substituting the vector

autoregressive error process in (28) into (27) the following quasi-differenced equation system

obtains:

wn
t = fn(zt, θ) + R

n
[wn

t−1
− fn(zt−1, θ)] + εn

t , t = 2, . . . , T. (29)

As outlined by Moschini and Moro (1994) and Holt (1998) there are at least five ways to

parameterize the autocorrelation matrix R
n

in (28), including the unrestricted specification

outlined by Anderson and Blundell (1982) and the single–parameter specification suggested

by Berndt and Savin (1975). In the empirical application that follows we utilize the pos-

itive semi–definite parametrization for R
n

advanced by Holt (1998), which is often found

to provide reasonable flexibility (relative to the single–parameter case) and yet maintains

reasonable parsimony (relative to the unrestricted case). In short, the positive semi–definite

set–up applies the same same procedures to the autocorrelation matrix that Diewert and

Wales (1988a, 1988b) use to impose negativity on the Slutsky matrix of a demand system.

The positive semi–definite specification is defined as follows. Assume the n× n counter-

part to R
n

is specified by, say, R. Moreover, it is assumed that R is symmetric and positive

semi–definite, subject to the restriction Rι = 0, where as before ι is a n × 1 unit vector. As
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Holt (1998) describes how, with the foregoing restriction, the R matrix may be specified as:

R =

(

R̃ r̃

r̃′ −ι′r̃′

)

(30)

where

R̃ = TT ′, T =
[

τij

]

, τij = 0 ∀j > i.

A typical element in the (n − 1) × 1 vector r̃ is rk =
∑n−1

j=1
R̃jk. Moreover, as specified in

(30) the (n− 1)× (n− 1) matrix T is a lower-triangular matrix; it is the elements in T that

are estimated directly by using Holt’s (1998) method.

Alternative methods for dealing with demand systems in the context of time series data

have been explored by Anderson and Blundell (1982), Ng (1995), Attfield (1997), Kara-

giannisa and Mergos (2002), and Lewbell and Ng (2005). The basic idea is that prices,

expenditure, and perhaps budget shares follow something akin to a unit root process, im-

plying that the data should be first differenced as a prelude to estimation. Moreover, if

the underlying demand system is linear in variables—as it is for the AIDS model when a

Stone (or other) price index is used to replace the nonlinear price index a(p) in (2)—then

it is also possible to examine cointegration properties in the context of a demand system.

Alternatively, Lewbell and Ng (2005) propose a variant of the translog model that can also

be used to estimate demand systems in the context of nonstationary data. Although holding

promise, one limitation of the time series approach to demand system estimation is that

shares are, by definition, bounded on the unit interval, a result that is in turn inconsistent

with unit root behavior and therefore with first differencing. See, for example, the discussion

in Davidson and Teräsvirta (2002). Future work may therefore focus on the possibility that

demand equations estimated with time series data are fractionally cointegrated.
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5 An Empirical Example

In this section we provide a stylized application of the AIDS and translog demand systems in

the context of time series data. Specifically, we illustrate the application of these models to

aggregate meat demand data in the United States. Indeed, there is a long tradition of using

various demand systems, including both the AIDS and the translog models, to investigate

the properties of U.S. meat consumption. See, for example, Christensen and Manser (1977),

Moschini and Mielke (1989), and Piggott and Marsh (2004), among others. It therefore is

reasonable to illustrate the properties of these demand systems in the context of aggregate

meat demand data in the United States.

5.1 Data

Quarterly data on consumption and retail prices for beef, pork, chicken, and turkey were col-

lected from various USDA sources for the 1960–2004 period. Data prior 1997 were obtained

from various sources described in some detail by Holt (2002). Data for pork and beef from

1997 through 2004 were obtained from the online version of the U.S. Department of Agricul-

ture (2006b) Red Meat Yearbook. Likewise, data for chicken and turkey were obtained from

the online version of the U.S. Department of Agriculture (2006a) Poultry Yearbook. Similar

to Piggott and Marsh (2004), we aggregate the chicken and turkey categories to obtain a

single “poultry” category. The retail price for poultry is derived by determining the share–

weighted averages for chicken and turkey prices where the shares are with respect to total

expenditures on chicken and turkey. Basic descriptive statistics for the meat data used in

all subsequent econometric analyses are reported in Table 1.

5.2 AIDS and Translog Estimates of US Meat Demand

The data and procedures described above are used to obtain meat demand estimates for

the AIDS and translog demand systems. Regarding the translog, we utilize the log translog
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(log TL) version described in Section 3. We do this in part because in the present case the

log TL contains exactly the same number of free parameters as does the AIDS model and

therefore straightforward comparisons between the two specifications are facilitated. Prior to

estimation, all quantity variables and total expenditure are normalized to have a mean of one.

In both instances Holt’s (1998) first–order vector autoregressive autocorrelation procedure,

as described in Section 4.5, is used to handle issues with remaining serial correlation in

the models’ residuals. As well, because quarterly data are employed, and because there is

substantial seasonal patterns for some of these variables, most notably for quantities, a set

of seasonal dummy variables is appended to each model.

The final specification for the AIDS demand system is therefore:

wit = αi + αi1D1∗t + αi2D2∗t + αi3D3∗t +
∑

j

γij ln pjt + βi(ln(yt) − ln(Pt)) + eit, (31)

where i =1 (Beef), 2 (Pork), and 3 (Poultry), and also where lnPt is the price index give by

ln Pt =
∑

k

(αk + αk1D1∗t + αk2D2∗t + αk3D3∗t ) ln(pkt) + 1

2

∑

k

∑

j

γkj ln pkt ln pjt. (32)

In addition to the restrictions defined in 6, the additional restrictions
∑

3

j=1
αjk = 0, k =

1, 2, 3 are required to ensure that adding–up holds. In (31) D1∗t , D2∗t , and D3∗t are quarterly

dummy variables defined such that DJ∗

t = DJt − D4t, J = 1, 2, 3, and where DJt is one for

quarter J and zero otherwise. This dummy variable specification is used because it allows

the intercept term, in this case, αi to retain its original interpretation. See, for example,

van Dijk, Strikhom, and Teräsvirta (2003). Also note that in (32) we have restricted the

intercept term α0 to zero, a common practice in estimation of the AIDS model.1

1Empirical experience with the AIDS model has suggested that the likelihood function tends to be quite
flat with respect to the α0 term, thus complicating estimation. One common practice is to evaluate the
likelihood function for alternative fixed values of the intercept term and use the value giving the highest
likelihood.
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Likewise, the final specification for the log TL model, corresponding to (13), is

wit =
αi + αi1D1∗t + αi2D2∗t + αi3D3∗t +

∑

k γik ln(pkt/yt)

−1 +
∑

k γMk ln(pkt/yt)
+ et, (33)

where again i =1 (Beef), 2 (Pork), and 3 (Poultry) and where γMk =
∑M

i=1
γik, M = 3. As

before the restrictions
∑

3

j=1
αjk = 0, k = 1, 2, 3 are required to ensure that adding–up holds

for the share equations in (33). Finally, and in keeping with the log TL specification, the

additional restriction
∑

k γMk = 0 is imposed in estimation.

The parameter estimates for both models are reported in Table 2. Along with parame-

ter estimates and asymptotic standard errors, 90–percent bootstrapped confidence intervals

for the estimated parameters are obtained by using the percentile–t method. Specifically,

each parameter’s t–statistic is used to obtain critical values for the usual t–statistic as an

alternative to those provided by asymptotic theory. Empirically derived critical values are

then used to construct 90–percent confidence intervals for each estimated parameter. In

implementing the bootstrap 1,000 dynamic bootstrap draws are used to build the empirical

distribution for each parameter.

Because it is difficult to directly interpret many of the estimated parameters in the AIDS

and log TL models, it is generally more useful to obtain elasticity estimates. Results in

Table 2 do indicate that (1) seasonality is a significant feature in meat consumption; and

(2) serial correlation is a relevant feature of each model’s estimated residuals. Regarding

the latter, for both estimated models the dominant root for the estimated autocovariance

matrix is real-valued and is slightly less than one.

System and individual equation measures of fit and performance are recorded in Table

3. As previously noted both models have the same number of free parameters (16). The

estimated likelihood function value is slightly higher for the AIDS than for the log TL

implying, of course, that the AIC is slightly lower for the AIDS. Even so, the system R2 values

are quite similar in both instances, near 0.995. Of interest is that the Slutsky matrix is found
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to be negative semi–definite at all data points for both models, a result that is somewhat

surprising given the rather long time span used in estimation. Individually, each share

equation for each estimated model appears to fit the data well, as indicated by individual

equation R2’s, with the pork equation apparently fitting most poorly of the three (R2 values

of 0.85). Overall, both the AIDS and log TL models provide a good fit to the data and,

moreover, both models provide a nearly identical fit to the data.

To obtain further insights into the implications of each estimated model for meat con-

sumption, Marshallian, Hicksian, and expenditure elasticities are obtained by using the vari-

ous formulae outlined in Sections 2 and 3. Elasticity estimates for the AIDS model, obtained

at the means of the sample data, are reported in Table 4, while the comparable estimates

for the log TL model are recorded in Table 5. As with parameter estimates, 90–percent

bootstrapped confidence intervals are provided for each elasticity estimate.

The elasticity estimates recorded in Tables 4 and 5 are consistent with those reported

elsewhere in the literature. See, for example, Piggott and Marsh (2004). Even so, several

observations are in order. To begin, qualitatively the price and expenditure elasticity esti-

mates are similar to each other for both models, which is perhaps not surprising given that

both models have the same number of parameters and that both fit the data equally well.

As well, all Marshallian own–price elasticity estimates are generally less than one in absolute

terms, the sole exception being pork for the AIDS model. Moreover, both models imply that

poultry demand is most inelastic—the point estimate of the Marshallian own–price elasticity

estimate for the AIDS model is -0.370 while the comparable estimate for the log TL model

is -0.474. In any event, neither model generates an own–price elasticity estimate for poultry

that is significantly different from zero, as implied by the 90–percent confidence intervals.

Indeed, the only price effect that is significantly different from zero for poultry demand is

that for beef.

Regarding the expenditure elasticities, the AIDS model implies an expenditure elasticity

for poultry demand that is significantly different from one (0.750); the corresponding point
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estimate for the log TL model is 1.084, which is not significantly different from one. Indeed,

results in Table 5 reveal that none of the estimated expenditure elasticities is significantly

different from one, implying that consumer preferences are consistent with a homothetic

ordering. Indeed, this is the principle difference between the AIDS and the log TL models:

the log TL model seems to imply expenditure elasticity estimates for meat demand that are

consistent with homothetic preferences while the AIDS model does not.

6 Concluding Remarks

The AIDS and TL demand systems introduced by, respectively, Deaton and Muellbauer

(1980) and Christensen, Jorgenson, and Lau (1975) have over the past two–three decades

become primary workhorses in modern empirical demand analysis. Many refinements have

been considered for both specifications, including ways of incorporating demographic effects,

quadratic income terms, methods by which curvature conditions can be imposed, and issues

associated with incorporating structural change and seasonal effects. We also review meth-

ods for adjusting for autocorrelation in the model’s residuals. Finally, we present a set of

empirical examples for the AIDS and a the log TL version of the translog based on historical

meat price and consumption data for the United States. Because the properties of these

models are now well understood and because they are relatively easy to implement, there is

every reason to believe that the AIDS and TL demand systems, and the AIDS in particular,

will remain as important tools in quantitative demand analysis for years to come.
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Table 1: Descriptive Statistics for Meat

Demand Variables, 1960–2004.

Variable Average Min Max

Prices:

Beef Price 2.064 0.735 4.164

Pork Price 1.594 0.546 2.877

Poultry Price 0.742 0.379 1.111

Quantities:

Beef Quantity 18.639 15.000 24.300

Pork Quantity 14.022 11.300 17.900

Poultry Quantity 16.931 6.200 29.800

Shares:

Beef Share 0.522 0.420 0.593

Pork Share 0.303 0.252 0.367

Poultry Share 0.175 0.106 0.267

Note: Prices are in dollars per pound. Quan-
tities are in pounds per capita. Min denotes
minimum value and Max denotes maximum
value. There are 180 sample observations.
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Table 2: AIDS and log Translog Model Parameter Estimates for Quarterly U.S. Meat Demand with

Seasonal Dummy Variables and Autocorrelation Corrections, 1960–2004.

AIDS Model Parameter Estimates log Translog Model Parameter Estimates

Asy. Asy.
Parameter Estimate Std. Error 90% CI Parameter Estimate Std. Error 90% CI

α1 0.461 0.067 [ 0.359 0.839] α1 -0.445 0.090 [-1.070 -0.318]

α11 0.004 0.001 [ 0.002 0.005] α11 -0.003 0.001 [-0.004 -0.001]

α12 0.011 0.001 [ 0.009 0.013] α12 -0.010 0.001 [-0.012 -0.009]

α13 0.008 0.001 [ 0.006 0.009] α13 -0.008 0.001 [-0.009 -0.006]

γ11 0.074 0.020 [ 0.041 0.108] α2 -0.271 0.034 [-0.453 -0.218]

γ12 0.027 0.015 [-0.001 0.055] α21 -0.008 0.001 [-0.009 -0.006]

β1 0.020 0.030 [-0.031 0.070] α22 0.010 0.001 [ 0.009 0.012]

α2 0.274 0.029 [ 0.231 0.400] α23 0.010 0.001 [ 0.008 0.011]

α21 0.008 0.001 [ 0.007 0.010] γ11 -0.094 0.038 [-0.157 -0.038]

α22 -0.010 0.001 [-0.011 -0.008] γ12 -0.032 0.020 [-0.065 -0.002]

α23 -0.010 0.001 [-0.011 -0.008] γ13 0.109 0.019 [ 0.079 0.139]

γ22 0.010 0.019 [-0.022 0.043] γ22 -0.007 0.023 [-0.041 0.027]

β2 0.041 0.030 [-0.003 0.089] γ23 0.036 0.016 [ 0.008 0.064]

τ11 0.783 0.010 [ 0.766 0.794] τ11 0.780 0.010 [ 0.764 0.792]

τ12 -0.344 0.021 [-0.375 -0.299] τ12 -0.334 0.020 [-0.368 -0.290]

τ22 0.680 0.009 [ 0.665 0.690] τ22 0.674 0.011 [ 0.657 0.686]

Note: Asymptotic standard errors are in columns headed Asy. Std. Error. Columns titled ‘90% CI’ contain
90–percent bootstrapped confidence intervals obtained by using the percentile t method over 1000 bootstrap
draws. The poultry equation is omitted during estimation. Sample size is T = 179.
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Table 3: Measures of Fit for Estimated AIDS and log Translog Models.

AIDS Model log Translog Model

No. of Parameters 16 No. of Parameters 16

Log Likelihood 1224.60 Log Likelihood 1222.79

System R2 0.9950 System R2 0.9948

System AIC -19.180 System AIC -19.160

Curvature Violations 0 Curvature Violations 0

Beef Equation R
2

0.951 Beef Equation R
2

0.952
DW 2.438 DW 2.430

Pork Equation R
2

0.853 Pork Equation R
2

0.852
DW 2.046 DW 2.023

Poultry Equation R
2

0.968 Poultry Equation R
2

0.968
DW 2.373 DW 2.342

Note: R
2

denotes the individual equation coefficient of determination adjusted for
(average) degrees of freedom. AIC denotes the system Akaike information criterion.
DW denotes the individual equation Durbin–Watson statistic.
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Table 4: Estimated Marshallian, Expenditure, and Hicksian Elasticities for the Es-

timated AIDS Model.

Marshallian Price Elasticities Expenditure Elasticities

Beef Pork Poultry
Beef -0.868 0.044 -0.217 Beef 1.041

[-0.783 -0.954] [-0.020 0.095] [-0.142 -0.255] [0.948 1.126]

Pork 0.026 -1.004 -0.172 Pork 1.150
[-0.100 0.150] [-0.897 -1.113] [-0.056 -0.234] [0.993 1.280]

Poultry -0.296 -0.084 -0.370 Poultry 0.750
[-0.184 -0.639] [-0.266 0.073] [-0.506 0.163] [0.365 0.929]

Hicksian Price Elasticities

Beef Pork Poultry
Beef -0.360 0.326 0.035

[-0.270 -0.410] [0.297 0.405] [-0.080 0.049]

Pork 0.586 -0.692 0.106
[0.511 0.704] [-0.571 -0.785] [-0.033 0.167]

Poultry 0.070 0.119 -0.189
[-0.260 0.139] [-0.077 0.235] [-0.287 0.281]

Note: Numbers in box brackets are 90–percent bootstrapped confidence intervals. All elas-
ticities are computed at the means of the sample data.
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Table 5: Estimated Marshallian, Expenditure, and Hicksian Elasticities for the Es-

timated log Translog Model.

Marshallian Price Elasticities Expenditure Elasticities

Beef Pork Poultry
Beef -0.823 0.063 -0.204 Beef 0.965

[-0.753 -0.903] [0.005 0.110] [-0.127 -0.250] [0.882 1.053]

Pork 0.102 -0.976 -0.113 Pork 0.987
[-0.022 0.205] [-0.886 -1.093] [-0.011 -0.187] [0.856 1.142]

Poultry -0.460 -0.150 -0.474 Poultry 1.084
[-0.357 -0.918] [-0.052 -0.369] [-0.597 0.059] [0.853 1.362]

Hicksian Price Elasticities

Beef Pork Poultry
Beef -0.356 0.323 0.033

[-0.268 -0.409] [0.296 0.399] [-0.075 0.053]

Pork 0.580 -0.710 0.130
[0.509 0.695] [-0.579 -0.789] [-0.012 0.182]

Poultry 0.065 0.142 -0.207
[-0.287 0.135] [-0.003 0.270] [-0.326 0.222]

Note: Numbers in box brackets are 90–percent bootstrapped confidence intervals. All elas-
ticities are computed at the means of the sample data.
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