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namics near two steady states depend upon the elasticity of substitution between capital and
labor. In this paper, we show that the local dynamics will change dramatically if the government
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1. Introduction

In a recent article, Gokan (2006) investigates how exogenous government expenditure influences
local dynamics near two steady states, depending upon the elasticity of substitution between capital
and labor. And he finds that if the elasticity of capital-labor substitution is high, the high steady
state might be always determinate and the low one always indeterminate for some sub-interval of
government expenditure. Moreover, the low steady state displays indeterminacy through flip or Hopf
bifurcations when the government expenditure takes some specific values.

In this note, we complete his analysis by asking whether his results extend to the case where
the government transfers its revenue to the households (workers) in a lump sum way. Our answer is
negative, as we prove that the local dynamics change dramatically if the households (workers) receive
the constant government revenue. Particularly, Gokan (2006) points out that if the government
expenditure is financed with a mixture of money and labor income taxes, local dynamics in his
model will not be affected. Unfortunately this fact may not hold in our modified finance-constrained
model, as we can only explicitly solve the model under the assumption of constant money supply as
in Woodford (1986).

The fact that multiple steady states arise in our model is due to the presence of endogenous labor
income tax rates and constant government revenue. In view of our results in the following sections, for
both of the steady states, the (in)determinacy results are different from those in Gokan’s model.! And
when the lump sum transfer goes up from 0 to some critical value, for the high (resp. the low) steady
state, the bifurcation parameter in our model moves in the opposite direction, in constrast with the
case of government expenditure studied in Gokan’s model.

The paper is organized as follows. In section 2, we describe the framework of our model. In section
3, we study the model dynamics with a geometrical method of bifurcation analysis and provide some

interpretations of our results. Section 4 concludes.



2. Framework

The model we use is a monetary one-sector model featuring two classes of households called workers
and capitalists, a financial constraint that prevents workers from borrowing against wage earning
and constant government revenue (transfer) financed by labor income taxes. The key assumption is

that workers discount the future more than capitalists.

2.1. Workers

The workers’ problem is to maximize their intertemporal utility function

v @)t N
max;(’yw) 0= 0T (1)

where ¢}’ and Ny denote the consumption and labor supply, and v, € (0,1) the discount factor.
Moreover, the assumptions ¢ € (0,1) and ¢ > 0 are used to ensure that the elasticity of labor supply
with respect to the real wage is positive. In addition, they are subject to the budget constraint and

borrowing constraint.

cf + [k — (1= 8) k'] + M1 /Py = riky” + (1 — 7o) weNy + M /P + T, (2)

and

ci’ + [kt — (1= 0) k'] < rei? + M;"/ P, 3)

where T' (constant in real terms) is the lump-sum transfer from government financed by labor income
taxes, M}’ and k} represent the nominal money balances and the physical capital (6 being the
depreciation rate) held by workers in period t. P, wy, and ry are the nominal price of the numeraire

good, the real wage and the real rental rate of capital. In equilibrium, the borrowing constraint is



binding (¢}’ = M;/P; and they hold no capital) and the workers’ offer curve is,

(cgrl)(l_@ 1= (1-— th)thNt + T] - (Nt)(1+o ' )

2.2. Capitalists

Similar to Gokan (2006), capitalists do not work and their problem is to maximize the logarithmic

intertemporal utility function

> Bng, (5)
t=0

where ¢ denotes their consumption and 8 € (0, 1] the discount factor. Their budget constraint can
be stated as follows

cf + [kfpr — (1= 8) kf| + Mg,/ Py < rikf + My /P, (6)

where the superscript ¢ stands for capitalist. As in Gokan (2006), we assume that § = 1. Therefore,

their optimal choices (in equilibrium, capitalists hold no money) are

Cg =0, k41 = [T’t + (1 — 5)] k. (7)

2.3. Firms and Government

On the production side, a unique good is produced by combining labor N; and the capital stock k;
resulting from the last period. The technology exhibits constant returns to scale and the output is
given by yy = N¢f (a¢), where a; = k;/N;. The production function f (a;) is continuous for a > 0, C™
for a > 0 and m large enough, with f’ (a;) > 0 and f” (a;) < 0. In equilibrium, we obtain r; = r(a¢)
and w; = w(a). The government needs to balance the budget in each period, 7w Ny + “tT]yt =T >

0, thus the labor income tax rate and the rate of monetary growth (u, = Mt%t_Mt) are endogenously



adjusted in order to make the budget balanced.

3. Local Dynamics

Following Woodford (1986), we let M > 0 be the constant quantity of outside money (7,: =
T /wyN;).2In this case, one gets the dynamical system of (k;,a;) as: (R (a;) is the real gross rate

of return on capital)

ki1 = [r(at) + (1 = 6)] ke = R (ar) ke (D-1)

() - ] = (V) (1#9), (D-2)

w (at) ke/ay
Different from Gokan (2006), the workers’ budget constraint and (D-2) imply that w (a;) Ny =
¢t = My/P,, which is also the equilibrium condition of money market. The good market clearing
condition is N f (a¢) = ¢t + kep1 — (1 — 0) ky.
From (D-1), the steady state capital-labor ratio can be obtained by solving R (a*) = 1. That is,
a* = k*/N* depends only on the technology, not on the utility curve nor on government lump sum
transfer(s) T'. In the steady state, (D-2) implies that

vy fie - o, ®

Proposition 1. Under the assumption ¢ € (0,1) and ¢ > 0, there exist two non-trivial steady
states 0 < Ni < Ng for 0 < T < Tys. They coalesce together when T' goes up to Ths and disappear

for T > Thy.

Proof. From equation (8), N* is the point of intersection for two curves: fi = (N*)'™ and

fo = (w(a*) N*)'=¢ {1 - W} ¢ > 0 implies that f; is convex and passing the point (0,0).



When ¢ € (0,1), the first and second derivatives of fa with respect to IV (in the steady states) are

e = AN Be(V) T >0,
2
O = (V)R A9 (- )N+ Bo(o+ 1) <0

where A = [w(a*)]'"® > 0 and B = —T [w (a*)]"? < 0. Figure 1 validates this proposition. Then
the corresponding (two) steady states of k, ¢, and y are computed using k* = a*N*, w (a*) N* = ¢*,

and y* = f(a*)N*. =

Insert Figure 1 here

We now linearize the dynamic system around the two steady states and analyze the stability
properties of the Jacobian matrix of (D). Let €, = aw’ (a) /w (a) be the elasticity of the marginal

product of labor and egr = a |R' (a)| /R (a) be the elasticity of the real gross rate of return on capital.

Proposition 2. The linearized dynamics for the deviations dk = k — k* and da = a — a*, are

determined by

dktJr]_ == dkt - NZ* |8R| dat,

-Gkt a") L (=G} ) 1—ew)
) C+¢*W ler|—1—(¢+9¢lerl) G(k;‘,a*)
daci1 = N g1 ke T TG D dat,
where G (ki,a;) = [1 — m] We let G; be G (k},a*) for i =1,2.

It is easy for us to have trace (T;) and determinant (D;) of the Jacobian matrix,

—1 1 1 ~
_ Ew + |5R| . T (9'1)

T; -
(2 €w—1 ng_l (1_¢)'L7



~1 — —1 ~

Di = cw—1  (1-0)(ew—1)""

where v = (14+()/(1—¢) > 1 and i* = 1&?’ = C:%T is the steady state share of lump-sum transfers
to the workers’ after-tax income. As in Gokan (2006), we set 7 to be constant and the bifurcation
parameter in this model is i* that is made to vary by moving 7" up from 0 to T5s. That is because
government revenue influences the local stability through its effect on the steady state share of the

transfer to the after-tax income. From (9.1) and (9.2), we have the following:

Lemma 1. For any values of N*, the point (T;, D;) is located on the line A,

D; =0 (a*) [T; + 1L (a")],

where © (a*) = 6“’;'}6%, and 11 (a*) = v |€}T€‘R|1 7= €w+|§f_‘;1_7. Suppose T — 0. Then we have
Dy — ,Y\ crl- 1 and Ty — ijlsfl‘_l - ’75w1—1 in the high steady state, while in the low steady state

T) — 400 and D1 — +(—)oo f%>(<)0.

Proof. fl* =(1-9¢)(T; - M). Using this equation, we have

ew—1

6w_|5R’_1
Ew— 1

lerl =1  ewtler|—1-7

D; =
—ler|—1 Ew—1

(Ti +v )-

Suppose T — 0. In the high steady state, when T" = 0, we have T;* = 0 since Ny # 0 and

c5 # 0. So Dy — 42251 and Ty — =2l — 5 Lo From (D2), we know that (N7)* =
~ -1
(w (a*))? (Tl* + 1) . In the low steady state, we have Ni — 04y from above, which implies that
~ -1 ~
<T1* + 1) = (N5 /(w (a*)) ¢ — 0(4) from above. Then 77" — +oc0 (as T'— 0). So T1 — +00

and Dy — +(—)oo if L > (<)0. m

When T = Ty, these exists a unique steady state. In this case, f2* (Tas) = T5: g the critical

Co —Tas



value of the saddle-node bifurcation.
Lemma 2. The value of Tss can be determined using @*(Tgs) =(+¢.

Proof. When T = Ty, there exists a unique steady state, N, which satisfies (w (a®) N) 1-¢ {1 - %} =
1

(W)HC, or (N)(HC = (w(a*)) ™ {1 - w%i)%}. We assume that f; = (W)¢+C and fo = (w (a*))1_¢{ — Lo %}

In the unique steady state, the slopes of fl and fg are equal, i.e., (¢ + () (N) ool _ (w (a*))_q5 Tos (W) 2

Since @;(Tgs) =T/ (w (a*) N — Tys), we have w (a*) N/Tos = 1 + l/i;;*(Tgs). Using the above re-

lationships, we can have the following;:

1 (@)™ (w@)N)"
=l v )i
T3 (T3s) (¢+¢) (N) (¢+¢) (N)
1 1
_ - (T3 (Tos) + 1]
(¢ + C) [1 - w(jaj*)ﬁ] ¢ + C
where [1 — —L2:_] = [T/Z’E(Tgs) +1]71. Then it is easy for us to have j:;*(TQS) =(+¢. =

w(a*)N
Suppose that T' increases from 0 to Tas. For the high steady state, the ratio TQ* goes up from 0
to @;(Tgs) = Tss/ (5 — Tas) = ( + ¢ and thereby the corresponding point (T'race, Det) moves along
the line A. While for the low steady state, the ratio fl* goes down from +oc0 to i—;;(TQS) =(+ ¢ and
thus (Trace, Det) moves along the line A. In the next subsection, we will define the part of A on

which (T}, D;) moves as A;, and dicuss the stability properties when T' varies.?

3.1. A Geometrical Method of Bifurcation Analysis and Local Stability

Following Grandmont et al. (1998), we can obtain the following relationships: &, = s/o and |eg| =
0 (1 —s) /o, where s is the share of capital in total output s = a*r(a*)/f (a*), and o is the elasticity
of capital-labor substitution evaluated at a*. For the ease of interpretation, we use the following

transformation.



~ Tr-T ~ —1- T ~
T, =Tr+ {_¢,whereTr:SW+L€j|_l ry—i-l_gbandT:C-l-(b, (10.1)

o, Ew—lerl =1 (& & ~—  lerl=1  ew—ler|-1 4
D; = Det + (T _ T) _ where Det = ~ n T.  (10.2
1—0) (e — 1) fo—1 " (1—0)(cw 1) (10.2)

To describe A, as in Gokan (2006), we should analyze the slope O (a¢*) and the end point
(ﬁ,ﬁa).‘lWe can easily verify that (1) (ﬁ‘,f)?lﬁ) lies on the line AC (lf)\;t = Tr — 1) and; (2)

the slope of A (O (a*)) is 1 — 24=2) and Det is 2y — 1 — 22=20=5) " Here as in Grandmont et al.

S§—0 S§—0

(1998), we focus on the case where @ < 1. As o varies in the interval (0, +00), we summarize

the variations of © (a*), DQTQ*ZO7 TZT;ZO and Det in the following table.?

o 0 s—0(1—ys) s—0(1—s)/2 s “+o00
Aq below AC above AC
Ay above AC below AC

slope 1—@\ 0\, -1 —00, 400 \ 1
Det | v-[ -2 | gl2- 55\ | 125N | —oo oo\ | 27— 1
;=0 —s s s

D70 e\ | v[2- i) N | aB-2gl N | —eotoo N | g
TQ*ZO 5(1—s) s 2vs

T2 1+T€(1’2)\ 2+7D_6(17—s)]\‘ 3+’7—m\ —00, 400 \ 1+~

where slope = 1 — 2073 Dep = 2y — 1 — 1700=9) D;Z*:O = [+ 8_6(1_8)], and TQT;:0 =

S—0 S—0 o—S

1+~ + %&78). All this generates essentially several subcases.

Case 1. In order to compare our model with that of Gokan (2006), we follow Grandmont et al.

(1998) and use the crudely calibrated values of 6 = 0.1 and s = %.6And we find that when o > s,



namely, o € (%, +oo), the high (resp. the low) steady state is always a saddle (resp. a source) for

every 0 < fZ* <+ ¢ (resp. (+ ¢ < fl* < 400) as v > 1. (see figure 2).

Insert Figure 2 here

Case 2. If 0 € (0,5 — 9 (1 — s)), namely, o € (0,4/15), the possible locations of the line A are
shown below. (see figure 3.0).7B(—2,1), C(2,1), and A(0,—1) describe the stability triangle as in
Grandmont et al. We should mention several important things before we derive our (in)determinacy
results. For any T3 € (0, +¢), (1) if (Th, Ds) lies above (resp. below) the point B, II (a*) > ﬁ+2

(resp. I (a*) < %—l—?) holds, (2) if (T3, D2) lies above (resp. below) the point C, II (a*) > ﬁ—Q

(resp. I (a*) < @(}l*) —2) holds, and (3) if (7%, D2) lies above (resp. below) the point A, II (a*) >

—ﬁ(resp. II(a*) < — e(}l*)) holds. Moreover, we need consider whether the starting point (TQT 5:0,

D;FQ*:O) of the half line Ay lies in the left hand side of the line AB or not. And we find that if it does

S0, TQT;:[) < —D;FQ*:O — 1 holds, which is equivalent to (1 — 300)y < (300 — 11).8Therefore, we have
the following: as o > 1/30 and v > " = max{1, 300 ) = , the starting
4 1
1, 15 >0 > 5
point (7 2T 2*:0, DQTQ* :0) lies in the left hand side of the line AB. There are four subcases when o > 1/30

and v > % hold. (a) If (Ty, D) lies above the point B, only a flip bifurcation can be expected to
occur along the half line A, as TQ* passes through its flip bifurcation value Tz*F This requires that

(5—300)y > (9—300)+4 (4 — 150) (5 — 150). (see figure 3.1).%(b) If (Ty, D3) goes through lines AB

and BC, i.e., ﬁ —2<1Il(a*) < % +2, flip and Hopf bifurcations may be expected to occur along

the half line Ay as fQ* passes through the corresponding flip bifurcation value and Hopf bifurcation

value (T%,;) respectively. This requires that (9—300) < (5—300)y < (9—300)+4 (4 — 150) (5 — 150).

(see figure 3.2). (c) If (T2, D3) goes through lines AB and AC, i.e., —@é*) < I(a*) < % -2,

only a flip bifurcation would occur along the half line Ay as TQ* passes through the flip bifurcation

10



value. This requires that —1 < (5 —300)y < (9 — 300). (see figure 3.3). And (d) (1%, D2) lies below
the point A, i.e., —% > II(a*). This requires that —1 > (5 — 300)y. In this subcase, only a
flip bifurcation can arise along the half line Ay as Tl* passes through its flip bifurcation value fl*F

(see figure 3.4). Before we summarize the numerical results, we define some notations as follows:

78 = [(9 = 300) +4 (4 = 150) (5 — 150)] /(5 — 300), 74 = §=§52, and 74 = 55;—5. The subcase in

Figure 3.1 appears if

=302 as & < 0 < 0.051, (vF > v4)

v > max{y",y3} =
4, as 0.051 <o < %, (va >~5)

The subcase in Figure 3.2 appears if 310”30{71 =+l <y <44 (when 0.051 < o < 0.11, (v4 > 7F >

1

&) or v4 < v < 44 (when 0.11 < o < 5 (74 > 4%)). The subcase in Figure 3.3 appears if

oM — 4L <y <48 (when 0.11 < 0 < &) or 74 > v > 7% = 2221 (when 1/6 < 0 < 1/5). The
subcase in Figure 3.4 appears if v > 1 (when 4/15 > o > 1/5) or v > 74 (when 1/6 < ¢ < 1/5).

Case 3. We consider the case in which ¢ € (s — (1 —s),s), namely, o € (4/15,1/3) holds.
Det = DT2 =0 = —3v < —3 holds when o = 4/15. Since both lf)\(;f(a) and DZT;:U(O') are decreasing
functions of o when o € (4/15,0.3), we can infer from this fact that for any o € (4/15,0.3), Det
and D?:O are less than —3.'0This means that only a flip bifurcation can arise along the half line
A when it crosses the line AB and fl* passes through its flip bifurcation value. See figure 4.1 about
this case. When o € (0.3,1/3), the slope is less than —1, flip and Hopf bifurcations can not arise
along the lines A; and Aj. See figure 4.2 about this case.

Ty=0 T3

Case 4. We need discuss the case where o € (0,4/15), (T , D22:0) lies in the right hand

side of the line AB and only a Hopf bifurcation can occur when (75, D2) crosses the line BC (see

T3 =0

figure 4.3). If it happens, 7,> > —D2T2*:0 — 1 holds. That is to say, v(1 — 300) > 300 — 11

holds. (a) When 1 — 300 > 0, for any v > 1, 7(1 — 300) > 300 — 11 always holds. The inequality

11



%—2<H( ) < @(a)+21mphes that o < 1/6, and 1 < y4 < 7 < va. Then figure 4.3 appears

when 0 < o < 1/30 and 7é < v < va. (b) When 1 — 300 < 0, it is easy to verify that when

1/30 < o < 1/5, 222241 > 1 holds. This means that when 1/30 < o < 1/5, we need 3221 > o > 1
to guarantee that v(1 — 300) > 300 — 11 holds. Also, 0 < 1/6 and 1 < 4 < v < ¥4 should hold
in order for (T2, D3) to cross the segment BC. Then figure 4.3 appears when 1/30 < o < 0.051 and

'yé <7< 'yB hold, or when 0.051 < ¢ < 0.11 and 'Yc <y <L = 310(’3011 hold.

Insert Figures 3.0 through 4.3 here

Our results can be summarized in the following proposition.

Proposition 3. Under the assumption of 6 = 0.1 and s = % as in Grandmont et al. (1998).

(1) Figure 2 appears if the pair (o,7) falls in the following interval: 1/3 < ¢ and v > 1. The
high steady state is always a saddle when 0 < T2* < (¢ + ¢). But the low steady state is always a
source when (¢ 4 ¢) < T < +00.

(2) Figure 3.1 appears if the pair (o,y) falls in the following two intervals: (a) 1/30 < o < 0.051

and vy > vy = 310030171, and (b) 0.051 < o < 1/6 and 73 < . The high steady state is a saddle when

0< T;* < TVQ*F, and a source when fz* > TQ*F A flip bifurcation occurs at TQ* = T;F But the low
steady state is always a saddle when (¢ 4+ ¢) < fl* < +00.

(3) Figure 3.2 appears if the pair (o,~y) falls in the following two intervals: (a) 0.051 < o < 0.11

and y3 >y >y, = 310f§021, and (b) 0.11 < 0 < 1/6 and vé < v < 4. The high steady state is a
saddle when 0 < TQ* < TQ*F, and a sink when ZFQ*H > T2* > fQ*F A flip bifurcation occurs at TQ* = TQ*F
A Hopf bifurcation occurs at fz* = fQ*H The high steady state is a source when TZ* > TQ*H But the
low steady state is always a saddle when (( + ¢) < fl* < 400.

(4) Figure 3.3 apprears if the pair (o,) falls in the following two intervals: (a) 0.11 < o < 1/6

12



and Vé >y > = Slofgolal, and (b) 1/6 < 0 < 1/5 and v = 3103;)10_1 <7< ’yﬁ. The high steady

state is a saddle when 0 < f2* < T;F, and a sink when TZ* > TQ‘F A flip bifurcation occurs at
@* = TQ"‘F But the low steady state is always a saddle when ({ + ¢) < fl* < 400.

(5) Figure 3.4 apprears if the pair (o,) falls in the following two intervals: (a) 1/6 < o < 1/5 and
v >~4, and (b) 1/5 < o < 4/15 and 1 < . The low steady state is a saddle when ffF < Tl* < 400,
and a source when Tl* < Tf‘F A flip bifurcation occurs at fl* = TVfF But the high steady state is
always a saddle when 0 < Ty < (¢ + ).

(6) Figure 4.1 appears if the pair (o,) falls in the following interval: 4/15 < o0 < 0.3 and vy > 1.
The high steady state is always a saddle when 0 < TVQ* < (¢ + ¢). The low steady state is a saddle
when Tl*F < Tl* < 400, and a source when Tl* < Tl*F A flip bifurcation occurs at Tf = ffF

(7) Figure 4.2 appears if the pair (o,7) falls in the following interval: 0.3 < o < 1/3 and v > 1.
The high steady state is always a saddle when 0 < f; < (C+ ¢). But the low steady state is always
a source when ({ + ¢) < T} < +00.

(8) Figure 4.3 appears if the pair (o,7) falls in the following three intervals: (a) 0 < o < 1/30
and v > v > 4, (b) 1/30 < ¢ < 0.051 and v4 > v > 4, and (c) 0.051 < o < 0.11 and

300—11

’yé <7 <L = 9% The high steady state is a sink when 0 < fQ* < @*H, and a source when

TVQ* > TV;H A Hopf bifurcation occurs at @* = TV;H But the low steady state is always a saddle when

(C+¢) < Tf < +o0.

Now we need explain the contrast between Gokan’s results and ours. The first point to be
emphasized is that considering the case in which the government transfers its revenue to the workers
will make the local dynamics become much more complicated. The result that the rate of money
growth doesn’t affect the model dynamics may not hold. The reason is that the Euler equation
of the workers’ problem will be affected by the government revenue. If the latter is financed by a

mixture of money and labor income taxes, this modified Woodford’s model can not be explicitly

13



solved. As Pintus (2004) points out, if we consider the extreme case in which the predetermined
government revenue is financed only by labor income taxes (that is, M; = M at all dates), the
tax rate is endogenous and satisfies 7,4 = T/wN; as in Schmitt-Grohe and Uribe (1997). Under
the assumption of constant money supply, we numerically solve the model and find that the local
dynamics are quite different from those in Gokan’s model. Roughly speaking, the existence of
constant government transfer reduces the range of the elasticity of capital-labor substitution inducing

endogenous fluctuations.!!

4. Conclusion

In this paper, we show that the local dynamics in Gokan’s model change dramatically if the gov-
ernment transfers its revenue to the households in a lump sum way. Our analysis indicates that
(1) the existence of constant government transfer reduces the range of the elasticity of capital-labor
substitution inducing endogenous fluctuations, and (2) the result that the rate of money growth has

no impact on local dynamics in Gokan’s model may not hold under the alternative assumption.

14



Notes:

1. It includes that (1) in contrast with the case in Gokan’s model, the bifurcation parameter—
the steady state share of government revenue to after-tax income— takes different values when the
system undergoes Fip or Hopf bifurcations and; (2) for the high (resp. the low) steady state, the
sub-intervals of o (the elasticity of capital-labor substitution) and 7 (the value of the wage-elasticity
of labor supply V—il), in which we discuss the (in)determinacy results, will be quite different from
those in Gokan’s model.

2. If we consider the case where government revenue is financed with a mixture of money and
labor income taxes, our model will not be solvable.

3. The points (T3, D;) (i = 1,2) move on Ap, and Ay towards the line (AC) and disappear when
T goes up through T5. See Grandmont et al. (1998) for a description of ABC' triangle.

4. We should investigate if the half line A; for the low steady state and the half line As for
the high steady state cross the triangle ABC in the diagram. If they cross the line [BC], a Hopf

bifurcation arises. If they cross the line [AB], a Flip bifurcation arises.

5. DQTQ*ZO, TQT;Z0 are the values of Dy and T as fg* = 0. Since the position of the half line

depends on ¢ and 7, but not on 7', we should investigate how the half line locates when ¢ varies in
the interval (0,4o00) and «y in the interval (1,400). That is, we need impose some restrictions on =,

when we observe the variation of the bifurcation parameter.

6. Under this assumption, © = 1 — 20=8) — =150 pey — 9, 1 25=00U=s) 9, g 51—l

s—0o 5—150" s—o ~ 5—150"

Ty= —5(1— Ty= —5(1— _
D22 0:7(1_{_%):7(14_#475)7132 0:1+’Y+7506£155):1""7‘1‘15577715, and
IT = ’752_65((11__‘2)__80 + 78_8(&1;8) —1= 7(4_12;)?2(5)‘1150) - g:}gg We use the numerical case to make the

model analytically solvable since the model dynamics depend on the magnitude of 6(1 — s)/s.
7. Note that the lines with the starting point () lie in the right hand side of the line AB, which

implies that flip bifurcations can not occur, while the lines with the starting point (o) lie in the left

15



hand side of the line AB, and flip bifurcations may occur to As. Moreover, as ¢ < s, the starting
point should lie in the the left hand side of the line AC. As Det < —1 (under the restrictions o < s),
the high steady state is always a saddle, while the low steady state can pass through a flip bifurcation
(from a saddle to a source).

5(1—s)

041490y (v=1)< —DQTQ*Z0 — 1 can imply this.

g—S8

Ty=0 T3
8. T, =D,

9. II(a*) > % + 2 can imply this.

10. The slope decreases from 0 to —1.

11. As Gokan suggested to us, the low steady state is always a source for the range of elasticity
of the capital-labor substitution higher than the capital share in production and thus the range of
the parameter leading to indeterminacy and local bifurcations significantly shrinks compared with
the one in the case of constant government expenditure financed by endogenous labor income taxes

as considered in Gokan (2006).
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Figure 3.0. Possible Dynamics

Figure 3.1. Only a Flip bifurcation occurs to As

Figure 3.2. Flip and Hopf bifurcations may occur to A2
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Figure 3.3. Only a flip bifurcation occurs to A2.
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Figure 4.1. when —1 < slope < 0, only flip bifurcations can occur to Aj.

Ty=0 T3=0

Figure 4.3. Only a Hopf bifurcation can arise when (75, , D32 7) lies in the right hand side of

the line AB.
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