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Abstract

Decision analysis has traditionally been applied to choices under uncertainty involving
a single decision maker. Game theory has been applied to solving games of strategic
interaction between two or more players. Building upon recent work of van Binsber-

gen and Marx (2007. Exploring relations between decision analysis and game theory.
Decision Anal. 4(1) 32–40.), this paper defines a modified decision-theoretic approach

to solving games of strategic interaction between two players. Using this method, the
choices of the two players are modeled with separate decision trees comprised entirely

of chance nodes. Optimal policies are reflected in the probabilities in the decision trees
of each player. In many cases, the optimal strategy for each player can be obtained by

rolling back the opponent’s decision tree. Results are demonstrated for the multi-stage
signaling game, which is difficult to model using decision nodes to represent strategies,

as in the approach of van Binsbergen and Marx.

Key Words: decision analysis, decision tree, game theory, mixed strategy, signaling
game.
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1 Introduction

A recent paper by van Binsbergen and Marx (2007)—hereafter VBM—offers an alternative
to traditional game theory approaches to solving decision problems that involve strategic
interactions among multiple decision makers. As inspiration for their work, these authors
cite research by Cavuosoglu and Raghunathan (2004) that gives the details of a game-
theoretic approach for configuring detection software. One conclusion made by Cavuosoglu
and Raghunathan (2004) is that a decision-theoretic approach cannot be used to appropri-
ately solve for the optimal detection choice, necessitating a game-theoretic solution. VBM
outline their decision-theoretic approach to strategic games and apply it to solve the software
configuration problem.

The VBM approach is based on a duality between decision analysis and game theory.
For consistency, we define game theory and decision theory as in their article, and for com-
pleteness provide a brief review. As stated by VBM, who paraphrase definitions formulated
by the Decision Analysis Society, decision analysis provides a structured approach to exam-
ining how actions taken in a decision environment affect the results of the decision maker.
Four aspects of a decision analysis are (i) the set of alternatives available to the decision
maker, (ii) the random or chance events that influence the outcomes, (iii) a value model that
describes outcomes for the various combinations of alternatives and chance events, and (iv)
the solution technique.

Game theory defines a strategic interaction between two or more players where the payoff
to each player depends not only on her own choice, but the choices of all other players. The
game theory analogs to the four components of decision analysis are (i) the strategy set,
(ii) the moves of nature, (iii) the payoff function, and (iv) the equilibrium concept. Two
aspects of game theory that differentiate it from decision analysis are (v) the other players
and (vi) the dependence of each players payoffs on the other players in the game. VBM
state that these additional aspects do not necessarily limit the ability of decision analysis
to model situations where the payoffs to the decision maker are affected by the actions of
other players. Their approach uses decision analysis techniques to model the actions of each
player.

Koller and Milch (2003) also apply a decision-theoretic model to a multi-agent decision
making context. Their approach constructs one influence diagram model with separate
decision nodes for each player. Their paper describes an algorithm that exploits the notion
of strategic relevance to determine global equilibrium strategies using local computation on
several interacting smaller games. In contrast to this paper, decision variables are used
to represent the strategies of the players, and these variables have finite state spaces. In
the spirit of our research and the VBM article, Koller and Milch (1999) state the following
regarding the use of a decision-theoretic approach to modeling games of strategic interaction:

“...the traditional representations of games are primarily designed to be amenable
to abstract mathematical formulation and analysis. As a consequence, the stan-
dard game representations...obscure certain important structure that is often
present in real-world scenarios—the decomposition of the situation into chance
and decision variables, and the dependence relationships between these variables”
(p. 182).

We concur with VBM that decision theory offers models that may be more amenable to
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developing an intuitive graphical model of a strategic game. In situations involving strategic
interaction, decision makers are deemed to be rational if they act using strategies that
meet the Nash equilibrium criterion—that no player can change actions unilaterally to earn
a better outcome. Traditional game theory approaches to determining Nash equilibrium
strategies require decision makers to reason abstractly about how the strategies of each
player affect other players in the game. Modeling games of strategic interaction with decision-
theoretic models—such as decision trees and influence diagrams—can allow decision makers
to use well-known solution algorithms—such as a dynamic programming approach to rolling
back a decision tree—to find equilibrium strategies in some cases.

The methodology presented by VBM and extended in our paper can also be used to
incorporate game-theoretic thinking into a decision analysis context. In decision analysis,
any event not under the control of the decision maker—such as an action taken by a rival
firm—is represented by a random variable. Probability distributions are used to describe the
uncertainty associated with these random variables. If actions are chosen strategically by
the two firms, the actions of the decision maker may affect the probability that the rival firm
chooses a certain action. The techniques presented in this paper allow the decision maker
more flexibility in modeling the affects of strategic interaction on a decision problem.

To model games of strategic interaction, VBM construct a decision tree for each player
where the player’s own strategies are represented as decision nodes and the strategies of other
players (or moves of nature) are represented by chance nodes. The method presented in this
paper also depends on building a decision tree for each player. However, our approach models
the choices of all players with chance nodes. The probabilities assigned to these chance nodes
represent the chosen strategies of the players. Allowing only chance nodes in the decision
tree offers some computational advantages. Principally, the rollback of the decision tree can
proceed without any maximization operations. Although the techniques we present can be
used to model games with more than two players, we will focus on two-player games because
equilibrium strategies in these games can often be determined without the iterative solution
process required by the VBM approach.

The goal of this paper is to extend the VBM approach to more easily model more com-
plicated games, including the signaling game (Gibbons 1992, Dixit and Skeath 1999). In
the signaling game, a less informed player relies on a signal from a more informed player to
understand the potential strength (or type) of its opponent. The remainder of this paper is
organized as follows. In §2, game-theoretic, decision analysis, and modified decision analysis
approaches for solving a normal-form game are introduced, with the inspection game of Fu-
denberg and Tirole (1993) used as an example. In §3, the signaling game is introduced and
is solved using the modified approach, with a game-theoretic solution offered as a compari-
son. §4 compares the three approaches, provides a discussion of the implementation of the
modified decision analysis approach, and summarizes the paper.

2 Normal Form Games

In this section we focus on static games of complete information. A normal form represen-
tation of such a game with two players, G = {S1, S2; u1, u2}, is defined by the i-th player’s
strategy space Si and payoff function ui. These games may be solved using either a game-
theoretic approach or a decision-theoretic approach. In this section, we illustrate that in
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Table 1: The normal form of the inspection game.

Firm
Worker Inspect No Inspection
Shirk 0, −10 50, −50
Work 30, 40 30, 50

either case the solution does not change. Also, we present a decision analysis approach that
is a modification to the VBM approach and obtain the same solution.

Applying the Nash equilibrium concept will lead to a prediction of the strategies that
ought to be chosen by the players. By definition, there will be no incentive to deviate from
these strategies. In other words the predicted actions will be strategically stable (Gibbons
1992, p. 8). More formally, the strategies s∗

1
, s∗

2
, where si ∈ Si, are a Nash equilibrium if
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∗
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∗

1
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2.1 Example: The Inspection Game

The inspection game (Fudenberg and Tirole 1993, p. 17) is an example of a two-player static
game of complete information. This game is played between a worker—who can choose to
Shirk (S) or Work (W )—and a firm—who can Inspect (I) the worker or make No Inspection
(NI). Producing output valued at $100 costs the worker $20. The firm pays the worker
$50 and it costs $10 to inspect. The normal form table for the inspection game is shown in
Table 1. The Worker’s payoffs are the first entry in each pair of values.

The Worker can choose Shirk, Work, or a mixed strategy where it plays Shirk with some
probability y ∈ [0, 1]. Shirk and Work are pure strategies and coincide with y = 1 and y = 0,
respectively. The Firm can choose to play Inspect, No Inspection or a mixed strategy where
it plays Inspect with some probability x ∈ [0, 1] (x = 1 is a pure Inspect strategy and x = 0
is a pure No Inspection strategy). In other words, the Worker’s and Firm’s strategies are y
and x, respectively.

It is clear that there cannot be any pure strategy Nash equilibria in this game. If the
Firm performs No Inspection then the Worker will prefer to Shirk, thus giving the Firm an
incentive to deviate from No Inspection. Similarly, if the Firm chooses to Inspect then the
Worker will prefer to Work, which in turn creates an incentive for the Firm to deviate from
Inspect. Thus, both players must play a mixed strategy in equilibrium.

2.2 Game-Theoretic Solution

The Worker’s expected value from Shirking is EVW,S = 0x + (1 − x)50 = 50 − 50x and
her expected value from Working is EVW,W = 30x + (1 − x)30 = 30. The Firm’s expected
value from Inspecting is EVF,I = −10y + (1 − y)40 = 40 − 50y and its expected value from
choosing No Inspection is EVF,NI = −50y +(1− y)50 = 50− 100y. Each player’s strategy is
in equilibrium only if it does not provide an incentive to the other player to deviate. Thus
the Firm’s equilibrium strategy x∗ must be such that EVW,S = EVW,W and the Worker’s
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Figure 1: The VBM paired decision analysis representation of the inspection game.

equilibrium strategy y∗ must be such that EVF,I = EVF,NI . Solving for x∗ and y∗ gives the
Nash equilibrium strategies

50 − 50x = 30 and 40 − 50y = 50 − 100y
x∗ = 0.40 y∗ = 0.20 .

2.3 Decision-Theoretic Solution

In their paper, VBM use an approach called paired decision analysis to solve normal-form
games similar to the one with payoffs in Table 1. Using this approach requires constructing
a decision tree for each player with a decision node representing their own choice, and a
chance node representing the opponent’s choice. A graphical depiction of the VBM paired
decision analysis model for the inspection game with payoffs in Table 1 is shown in Figure 1.

As shown in the decision tree, the Worker chooses either one of two pure strategies (Shirk
or Work) or chooses a mixed strategy y. The chance node beyond the initial decision node
in the Worker’s decision tree represents the Firm’s strategy. On the mixed strategy branch,
the payoffs at the endpoints of the decision tree are expected values. The setup of the Firm’s
decision tree is similar, except that the Firm’s own strategy is represented as a decision node.

VBM state that to identify the Nash equilibrium in the game “...one could iterate until
the two decision trees are consistent...” and that there is “...no single pass approach, such
as backward induction or rolling back the tree, that delivers the solution to this problem”
(p. 37). To identify the equilibrium, the decision maker must try various strategy pairs
(x, y) until a pair provides a solution that does not vary when each player’s strategy is
subsequently changed. When such an iteration process arrives at the strategies x∗ and y∗

from the previous section, the Nash equilibrium solution is found.
In the next section, we present a modification to the VBM approach with some compu-

tational advantages that can aid in performing such an analysis.
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Figure 2: Decision tree models for the two players in the modified decision analysis approach
to solving the inspection game.

Figure 3: Decision tree models for the two players in the inspection game after rolling back
the tree one level.

2.4 Modified Decision-Theoretic Solution

In this paper, we introduce a modification to the paired decision analysis concept defined
by VBM, which we refer to as a paired mixed decision analysis. In a paired mixed decision
analysis, the choices of the player and opponent are modeled with chance nodes called random

strategy nodes, as the players may randomize between available strategies. A pure strategy
can be represented in this model by assigning a probability of one to a single strategy and
zero to all other strategies in the strategy set.

In contrast to the VBM approach, the expected payoff for each player in single-stage
games can be calculated by rolling back the tree using expected value calculations. A modi-
fied decision analysis representation of the inspection game is shown in Figure 2. A selection
of the probabilities x and y by the two players represents a strategy pair. Rolling back these
decision trees one level, as demonstrated in Figure 3, helps reveal the equilibrium strategies.

In the Worker’s tree, the expected values are calculated at the two nodes for the Firm’s
choice in the original decision tree and noted in the model in Figure 3 as

EVW,S(x) = 0x + 50(1 − x) = 50 − 50x
EVW,W (x) = 30x + 30(1 − x) = 30 .
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Because the expected values EVW,S and EVW,W will be weighted by the probabilities y
and 1 − y, respectively, to determine the Worker’s overall payoff in the game, it is clear
from the decision tree and the rollback procedure used to solve the decision tree that the
Firm must choose x to satisfy EVW,S = EVW,W . When the Firm does so, the Worker has no
incentive to deviate from any specific value for its strategy y. The Firm’s optimal strategy
x∗ is found as

EVW,S(x) = EVW,W (x)
50 − 50x = 30

x∗ = 0.40

By using the decision tree for the Firm and following the same logic, the Worker’s optimal
strategy is found as y∗ = 0.20. The optimal strategy in a mixed equilibrium for the Worker
is the probability that makes the Firm indifferent as to whether it follows the Inspection
or No Inspection branches from the random strategy node in its decision tree. Similary,
he optimal strategy in a mixed equilibrium for the Firm is the probability that makes the
Worker indifferent as to whether she follows the Shirk or Work branches from the random
strategy node in her decision tree.

In the modified decision-theoretic approach, the equations needed to determine the opti-
mal strategies x and y are found directly through rolling back the decision trees. The payoffs
to the players at equilibrium can also be determined by substituting the optimal strategies
and rolling back the decision trees. In this example, the expected value in the game at Nash
equilibrium is $30 for each player.

In contrast to the VBM method, the modified decision-theoretic approach provided a
solution to this problem using a “single pass” to calculate the expected values of each player
in the game. These expected value expressions are then used to solve for the Nash equilibrium
strategies. No iterative solution procedure is required. This approach can also provide
solutions using a single pass in some more complicated two-player games, including the
signaling game presented in the next section.

3 The Signaling Game

Signaling games are games of asymmetric information where the more informed player (the
Sender) has a choice about whether to provide information to his opponent (the Receiver).
The information contained in the signal may affect the judgment of the less informed player
about the first player’s true type. Signaling in a way that confounds the understanding of the
less informed player may be costly. The less informed player has to decide how to respond,
taking into consideration the uncertainty about the opponent’s type, recognizing that the
signal may be strategically chosen. In this paper we consider the signaling game with two
players where the Sender can be one of two types.

3.1 Example: Nova and Oldstar

Dixit and Skeath (1999) present an example of a signaling game. There are two firms in a
market entry game: the incumbent firm is Oldstar (the Receiver) and the new firm is Nova
(the Sender). Oldstar reasons that Nova is one of two types: weak (Type 1) with probability
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Table 2: Descriptions for the parameters in the Nova–Oldstar signaling game.

Parameter Description
p Probability that Nova is weak

mW Weak Nova’s strategy (% of time weak Nova challenges)
mS Strong Nova’s strategy (% of time strong Nova challenges)
aC Oldstar’s strategy after observing challenge

(% of time Oldstar retreats upon observing challenge)
aN Oldstar’s strategy after observing no challenge

(% of time Oldstar retreats upon observing no challenge)

Table 3: The payoffs to each player in the Nova–Oldstar signaling game.

Weak Nova Strong Nova
with probability p with probability 1 − p

Oldstar Challenge No Challenge Oldstar Challenge No Challenge
Retreat 0, 2 − c 3, 0 Retreat 0, 4 3, 0
Fight 1, −2 − c 3, 0 Fight −2, 2 3, 0

p or strong (Type 2) with probability 1 − p. If Nova enters the market, Oldstar can beat a
weak Nova and have the market to itself, but a strong Nova can beat Oldstar and capture
the entire market.

Now suppose Nova can signal its type by presenting prototypes of advanced products
before it can produce and distribute these products on a large scale. Such a signal seems to
indicate that Nova is strong, but even a weak Nova can display these prototypes, albeit at
a cost c. A weak Nova, therefore, may choose to signal strategically and imitate a strong
firm. If it can do so and cause Oldstar to retreat, it can gain the market. Oldstar on the
other hand could engage in a price war and fight with Nova. However, Oldstar’s payoff from
fighting with a strong Nova is the least preferred outcome for Oldstar. On the other hand,
Oldstar’s payoff from fighting with a weak Nova is preferable to retreating. The task for
Oldstar then is to strategize around this risk. A weak Nova has to decide on whether to
incur the cost of the challenge c or not. A strong Nova will always challenge. Assume the
parameters and payoffs in the game to each player are as shown in Tables 2 and 3. In Table 3,
the left (right) panel shows payoffs that occur when Nova is weak (strong). In both cases,
Oldstar’s payoff is the first value listed in each pair. All of these parameters and payoffs are
common knowledge to both firms.

We next present the game-theoretic solutions to the Nova-Oldstar game, then demon-
strate the modified decision-theoretic approach to solving the game.

3.1.1 Game-Theoretic Approach

A game-theoretic solution to the Nova-Oldstar example uses a Bayesian-Nash approach that
will be demonstrated in more detail later in this section. In this environment there are a
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number of possible equilibria. We will state rather than derive these equilibria here (see
Dixit and Skeath (1999, pp. 416–424) for a detailed solution). Our point is to show that
the modified decision-theoretic approach provides the same solution as the game theory
approach.

Pooling Equilibrium

When the cost of challenging is small, then even a weak Nova is likely to challenge (mW = 1)
and pretend to be a strong Nova. Thus, a pooling equilibrium is likely when c < 2. At
the same time if p is small enough, then Oldstar might believe that the likelihood of facing
a strong Nova is too high for it to take the risk of fighting. It turns out that for p < 2/3
and c < 2, a weak Nova will always challenge and Oldstar will always retreat. Since neither
player has an incentive to deviate from their strategy, we have a Nash equilibrium.

Separating Equilibrium

When c > 2, a weak Nova has no incentive to challenge. However, a strong Nova always
challenges (mS = 1). In this scenario Oldstar will always believe that a challenger is a strong
Nova and will always retreat in the face of a challenge. Conversely, faced with a Nova that
does not challenge Oldstar will decide to fight. Again, these are strategies that neither player
has an incentive to deviate from and form a separating Bayesian-Nash equilibrium.

Semi-separating Equilibrium

An interesting situation arises when p > 2/3 and c < 2. The cost of challenging is small
enough to provide an incentive for a weak Nova to challenge. At the same time, Oldstar
faces enough of a chance of meeting up with a weak Nova to have an incentive to fight when
faced with a challenge. In this situation both players have a Bayesian-Nash mixed-strategy
equilibrium. The game is structured so that mS = 1. Therefore, Oldstar’s decision to fight
is based on its belief about Nova’s type given it observes the signal—a challenge. Oldstar
generates this belief using Bayes’ rule. Thus, Oldstar uses Bayes’ rule to find P (Strong |
Challenge) = mW · p/(mW · p − p + 1). Given this belief Oldstar fights (aC = 0) only if
mW > (2 − 2p)/p. Consequently, Oldstar never fights (aC = 1) only if mW < (2 − 2p)/p.

Of course, now Nova’s strategy depends on whether Oldstar fights or not—in this game
Nova does not have to worry about Oldstar’s type. Nova challenges only if it finds that
aC is low enough. Thus mW = 1 only when aC < (2 + c)/4. Consequently mW = 0 only
when aC > (2 + c)/4. Thus, a Bayesian-Nash mixed-strategy equilibrium where neither
player has an incentive to deviate from occurs when aC = (2 + c)/4 and mW = (2 − 2p)/p.
Applying our modified decision-theoretic approach to this game produces exactly this result,
as demonstrated in the next section.

3.1.2 Modified Decision-Theoretic Approach

To use the modified decision-theoretic approach to determine the Basyesian-Nash equilibrium
strategies, we build a decision tree for each player, as shown in Figure 4.

In Nova’s decision tree, nature’s selection of a weak or strong is represented as a chance
node. Nova learns its type, then chooses its strategy mW , as modeled with a random strategy
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Figure 4: The decision trees in the modified decision-theoretic approach for the Nova–Oldstar
signaling game.

node. If Nova does not challenge, it earns a payoff of zero. If Nova challenges, its payoff
is determined according to whether Oldstar retreats or fights. Oldstar will retreat with
probability aC, leaving Nova with the market and a payoff of 2− c. Otherwise, Oldstar will
fight and Nova’s payoff will be −2−c. If Nova is strong it will always challenge. Oldstar will
again retreat with probability aC leaving Nova with a payoff of four. Otherwise, Oldstar will
fight and Nova will earn two. Note that the tree assumes that aN = 0 because observing no
challenge, Oldstar has no reason to retreat. Similarly, mS = 1 because a strong Nova should
always challenge.

Oldstar will first observe whether or not Nova challenges, as shown by the initial chance
node in its decision tree. The probabilities at this chance node are determined as

P (Challenge) = P (Weak ∩ Challenge) + P (Strong ∩ Challenge)
P (Challenge) = P (Challenge | Weak) · P (Weak) + P (Challenge | Strong) · P (Strong)
P (Challenge) = mW · p + mS · (1 − p) = mW · p + 1 · (1 − p) = mW · p − p + 1

P (No Challenge) = 1 − (mW · p − p + 1) = p − mW · p .

If Oldstar observes the challenge, it retreats with probability aC, earning nothing. If Oldstar
fights a weak Nova, it earns a payoff of one, while it loses two by fighting a strong Nova. Its
probabilities for Nova’s type after observing a challenge are determined according to Bayes’
rule as

P (Weak | Challenge) = P (Weak ∩ Challenge)/P (Challenge) = mW · p/(mW · p − p + 1)

P (Strong | Challenge) = P (Strong ∩ Challenge)/P (Challenge) = (1 − p)/(mW · p − p + 1) .

Rolling back the decision trees one level gives the results shown in Figure 5. Continuing
rolling back the trees a second level gives the results shown in Figure 6. As a result of rolling
back the decision trees, we can find that Nova’s expected payoff in the game is

EVN (aC, mW ) = 2 − (2 + (2 + c)mW ) p + aC (2 + (4mW − 2) p) . (1)
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Figure 5: The modified decision-theoretic approach for the Nova–Oldstar signaling game
after rolling the decision trees back one level.

Figure 6: The modified decision-theoretic approach for the Nova–Oldstar signaling game
after rolling the decision trees back two levels.

Oldstar’s expected payoff in the game is

EVO (aC, mW ) = (5 − 2mW ) p − aC (−2 + (2 + mW ) p) − 2 . (2)

Pooling Equilibrium

The functions in (1) and (2) can be used to determine the conditions that result in a pooling
equilibrium where both a weak Nova and strong Nova will challenge (or mW = 1 and mS = 1).
This equilibrium exists with Oldstar always retreating in the face of a challenge (aC = 1) if

(EVN (1, 1) ≥ EVN (1, 0)) ∩ (EVO(1, 1) ≥ EVO(0, 1)) .

Since EVN (1, 1) = 4(1 − p) + (2 − c)p and EVN (1, 0) = 4(1 − p), the first condition is met
when c < 2. Since EVO(1, 1) = 0 and EVO(0, 1) = −2(1 − p) + p, the second condition is
met when p < 2/3. Thus, we can conclude that if c < 2 and p < 2/3 a pooling equilibrium
exists with mW = 1 and mS = 1.
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Separating Equilibrium

Suppose we want to determine if a separating equilibrium exists where weak Novas do not
challenge, or mW = 0 and mS = 1. Since aN = 0 (Oldstar never retreats if not challenged),
a separating equilibrium exists if

(EVN (0, 0) ≥ EVN (0, 1)) ∩ (EVO(0, 0) ≥ EVO(1, 0)) ,

assuming Oldstar plays aC = 1 and always retreats if challenged. Since EVN (0, 0) = 4(1−p)
and EVN (0, 1) = 4(1 − p) + (2 − c)p, the first condition is met when c > 2. The second
condition is always met with 0 ≤ p ≤ 1. Thus, a separating equilibrium exists for c > 2.

Semi-separating Equilibrium

If c < 2 and p > 2/3, we can use the decision trees to determine the strategies that form
a Bayesian-Nash semi-separating equilibrium. Nova’s equilibrium strategy is determined by
rolling back the decision tree one level as shown in Figure 5. Solving the following equation
for mW ) ensures that Oldstar will not have a preference for any particular value of aC:

mW · p + 2p − 2

mW · p − p + 1
= 0 .

Similarly, using the decision tree for Nova in Figure 5, Oldstar’s equilibrium strategy is
determined by solving for aL in

4aL − 2 − c = 0 .

The results are mW = (2 − 2p)/p and aC = (2 + c)/4. The decision tree representation
provides a convenient tool to establish the equations required to solve for the equilibrium
strategies. By using the decision trees in Figure 6 or the expressions in (1) and (2) and
substituting the optimal strategies, we can determine the expected payoffs in the game as
EVN = (0.5 − 0.5p)(c + 6) for Nova and EVO = 4 + c − p − cp for Oldstar.

The example in this section has described how the modified decision-theoretic approach
can be used to obtain the same Bayesian-Nash equilibrium strategies as a game-theoretic
approach. The VBM decision-theoretic approach will not be used to solve the signaling game
because of the difficulty of representing the multi-stage nature of the solution approach in
this framework. In the VBM approach, the chance nodes representing the weak Nova’s
message in Figure 4 would be replaced with a decision node with three branches. The three
branches would represent the pure strategies mW = 1, mW = 0, and a mixed strategy where
mW ∈ (0, 1). The remainder of the game involves Oldstar following a strategy of mW = 1
or mW = 0 with an action aC or aN . However, this action cannot be represented with one
chance node after the mW ∈ (0, 1) branch because this branch represents a combination of
the strategies mW = 1 and mW = 0.

The next section presents the Bayesian-Nash equilibria in a more general version of the
signaling game.
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Table 4: The payoffs to each player in the signaling game.

Type 1 Sender (t1) Type 2 Sender (t2)
with probability p with probability 1 − p

Receiver Left (L) Right (R) Receiver Left (L) Right (R)
Up (u) v11, w11 v12, w12 Up (u) v13, w13 v14, w14

Down (d) v21, w21 v22, w22 Down (d) v23, w23 v24, w24

Table 5: Descriptions for the parameters in the two-type signaling game.

Parameter Description
p Probability the sender is type 1 (t1)

m1 Type 1 Sender’s strategy (% of time t1 plays Message 1 (L))
m2 Type 2 Sender’s strategy (% of time t2 plays Message 1 (L))
aL Receiver’s strategy after observing Message 1 (L) (% of time receiver plays u)
aR Receiver’s strategy after observing Message 2 (R) (% of time receiver plays u)

3.2 General Signaling Game

The payoffs and a description of the parameters for a more general version of the two-
player signaling game with two types of Senders are provided in Tables 4 and 5, respectively.
Notation used here is similar to that employed by Gibbons (1992).

Nature selects the type of Sender that the Receiver ultimately faces in the game, with
p representing the probability that the Sender is Type 1 (t1). The Sender’s strategies are
the signals Left (L) or Right (R). The Receiver’s strategies are the Up (u) and Down (d)
responses to these signals. In Table 4, the first set of payoffs are those realized when the
Sender is Type 1 (t1), whereas the second set of payoffs ensues when the Sender is Type 2
(t2). In each pair of payoffs in Table 4, the first value is the payoff to the Receiver, while
the second value is the payoff to the Sender. For example, the payoff to the Receiver playing
Up (u) when the Type 1 Sender (t1) plays Left (L) is v11, while the payoff to the Sender
in this scenario is w11. An extensive form representation of this game is shown in Figure 7.
The dashed lines in this diagram represent the information sets for the Receiver, which will
observe the signal of the Sender, but not the Sender’s type.

The Receiver’s strategy aL is interpreted as the conditional probability that action u is
initiated given L is played, or P (u | L). The receiver’s strategy aR is interpreted as the
conditional probability that action u is initiated given R is played, or P (u | R). Likeli-
hood probabilities for message type given player type are assigned according to the Sender’s
strategy, as shown in Table 5. The marginal probabilities of observing Message 1 (L) and
Message 2 (R) are determined as

q1(m1, m2) = m1 · p + m2 · (1− p) and 1− q1(m1, m2) = (1−m1) · p + (1−m2) · (1− p) .

The Receiver’s probabilities for player type given the observed signal are calculated us-
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Receiver Receiver

Sender

Sender

Nature

u

u

u

u

d

d

d

d

L

L

R

R

p

1-p

t1

t2

(v11,w11)

(v21,w21)

(v13,w13)

(v23,w23)

(v12,w12)

(v22,w22)

(v14,w14)

(v24,w24)

Figure 7: A game tree representation of the signaling game.

ing Bayes’ rule. The conditional probabilities for Sender type given the message received,
denoted by rij for the probability of type i given message j, are determined as

r11(m1, m2) =
m1 · p

m1 · p + m2 · (1 − p)

r21(m1, m2) =
m2 · (1 − p)

m1 · p + m2 · (1 − p)

r12(m1, m2) =
(1 − m1) · p

(1 − m1) · p + (1 − m2) · (1 − p)

r22(m1, m2) =
(1 − m2) · (1 − p)

(1 − m1) · p + (1 − m2) · (1 − p)
.

3.2.1 Game-Theoretic Approach

In this section we will describe a game-theoretic approach to solving a signaling game. Since
general signaling game solutions are sensitive to assumptions about player payoffs and beliefs,
we provide a conditional partial solution. Our purpose here is not to provide a complete
solution to our chosen game, but to show how a solution process works. In Section 3.2.2 we
use a modified decision-theoretic approach to solve the same game. Of course, we get the
same solutions for the same set of initial conditions in either section.

Typically, signaling games can be solved with a Bayesian–Nash approach, though this is
not the only way of solving games of this class. We use a Bayesian–Nash approach to solve
this game. The fundamental principle of a Nash equilibrium—no player has an incentive to
deviate from an equilibrium strategy—remains. The main innovation in this class of games
is that players form beliefs about a sender’s type by using a Bayesian process.

In the following three sections, we provide representative solutions for three different
classes of a Bayesian–Nash equilibrium.
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Pooling Equilibrium

In this section we focus on the conditions under which a pooling equilibrium is plausible.
For our game pooling may occur with both types of Senders playing L or R. We choose to
illustrate the Bayesian–Nash approach as it applies to a pooling equilibrium by focusing on
the possibility of pooling on L. Any solution must satisfy the fundamental Nash principle—
there is no incentive for any player to deviate.

Suppose a pooling occurs on L. In other words m1 = m2 = 1. Then the Receiver’s belief
of the Sender’s type, driven by Bayes’ rule, is r11 = p and r21 = 1 − p. Given this belief,
the Receiver’s strategy would be aL if her expected payoff from playing aL = 1 (Up) exceeds
her expected payoff from playing aL = 0 (Down). The expected values to the Receiver from
playing aL = 1 and aL = 0 are pv11 + (1 − p)v13 and pv21 + (1 − p)v23, respectively. Thus,
the Receiver will play aL = 1 only if p ≥ ((v23 − v13))/((v11 − v13) − (v21 − v23)). Suppose
first that this condition holds. Given the Receiver’s strategy, each type of Sender should
have no incentive to deviate from pooling, i.e. given the Receiver will play Up, either type
of Sender should not deviate from L. This happens only when w11 > w12 and w13 > w14. If
p < ((v23 − v13))/((v11 − v13) − (v21 − v23)) so that the Receiver plays aL = 0, the Type 1
and Type 2 Senders will not deviate from L if w21 > w22 and w23 > w24.

Separating Equilibrium

In this section we look at the conditions under which a separating equilibrium is plausible.
In our game there are two possible separating equilibria. Type 1 Senders can play L while
Type 2 Senders play R, and vice versa. To illustrate a Bayesian–Nash approach to finding
separating equilibria we choose to focus on Type 1 playing L while Type 2 plays R, i.e.
m1 = 1 and m2 = 0. The underlying belief system of the Receiver is represented by r11 =
r22 = 1. Let us posit an equilibrium where aL = aR = 1. This equilibrium will be stable,
i.e. there will never be an incentive to deviate, if and only if w14 > w13, w11 > w12 and v11

> v21, v14 > v24.

Semi–Separating Equilibrium

In this section, we focus on the conditions under which a semi-separating equilibrium is
plausible. This type of equilibrium arises when one type of Sender has a clear pure strategy
in equilibrium due to the structure of its payoffs, while the other type plays a mixed strategy.
The problem in this scenario arises because the Receiver may observe a particular signal
emanating from both types of Sender. The Receiver therefore has to make a clear judgment
about the type of the Sender underlying the signal. For the remainder of this analysis, assume
that m2 = 1 because w13 ≥ w14 and w23 ≥ w24, which implies that r12 = 1. This dictates that
aR = 1 if v12 ≥ v22, and aR = 0 otherwise. To illustrate the resolution process for a semi-
separating equilibrium we will look at the L information set in Figure 7, i.e. we will assume
v12 < v22 so that aR = 0. Note that this class of equilibrium arises only if there is no chance
of a pooling equilibrium. In our game, this means p < ((v23−v13))/((v11−v13)− (v21−v23)).

The Receiver’s belief system is determined by Bayes’ rule according to the probabilities
r11 and r12. The Receiver mixes between Up and Down only if she is indifferent between the
expected payoffs from either move. Thus, assuming m2 = 1,
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v11(pm1)

pm1 + (1 − p)
+ v13

(

1 −
pm1

pm1 + (1 − p)

)

=
v21(pm1)

pm1 + (1 − p)
+ v23

(

1 −
pm1

pm1 + (1 − p)

)

.

Solving for m1 gives

m∗

1
=

(1 − p)(v23 − v13)

p(v11 − v21)
.

The Type 1 Sender, given our assumption that m2 = 1, on the other hand mixes only
if her expected payoff from playing Left is equal to her expected payoff from playing Right.
This means, given aR = 0, that w11aL + w21(1 − aL) = w22. Solving for aL gives us

a∗L =
w22 − w21

w11 − w21

.

Note that given our assumptions, neither a Type 1 Sender nor the Receiver has any
incentive to deviate from m∗

1
and a∗L. In other words, we have established the existence of a

Bayesian-Nash equilibrium.

3.2.2 Modified Decision-Theoretic Approach

This section illustrates a modified decision-theoretic approach to solving the two-type signal-
ing game in cases where only one type of Sender has a pure strategy, i.e. a semi-separating
equilibrium exists. We will demonstrate that this technique can provide a convenient frame-
work that represents graphically the reasoning required to determine the equilibrium strate-
gies. Additionally, in the two-type Sender signaling game, these strategies can be calculated
from the computations produced by rolling back the decision trees. The decision trees for
the Sender and Receiver in the signaling game are shown in Figures 8 and 9.

Rolling Back the Receiver’s Tree

This section presents the calculation of the expected value in the game to the Receiver. The
expressions presented will later be used to determine any pure strategy equilibria in the
game (if any exist), as well as determine Nash equilibrium mixed strategies that are part of
semi-separating equilibria.

Based on the decision tree shown in Figure 9, we can calculate the expected values for
the Receiver observing L as

EVLU (m1, m2) = r11(m1, m2) · v11 + r21(m1, m2) · v13 =
m1pv11 + m2(1 − p)v13

m2(1 − p) + m1p

EVLD(m1, m2) = r11(m1, m2) · v21 + r21(m1, m2) · v23 =
m1pv21 + m2(1 − p)v23

m2(1 − p) + m1p
.

The overall expected value for the Receiver observing L is

EVL(aL, m1, m2) = aL · EVLU(m1, m2) + (1 − aL) · EVLD(m1, m2) .

The expected values for the Receiver observing R are
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Figure 8: Decision tree model for the Sender in the modified decision analysis approach to
solving the signaling game.
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Figure 9: Decision tree model for the Receiver in the modified decision analysis approach to
solving the signaling game.
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EVRU(m1, m2) = r12(m1, m2) · v12 + r22(m1, m2) · v14 =
(1 − m1)pv12 + (1 − m2)(1 − p)v14

(1 − m2)(1 − p) + (1 −m1)p

EVRD(m1, m2) = r12(m1, m2) · v22 + r22(m1, m2) · v24 =
(1 − m1)pv22 + (1 − m2)(1 − p)v24

(1 − m2)(1 − p) + (1 − m1)p
.

The overall expected value for the Receiver observing R is

EVR(aR, m1, m2) = aR · EVRU(m1, m2) + (1 − aR) · EVRD(m1, m2) .

The expected value for the Receiver in the game is

EVR(aL, aR, m1, m2) = q1(m1, m2) · EVL(aL, m1, m2) + (1 − q1(m1, m2)) · EVR(aR, m1, m2) .

Rolling Back the Sender’s Tree

Based on the decision tree, we can calculate the expected value for the Sender, given a
probability distribution for its type, and a strategy pair for each player. As in the case of the
Receiver’s decision tree, the expressions presented here will later be used to solve for pure
and mixed strategy Nash equilibria.

The expected values for the Type 1 Sender playing L and R are

EVL1(aL) = aL · w11 + (1 − aL) · w21

EVR1(aR) = aR ·w12 + (1 − aR) · w22 .

The expected values for the Type 2 Sender playing L and R are

EVL2(aL) = aL · w13 + (1 − aL) · w23

EVR2(aR) = aR ·w14 + (1 − aR) · w24 .

Applying the strategies of the Sender gives the expected values in the game for the Type 1
and Type 2 players of

EVS1(m1, aL, aR) = m1 · EVL1(aL) + (1 −m1) · EVR1(aR)
EVS2(m2, aL, aR) = m2 · EVL2(aL) + (1 −m2) · EVR2(aR) .

The expected value of the game for the Sender is

EVS(aL, aR, m1, m2) = p ·EVS1(m1, aL, aR) + (1 − p) · EVS2(m2, aL, aR) .

Pure Strategy Equilibria

A pure strategy Nash equilibrium in the signaling game is defined as a strategy pair

{(aL = i, aR = j), (m1 = k, m2 = ℓ)} (3)

where i, j, k and ℓ are each equal to zero or one. The strategy pair in (3) can be evaluated
to determine whether or not it is a Nash equilibrium by using the following function:
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Φ(i, j, k, ℓ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if

(EVS(i, j, k, ℓ) ≥ EVS(i, j, k, 1− ℓ))
∩ (EVS(i, j, k, ℓ) ≥ EVS(i, j, 1 − k, ℓ))
∩ (EVS(i, j, k, ℓ) ≥ EVS(i, j, 1 − k, 1 − ℓ))
∩ (EVR(i, j, k, ℓ) ≥ EVR(i, 1 − j, k, ℓ))
∩ (EVR(i, j, k, ℓ) ≥ EVR(1 − i, j, k, ℓ))
∩ (EVR(i, j, k, ℓ) ≥ EVR(1 − i, 1 − j, k, ℓ))

0 otherwise

(4)

If the function evaluates to true (or Φ(i, j, k, ℓ) = 1), then the strategy pair in (3) is a Nash
equilibrium.

Example. Consider a separating equilibrium where the Type 1 Sender plays L (m1 = 1)
and the Type 2 Sender plays R (m2 = 0). A separating equilibrium with aL = aR = 1
occurs if Φ(1, 1, 1, 0) = 1. The conditions in (4) are met if the payoffs are structured
as follows:

(w14 ≥ w13) ∩ (w11 ≥ w12) ∩ (v14 ≥ v24) ∩ (v11 ≥ v21)

These are the same conclusions made in Section 3.2.1.

Semi-separating Equilibrium with m2 = 1

If there are no pure strategy Nash equilibria in the game, we must search for a semi-separating
equilibrium. First, suppose the Type 2 Sender plays pure strategy m2 = 1 because w13 ≥ w14

and w23 ≥ w24. This induces the Receiver to play one of two pure strategies as r12(m1, 1) = 1
and r22(m1, 1) = 0 for all m1 ∈ [0, 1]:

1. If v12 ≥ v22, the Receiver plays aR = 1.

2. If v12 < v22, the Receiver plays aR = 0.

Thus, the Receiver’s payoff in the game if it observes R is Max{v12, v22}. The remaining
strategies to be selected in the game at equilibrium are m1 for the Sender and aL for the
Receiver. The solution in the sequential game begins with the Sender rolling back the
decision tree of the Receiver and selecting its strategy.

Since the Receiver’s strategy aR is completely determined by the payoffs v12 and v22 when
m2 = 1, the Sender determines its optimal strategy by selecting m1 in such a way that the
Receiver’s payoff will be unaffected by its choice of the strategy aL. This can be ensured by
solving the following for m1 using expected values calculated from the decision tree:

EVLU (m1, 1) = EVLD(m1, 1)

m1pv11 + (1 − p)v13

1 − p + m1p
=

m1pv21 + (1 − p)v23

1 − p + m1p
m1pv11 + (1 − p)v13 = m1pv21 + (1 − p)v23 .

(5)

The Type 1 Sender’s equilibrium strategy is characterized as follows.
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Proposition 1 If m2 = 1, the equilibrium strategy for the Sender is

m1 =
(1 − p)(v23 − v13)

p(v11 − v21)
. (6)

Proof. If the Sender’s strategy m1 meets the condition in (5), the Receiver will be in-
different between all possible values for its strategy aL. Solving (5) for m1 yields the
result.

Since the Type 2 Sender’s strategy is m2 = 1 because of the restrictions assumed for w13,
w23, w14, and w24, the Sender determines its optimal strategy by solving the following for
aL:

EVL1(aL) = EVL2(aR)

aLw11 + (1 − aL)w21 = aRw12 + (1 − aR)w22 .
(7)

To determine its equilibrium strategy, the Receiver adjusts the condition in (9) for its
optimal strategy aR played after observing m2 = 1, then searches for a strategy aL such
that the Sender cannot change strategies and improve its payoff. The following propositions
ensue.

Proposition 2 If m2 = 1 and v12 ≥ v22 so that the Receiver plays aR = 1, the equilibrium

strategy for the Receiver is

aL =
w12 −w21

w11 −w21

. (8)

Proof. If the Receiver’s strategy aL meets the condition in (9), the Sender will be indifferent
between all possible values for its strategy m1. Substituting aR = 1 in (9) and solving
for aL yields the result.

Proposition 3 If m2 = 1 and v12 < v22 so that the Receiver plays aR = 0, the equilibrium

strategy for the Receiver is

aL =
w22 −w21

w11 −w21

.

Proof. If the Receiver’s strategy aL meets the condition in (9), the Sender will be indifferent
between all possible values for its strategy m1. Substituting aR = 0 in (9) and solving
for aL yields the result.

In summary, a semi-separating equilibrium in the signaling game for the case where the
Type 2 Sender has a pure strategy m2 = 1 and v12 ≥ v22 is the following strategy pair
{(aL, aR) , (m1, m2)}:

{(

w12 −w21

w11 −w21

, 1

)

,

(

(1 − p)(v23 − v13)

p(v11 − v21)
, 1

)}

.

Similarly, a semi-separating equilibrium in the signaling game for the case where the Type 2
Sender has a pure strategy m2 = 1 and v12 < v22 is the following strategy pair {(aL, aR) , (m1, m2)}:

{(

w22 −w21

w11 −w21

, 0

)

,

(

(1 − p)(v23 − v13)

p(v11 − v21)
, 1

)}

.



Solving the Signaling Game 22

Semi-separating Equilibrium with m2 = 0

Next, suppose the Type 2 Sender plays pure strategy m2 = 0 because w13 < w14 and
w23 < w24. The remaining strategies to be selected in the game at equilibrium are m1 for
the Sender and aL and aR for the Receiver. Because the likelihood P (L | t2) = 0, the revised
probability P (t1 | L) = 1, so the Receiver will play one of the following two strategies:

1. If v11 ≥ v21, the Receiver plays aL = 1.

2. If v11 < v21, the Receiver plays aL = 0.

Thus, the Receiver’s payoff in the game if it observes L is Max{v11, v21}. The remaining
strategies to be selected in the game at equilibrium are m1 for the Sender and aR for the
Receiver. The solution in the sequential game begins with the Sender rolling back the
decision tree of the Receiver and selecting its strategy.

Since the Receiver’s strategy aR is completely determined by the payoffs v12 and v22 when
m2 = 1, the Sender determines its optimal strategy by selecting m1 in such a way that the
Receiver’s payoff will be unaffected by its choice of the strategy aL. This can be ensured by
solving the following for m1 using expected values calculated from the decision tree:

EVRU (m1, 0) = EVRD(m1, 0)

(1 − m1)pv12 + (1 − p)v14

(1 − p) + (1 − m1)p
=

(1 − m1)pv22 + (1 − p)v24

(1 − p) + (1 −m1)p
(1 − m1)pv12 + (1 − p)v14 = (1 − m1)pv22 + (1 − p)v24 .

(9)

The Type 1 Sender’s equilibrium strategy is characterized as follows.

Proposition 4 If m2 = 0 the equilibrium strategy for the Type 1 Sender is

m1 =
(v14 − v24) + p(v12 − v22 − v14 + v24)

p(v12 − v22)
.

Proof. If the Sender’s strategy m1 meets the condition in (9), the Receiver will be in-
different between all possible values for its strategy aR. Solving (9) for m1 yields the
result.

Since the Type 2 Sender’s strategy is m2 = 0 because of the restrictions assumed for w13,
w23, w14, and w24, the Sender determines its optimal strategy by solving the following for
aR:

EVR1(aL) = EVR2(aR)

aLw11 + (1 − aL)w21 = aRw12 + (1 − aR)w22 .
(10)

To determine its equilibrium strategy, the Receiver adjusts the condition in (10) for its
optimal strategy aL played after observing m2 = 0, then searches for a strategy aR such
that the Sender cannot change strategies and improve its payoff. The following propositions
ensue.
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Proposition 5 If m2 = 0 and v11 ≥ v21 so that aL = 1, the equilibrium strategy for the

Receiver is

aR =
w11 − w22

w12 − w22

.

Proof. If the Receiver’s strategy aR meets the condition in (10), the Sender will be indif-
ferent between all possible values for its strategy m1. Substituting aL = 1 in (10) and
solving for aR yields the result.

Proposition 6 If m2 = 0 and v11 < v21 so that aL = 0, the equilibrium strategy for the

Receiver is

aR =
w21 − w22

w12 − w22

.

Proof. If the Receiver’s strategy aR meets the condition in (10), the Sender will be indif-
ferent between all possible values for its strategy m1. Substituting aL = 0 in (10) and
solving for aR yields the result.

In summary, a semi-separating equilibrium in the signaling game for the case where the
Type 2 Sender has a dominant strategy m2 = 0 and v11 ≥ v21 is the following strategy pair
{(aL, aR) , (m1, m2)}:

{(

1,
w11 −w22

w12 −w22

)

,

(

(v14 − v24) + p(v12 − v22 − v14 + v24)

p(v12 − v22)
, 0

)}

.

Similarly, a semi-separating equilibrium in the signaling game for the case where the Type
2 Sender has a dominant strategy m2 = 0 and v12 < v22 is the following strategy pair
{(aL, aR) , (m1, m2)}:

{(

0,
w21 −w22

w12 −w22

)

,

(

(v14 − v24) + p(v12 − v22 − v14 + v24)

p(v12 − v22)
, 0

)}

.

There may exist a way to extend the decision theoretic representation beyond this branch
in the decision tree to make the tree consistent with the tenets of the VBM approach, but
the modification suggested in this paper seems to be a more natural approach, so we will
not utilize the VBM approach for the case of the signaling game.

4 Discussion and Conclusions

This paper has presented a modified decision-theoretic approach to solving decision problems
where the payoffs are affected by strategic interaction. This approach builds upon the method
presented by van Binsbergen and Marx (2007). The difference between our approach and the
VBM technique is that the strategies of players are represented by the probabilities assigned
to random strategy nodes, whereas VBM use decision nodes to represent strategies. This
modification is advantageous in two ways. First, the payoffs at all endpoints in the decision
trees are simply payoffs to the players in the game, as opposed to expected values. Second,
in certain games, such as the two-type signaling game where at least one type of sender plays
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a pure strategy, we have shown that the equilibrium strategies can be determined by rolling
back the tree without iteration. A more general solution for the two-type signaling game
where both sender types play mixed strategies in equilibrium is a topic of ongoing research.

The potential usefulness of the approach presented in this paper is similar to that sug-
gested by VBM for their model. Decision trees and sensitivity analysis are commonly used
tools. Using the modified decision-theoretic approach, such tools can be used to model
decisions, even when strategic interaction between players is present. In the context of a
thorough decision analysis, use of this approach may expand the possibilities for decision
analysts to consider how the actions of others influence decision making. This is in contrast
to traditional decision analysis where all events not under the control of the decision maker
are modeled as random variables with static probability distributions.

The decision analysis process involves defining the problem, establishing appropriate
decision criteria, then identifying the four aspects of the problem, as mentioned in Section 1.
As random or chance events that affect the outcomes are determined, the decision maker
may realize that the outcomes also depend on strategic decisions made by other firm(s).
Rather than abandon the decision analysis approach in favor of a game-theoretic approach,
the techniques presented in this paper (and by VBM) allow the process to continue using
decision analysis models and solution techniques.

The techniques outlined in this paper can be used to model any strategic game among
multiple players. The limitations to modeling such games are only those imposed by the
decision tree structure. Clearly, as the number of nodes in the tree increases, the size of
the tree grows exponentially. Similarly, as the number of outcomes for chance nodes and/or
alternatives for decision nodes increase, the size of the tree can become prohibitive. These
limitations are well-documented in the decision analysis literature.

In this paper, we have presented solutions to a two-by-two normal form game and the
signaling game with two types of Senders. The Nash equilibrium strategies were obtained
by rolling back the decision trees. In more complicated games or in absence of certain
assumptions, an iterative process may be required to determine equilibrium strategies using
the approach presented in this paper. For instance, if the payoffs in the signaling game are
such that both types of senders play mixed strategies at equilibrium, the results in this paper
do not provide the Nash equilibrium strategies. The models presented in this paper can be
an input to such a procedure, and the use of models to solve such games is a topic for future
research. The models in this paper retain the advantage of representing the payoffs at all
endpoints directly, without having to establish formulas for expected values at the endpoints
representing mixed strategies. Use of chance nodes to represent all strategies in the game
appears to extend the class of games to which decision analysis can be applied.
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