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Abstract

Gokan [Dynamic e¤ects of government expenditure in a �nance constrained economy, J. Econ.

Theory 127 (2006) 323-333] introduces constant government expenditure (�nanced by labor in-

come taxes) in Woodford�s model with capital-labor substitution and investigates how local dy-

namics near two steady states depend upon the elasticity of substitution between capital and

labor. In this paper, we show that the local dynamics will change dramatically if the government

transfers its revenue to the households (workers) in a lump sum way. In particular, we question

the result that the rate of money growth has no impact on the model dynamics. In a numer-

ical example, we illustrate that the result previously obtained is not robust to the alternative

assumption.
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1. Introduction

In a recent article, Gokan (2006) investigates how exogenous government expenditure in�uences

local dynamics near two steady states, depending upon the elasticity of substitution between capital

and labor. And he �nds that if the elasticity of capital-labor substitution is high, the high steady

state might be always determinate and the low one always indeterminate for some sub-interval of

government expenditure. Moreover, the low steady state displays indeterminacy through �ip or Hopf

bifurcations when the government expenditure takes some speci�c values.

In this note, we complete his analysis by asking whether his results extend to the case where

the government transfers its revenue to the households (workers) in a lump sum way. Our answer is

negative, as we prove that the local dynamics change dramatically if the households (workers) receive

the constant government revenue. Particularly, Gokan (2006) points out that if the government

expenditure is �nanced with a mixture of money and labor income taxes, local dynamics in his

model will not be a¤ected. Unfortunately this fact may not hold in our modi�ed �nance-constrained

model, as we can only explicitly solve the model under the assumption of constant money supply as

in Woodford (1986).

The fact that multiple steady states arise in our model is due to the presence of endogenous labor

income tax rates and constant government revenue. In view of our results in the following sections, for

both of the steady states, the (in)determinacy results are di¤erent from those in Gokan�s model.1And

when the lump sum transfer goes up from 0 to some critical value, for the high (resp. the low) steady

state, the bifurcation parameter in our model moves in the opposite direction, in constrast with the

case of government expenditure studied in Gokan�s model.

The paper is organized as follows. In section 2, we describe the framework of our model. In section

3, we study the model dynamics with a geometrical method of bifurcation analysis and provide some

interpretations of our results. Section 4 concludes.
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2. Framework

The model we use is a monetary one-sector model featuring two classes of households called workers

and capitalists, a �nancial constraint that prevents workers from borrowing against wage earning

and constant government revenue (transfer) �nanced by labor income taxes. The key assumption is

that workers discount the future more than capitalists.

2.1. Workers

The workers� problem is to maximize their intertemporal utility function

max
1X

t=0

(w)
t

"
(cwt )

1��

(1� �)
� w

N1+�
t

(1 + �)

#
(1)

where cwt and Nt denote the consumption and labor supply, and w 2 (0; 1) the discount factor.

Moreover, the assumptions � 2 (0; 1) and � > 0 are used to ensure that the elasticity of labor supply

with respect to the real wage is positive. In addition, they are subject to the budget constraint and

borrowing constraint.

cwt +
�
kwt+1 � (1� �) k

w
t

�
+Mw

t+1=Pt = rtk
w
t + (1� �wt)wtNt +M

w
t =Pt + T , (2)

and

cwt +
�
kwt+1 � (1� �) k

w
t

�
� rtk

w
t +M

w
t =Pt, (3)

where T (constant in real terms) is the lump-sum transfer from government �nanced by labor income

taxes, Mw
t and kwt represent the nominal money balances and the physical capital (� being the

depreciation rate) held by workers in period t. Pt, wt, and rt are the nominal price of the numeraire

good, the real wage and the real rental rate of capital. In equilibrium, the borrowing constraint is
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binding (cwt =Mt=Pt and they hold no capital) and the workers� o¤er curve is,

�
cwt+1

�(1��)
[1�

T

(1� �wt)wtNt + T
] = (Nt)

(1+�) . (4)

2.2. Capitalists

Similar to Gokan (2006), capitalists do not work and their problem is to maximize the logarithmic

intertemporal utility function
1X

t=0

�t ln cct , (5)

where cct denotes their consumption and � 2 (0; 1] the discount factor. Their budget constraint can

be stated as follows

cct +
�
kct+1 � (1� �) k

c
t

�
+M c

t+1=Pt � rtk
c
t +M

c
t =Pt, (6)

where the superscript c stands for capitalist. As in Gokan (2006), we assume that � = 1. Therefore,

their optimal choices (in equilibrium, capitalists hold no money) are

cct = 0, kt+1 = [rt + (1� �)] kt. (7)

2.3. Firms and Government

On the production side, a unique good is produced by combining labor Nt and the capital stock kt

resulting from the last period. The technology exhibits constant returns to scale and the output is

given by yt = Ntf (at), where at � kt=Nt. The production function f (at) is continuous for a � 0, C
m

for a > 0 and m large enough, with f 0 (at) > 0 and f
00 (at) < 0. In equilibrium, we obtain rt = r(at)

and wt = w(at). The government needs to balance the budget in each period, �wtwtNt+
�tMt

Pt
= T >

0, thus the labor income tax rate and the rate of monetary growth (�t =
Mt+1�Mt

Mt
) are endogenously
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adjusted in order to make the budget balanced.

3. Local Dynamics

Following Woodford (1986), we let M > 0 be the constant quantity of outside money (�wt =

T=wtNt).
2In this case, one gets the dynamical system of (kt; at) as: (R (at) is the real gross rate

of return on capital)

kt+1 = [r (at) + (1� �)] kt = R (at) kt (D-1)

�
cwt+1

�(1��)
[1�

T

w (at) kt=at
] = (Nt)

(1+�) . (D-2)

Di¤erent from Gokan (2006), the workers� budget constraint and (D-2) imply that w (at)Nt =

ct = Mt=Pt, which is also the equilibrium condition of money market. The good market clearing

condition is Ntf (at) = ct + kt+1 � (1� �) kt.

From (D-1), the steady state capital-labor ratio can be obtained by solving R (a�) = 1. That is,

a� = k�=N� depends only on the technology, not on the utility curve nor on government lump sum

transfer(s) T . In the steady state, (D-2) implies that

(w (a�)N�)1��
�
1�

T

w (a�)N�

�
= (N�)1+� . (8)

Proposition 1. Under the assumption � 2 (0; 1) and � > 0, there exist two non-trivial steady

states 0 < N�
1 < N

�
2 for 0 < T < T2s. They coalesce together when T goes up to T2s and disappear

for T > T2s.

Proof. From equation (8), N� is the point of intersection for two curves: f1 = (N�)1+� and

f2 = (w (a�)N�)1��
n
1� T

w(a�)N�

o
. � > 0 implies that f1 is convex and passing the point (0; 0).
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When � 2 (0; 1), the �rst and second derivatives of f2 with respect to N (in the steady states) are

df2
dN�

= A (1� �) (N�)�� �B� (N�)���1 > 0,

d2f2
dN�2

= (N�)���2 [�A� (1� �)N� +B� (�+ 1)] < 0,

where A = [w(a�)]1�� > 0 and B = �T [w (a�)]�� < 0. Figure 1 validates this proposition. Then

the corresponding (two) steady states of k, c, and y are computed using k� = a�N�, w (a�)N� = c�,

and y� = f(a�)N�.

Insert Figure 1 here

We now linearize the dynamic system around the two steady states and analyze the stability

properties of the Jacobian matrix of (D). Let "w = aw
0 (a) =w (a) be the elasticity of the marginal

product of labor and "R = a jR
0 (a)j =R (a) be the elasticity of the real gross rate of return on capital.

Proposition 2. The linearized dynamics for the deviations dk � k � k� and da � a � a�, are

determined by

8
>>><
>>>:

dkt+1 = dkt �N
�
i j"Rj dat,

dat+1 = 1
N�
i

�+��
1�G(k�i ;a

�)

G(k�i ;a�)
(1��)("w�1)

dkt +

"
j"Rj�1�(�+�j"Rj)�

(1�G(k�i ;a
�))(1�"w)

G(k�i ;a�)

#

(1��)("w�1)
dat,

where G (kt; at) � [1�
T

w(at)kt=at
]. We let Gi be G (k

�
i ; a

�) for i = 1; 2.

It is easy for us to have trace (Ti) and determinant (Di) of the Jacobian matrix,

Ti =
"w + j"Rj � 1

"w � 1
� 

1

"w � 1
+

1

(1� �)
eT �i , (9.1)
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Di = 
j"Rj � 1

"w � 1
+

"w � j"Rj � 1

(1� �) ("w � 1)
eT �i , (9.2)

where  = (1+ �)=(1��) > 1 and eT �i = 1�Gi
Gi

= T
c�i�T

is the steady state share of lump-sum transfers

to the workers� after-tax income. As in Gokan (2006), we set  to be constant and the bifurcation

parameter in this model is eT �i that is made to vary by moving T up from 0 to T2s. That is because

government revenue in�uences the local stability through its e¤ect on the steady state share of the

transfer to the after-tax income. From (9.1) and (9.2), we have the following:

Lemma 1. For any values of N�, the point (Ti; Di) is located on the line �,

Di = �(a
�) [Ti +�(a

�)] ,

where �(a�) = "w�j"Rj�1
"w�1

, and �(a�) =  j"Rj�1
"w�j"Rj�1

� "w+j"Rj�1�
"w�1

. Suppose T ! 0. Then we have

D2 !  j"Rj�1"w�1
and T2 !

"w+j"Rj�1
"w�1

�  1
"w�1

in the high steady state, while in the low steady state

T1 ! +1 and D1 ! +(�)1 , if "w�j"Rj�1
(1��)("w�1)

> (<)0.

Proof. eT �i = (1� �) (Ti �
"w+j"Rj�1�

"w�1
). Using this equation, we have

Di =
"w � j"Rj � 1

"w � 1
(Ti + 

j"Rj � 1

"w � j"Rj � 1
�
"w + j"Rj � 1� 

"w � 1
).

Suppose T ! 0. In the high steady state, when T = 0, we have eT �2 = 0 since N�
2 6= 0 and

c�2 6= 0. So D2 !  j"Rj�1"w�1
and T2 !

"w+j"Rj�1
"w�1

�  1
"w�1

. From (D2), we know that (N�
1 )
&+� =

(w (a�))1��
�
eT �1 + 1

��1
. In the low steady state, we have N�

1 ! 0(+) from above, which implies that

�
eT �1 + 1

��1
= (N�

1 )
&+� = (w (a�))1�� ! 0(+) from above. Then eT �1 ! +1 (as T ! 0). So T1 ! +1

and D1 ! +(�)1 if "w�j"Rj�1
(1��)("w�1)

> (<)0.

When T = T2s, these exists a unique steady state. In this case, eT �2 (T2s) = T2s
c�2�T2s

is the critical

7



value of the saddle-node bifurcation.

Lemma 2. The value of T2s can be determined using eT �2 (T2s) = � + �.

Proof. When T = T2s, there exists a unique steady state, N , which satis�es
�
w (a�)N

�1�� n
1� T2s

w(a�)N

o
=

�
N
�1+�

, or
�
N
��+�

= (w (a�))1��
n
1� T2s

w(a�)
1
N

o
. We assume that bf1 =

�
N
��+�

and bf2 = (w (a�))1��
n
1� T2s

w(a�)
1
N

o

In the unique steady state, the slopes of bf1 and bf2 are equal, i.e., (�+ �)
�
N
��+��1

= (w (a�))�� T2s
�
N
��2
.

Since fT �2 (T2s) = T2s=
�
w (a�)N � T2s

�
, we have w (a�)N=T2s = 1 + 1=fT �2 (T2s). Using the above re-

lationships, we can have the following:

1

fT �2 (T2s)
+ 1 =

(w (a�))1��

(�+ �)
�
N
��+� =

�
w (a�)N

�1��

(�+ �)
�
N
�1+�

=
1

(�+ �) [1� T2s
w(a�)N

]
=

1

�+ �
[fT �2 (T2s) + 1]

where [1� T2s
w(a�)N

] = [fT �2 (T2s) + 1]�1. Then it is easy for us to have fT �2 (T2s) = � + �.

Suppose that T increases from 0 to T2s. For the high steady state, the ratio eT �2 goes up from 0

to fT �2 (T2s) = T2s= (c�2 � T2s) = � + � and thereby the corresponding point (Trace;Det) moves along

the line �. While for the low steady state, the ratio eT �1 goes down from +1 to fT �2 (T2s) = � +� and

thus (Trace;Det) moves along the line �. In the next subsection, we will de�ne the part of � on

which (Ti; Di) moves as �i, and dicuss the stability properties when T varies.
3

3.1. A Geometrical Method of Bifurcation Analysis and Local Stability

Following Grandmont et al. (1998), we can obtain the following relationships: "w = s=� and j"Rj =

� (1� s) =�, where s is the share of capital in total output s � a�r(a�)=f (a�), and � is the elasticity

of capital-labor substitution evaluated at a�. For the ease of interpretation, we use the following

transformation.
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Ti = fTr +
eT �i � eT
1� �

, where fTr = "w + j"Rj � 1� 

"w � 1
+

eT
1� �

and eT = � + �, (10.1)

Di = gDet+ "w � j"Rj � 1

(1� �) ("w � 1)

�
eT �i � eT

�
, where gDet =  j"Rj � 1

"w � 1
+

"w � j"Rj � 1

(1� �) ("w � 1)
eT . (10.2)

To describe �, as in Gokan (2006), we should analyze the slope �(a�) and the end point

�
fTr;gDet

�
.4We can easily verify that (1)

�
fTr;gDet

�
lies on the line AC (gDet = fTr � 1) and; (2)

the slope of � (�(a�)) is 1 � �(1�s)
s�� and gDet is 2 � 1 � s��(1�s)

s�� . Here as in Grandmont et al.

(1998), we focus on the case where �(1�s)
s < 1. As � varies in the interval (0;+1), we summarize

the variations of �(a�), D
eT �2=0
2 , T

eT �2=0
2 and gDet in the following table.5

� 0 s� �(1� s) s� �(1� s)=2 s +1

�1 below AC above AC

�2 above AC below AC

slope 1� �(1�s)
s & 0& �1& �1;+1& 1

gDet  � [1� �(1�s)
s ]& [2� s

�(1�s) ]& 1� 2[ s��(1�s)�(1�s) ]& �1;+1& 2 � 1

D
eT �2=0
2  �(1�s)s 2 (0; )& 

h
2� s

�(1�s)

i
& [3� 2 s

�(1�s) ]& �1;+1& 

T
eT �2=0
2 1 + �(1�s)

s 2 (1; 2)& 2 + [1� s
�(1�s) ]& 3 +  � 2s

�(1�s) & �1;+1& 1 + 

where slope = 1 � �(1�s)
s�� ,

gDet = 2 � 1 � s��(1�s)
s�� , D

eT �2=0
2 = [1 + s��(1�s)

��s ], and T
eT �2=0
2 =

1 +  + s��(1�s)
��s . All this generates essentially several subcases.

Case 1. In order to compare our model with that of Gokan (2006), we follow Grandmont et al.

(1998) and use the crudely calibrated values of � = 0:1 and s = 1
3 .
6And we �nd that when � > s,
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namely, � 2
�
1
3 ;+1

�
, the high (resp. the low) steady state is always a saddle (resp. a source) for

every 0 < eT �2 < � + � (resp. � + � < eT �1 < +1) as  > 1. (see �gure 2).

Insert Figure 2 here

Case 2. If � 2 (0; s� � (1� s)), namely, � 2 (0; 4=15), the possible locations of the line � are

shown below. (see �gure 3.0).7B(�2; 1), C(2; 1), and A(0;�1) describe the stability triangle as in

Grandmont et al. We should mention several important things before we derive our (in)determinacy

results. For any eT �2 2 (0; �+�), (1) if (T2; D2) lies above (resp. below) the point B, �(a�) > 1
�(a�)+2

(resp. �(a�) < 1
�(a�)+2) holds, (2) if (T2; D2) lies above (resp. below) the point C, �(a

�) > 1
�(a�)�2

(resp. �(a�) < 1
�(a�) � 2) holds, and (3) if (T2; D2) lies above (resp. below) the point A, �(a

�) >

� 1
�(a�)(resp. �(a

�) < � 1
�(a�)) holds. Moreover, we need consider whether the starting point (T

eT �2=0
2 ;

D
eT �2=0
2 ) of the half line �2 lies in the left hand side of the line AB or not. And we �nd that if it does

so, T
eT �2=0
2 < �D

eT �2=0
2 � 1 holds, which is equivalent to (1� 30�) < (30� � 11).8Therefore, we have

the following: as � > 1=30 and  > L � maxf1; 30��111�30� g =

8
>><
>>:

30��11
1�30� ,

1
30 < � <

1
5

1, 4
15 > � >

1
5

, the starting

point (T
eT �2=0
2 ; D

eT �2=0
2 ) lies in the left hand side of the line AB. There are four subcases when � > 1=30

and  > L hold. (a) If (T2; D2) lies above the point B, only a �ip bifurcation can be expected to

occur along the half line �2 as eT �2 passes through its �ip bifurcation value eT �2F . This requires that

(5�30�) > (9�30�)+4 (4� 15�) (5� 15�). (see �gure 3.1).9(b) If (T2; D2) goes through lines AB

and BC, i.e., 1
�(a�)�2 < �(a

�) < 1
�(a�)+2, �ip and Hopf bifurcations may be expected to occur along

the half line �2 as eT �2 passes through the corresponding �ip bifurcation value and Hopf bifurcation

value (eT �2H) respectively. This requires that (9�30�) < (5�30�) < (9�30�)+4 (4� 15�) (5� 15�).

(see �gure 3.2). (c) If (T2; D2) goes through lines AB and AC, i.e., �
1

�(a�) < �(a�) < 1
�(a�) � 2,

only a �ip bifurcation would occur along the half line �2 as eT �2 passes through the �ip bifurcation

10



value. This requires that �1 < (5� 30�) < (9� 30�). (see �gure 3.3). And (d) (T2; D2) lies below

the point A, i.e., � 1
�(a�) > �(a�). This requires that �1 > (5 � 30�). In this subcase, only a

�ip bifurcation can arise along the half line �1 as eT �1 passes through its �ip bifurcation value eT �1F

(see �gure 3.4). Before we summarize the numerical results, we de�ne some notations as follows:

AB � [(9� 30�) + 4 (4� 15�) (5� 15�)] =(5 � 30�), AC �
9�30�
5�30� , and 

A
A �

1
30��5 . The subcase in

Figure 3.1 appears if

 > maxfL; ABg =

8
>><
>>:

L = 30��11
1�30� , as 1

30 < � < 0:051, (
L > AB)

AB, as 0:051 < � < 1
6 , (

A
B > 

L)

.

The subcase in Figure 3.2 appears if 30��111�30� = L <  < AB (when 0:051 < � < 0:11, (
A
B > 

L >

AC)) or 
A
C <  < AB (when 0:11 < � < 1

6 , (
A
C > L)). The subcase in Figure 3.3 appears if

30��11
1�30� = L <  < AC (when 0:11 < � <

1
6) or 

A
A >  > 

L = 30��11
1�30� (when 1=6 < � < 1=5). The

subcase in Figure 3.4 appears if  > 1 (when 4=15 > � > 1=5) or  > AA (when 1=6 < � < 1=5).

Case 3. We consider the case in which � 2 (s� � (1� s) ; s), namely, � 2 (4=15; 1=3) holds.

gDet = D
eT �2=0
2 = �3 < �3 holds when � = 4=15. Since both gDet(�) and D

eT �2=0
2 (�) are decreasing

functions of � when � 2 (4=15; 0:3), we can infer from this fact that for any � 2 (4=15; 0:3), gDet

and D
eT �2=0
2 are less than �3.10This means that only a �ip bifurcation can arise along the half line

�1 when it crosses the line AB and eT �1 passes through its �ip bifurcation value. See �gure 4.1 about

this case. When � 2 (0:3; 1=3), the slope is less than �1, �ip and Hopf bifurcations can not arise

along the lines �1 and �2. See �gure 4.2 about this case.

Case 4. We need discuss the case where � 2 (0; 4=15), (T
eT �2=0
2 ; D

eT �2=0
2 ) lies in the right hand

side of the line AB and only a Hopf bifurcation can occur when (T2; D2) crosses the line BC (see

�gure 4.3). If it happens, T
eT �2=0
2 > �D

eT �2=0
2 � 1 holds. That is to say, (1 � 30�) > 30� � 11

holds. (a) When 1 � 30� > 0, for any  > 1, (1 � 30�) > 30� � 11 always holds. The inequality

11



1
�(a�) � 2 < �(a

�) < 1
�(a�) + 2 implies that � < 1=6, and 1 < 

A
C <  < 

A
B. Then �gure 4.3 appears

when 0 < � < 1=30 and AC <  < AB. (b) When 1 � 30� < 0, it is easy to verify that when

1=30 < � < 1=5, 30��111�30� > 1 holds. This means that when 1=30 < � < 1=5, we need
30��11
1�30� >  > 1

to guarantee that (1 � 30�) > 30� � 11 holds. Also, � < 1=6 and 1 < AC <  < 
A
B should hold

in order for (T2; D2) to cross the segment BC. Then �gure 4.3 appears when 1=30 < � < 0:051 and

AC <  < 
A
B hold, or when 0:051 < � < 0:11 and 

A
C <  < L =

30��11
1�30� hold.

Insert Figures 3.0 through 4.3 here

Our results can be summarized in the following proposition.

Proposition 3. Under the assumption of � = 0:1 and s = 1
3 as in Grandmont et al. (1998).

(1) Figure 2 appears if the pair (�; ) falls in the following interval: 1=3 < � and  > 1. The

high steady state is always a saddle when 0 < eT �2 < (� + �). But the low steady state is always a

source when (� + �) < eT �1 < +1.

(2) Figure 3.1 appears if the pair (�; ) falls in the following two intervals: (a) 1=30 < � < 0:051

and  > L =
30��11
1�30� , and (b) 0:051 < � < 1=6 and 

A
B < . The high steady state is a saddle when

0 < eT �2 < eT �2F , and a source when eT �2 > eT �2F . A �ip bifurcation occurs at eT �2 = eT �2F . But the low

steady state is always a saddle when (� + �) < eT �1 < +1.

(3) Figure 3.2 appears if the pair (�; ) falls in the following two intervals: (a) 0:051 < � < 0:11

and AB >  > L =
30��11
1�30� , and (b) 0:11 < � < 1=6 and 

A
C <  < 

A
B. The high steady state is a

saddle when 0 < eT �2 < eT �2F , and a sink when eT �2H > eT �2 > eT �2F . A �ip bifurcation occurs at eT �2 = eT �2F .

A Hopf bifurcation occurs at eT �2 = eT �2H . The high steady state is a source when eT �2 > eT �2H . But the

low steady state is always a saddle when (� + �) < eT �1 < +1.

(4) Figure 3.3 apprears if the pair (�; ) falls in the following two intervals: (a) 0:11 < � < 1=6
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and AC >  > L =
30��11
1�30� , and (b) 1=6 < � < 1=5 and L =

30��11
1�30� <  < AA. The high steady

state is a saddle when 0 < eT �2 < eT �2F , and a sink when eT �2 > eT �2F . A �ip bifurcation occurs at

eT �2 = eT �2F . But the low steady state is always a saddle when (� + �) < eT �1 < +1.

(5) Figure 3.4 apprears if the pair (�; ) falls in the following two intervals: (a) 1=6 < � < 1=5 and

 > AA, and (b) 1=5 < � < 4=15 and 1 < . The low steady state is a saddle when
eT �1F < eT �1 < +1,

and a source when eT �1 < eT �1F . A �ip bifurcation occurs at eT �1 = eT �1F . But the high steady state is

always a saddle when 0 < eT �2 < (� + �).

(6) Figure 4.1 appears if the pair (�; ) falls in the following interval: 4=15 < � < 0:3 and  > 1.

The high steady state is always a saddle when 0 < eT �2 < (� + �). The low steady state is a saddle

when eT �1F < eT �1 < +1, and a source when eT �1 < eT �1F . A �ip bifurcation occurs at eT �1 = eT �1F .

(7) Figure 4.2 appears if the pair (�; ) falls in the following interval: 0:3 < � < 1=3 and  > 1.

The high steady state is always a saddle when 0 < eT �2 < (� + �). But the low steady state is always

a source when (� + �) < eT �1 < +1.

(8) Figure 4.3 appears if the pair (�; ) falls in the following three intervals: (a) 0 < � < 1=30

and AB >  > AC , (b) 1=30 < � < 0:051 and AB >  > AC , and (c) 0:051 < � < 0:11 and

AC <  < L =
30��11
1�30� . The high steady state is a sink when 0 <

eT �2 < eT �2H , and a source when

eT �2 > eT �2H . A Hopf bifurcation occurs at eT �2 = eT �2H . But the low steady state is always a saddle when

(� + �) < eT �1 < +1.

Now we need explain the contrast between Gokan�s results and ours. The �rst point to be

emphasized is that considering the case in which the government transfers its revenue to the workers

will make the local dynamics become much more complicated. The result that the rate of money

growth doesn�t a¤ect the model dynamics may not hold. The reason is that the Euler equation

of the workers� problem will be a¤ected by the government revenue. If the latter is �nanced by a

mixture of money and labor income taxes, this modi�ed Woodford�s model can not be explicitly
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solved. As Pintus (2004) points out, if we consider the extreme case in which the predetermined

government revenue is �nanced only by labor income taxes (that is, Mt = M at all dates), the

tax rate is endogenous and satis�es �wt = T=wtNt as in Schmitt-Grohe and Uribe (1997). Under

the assumption of constant money supply, we numerically solve the model and �nd that the local

dynamics are quite di¤erent from those in Gokan�s model. Roughly speaking, the existence of

constant government transfer reduces the range of the elasticity of capital-labor substitution inducing

endogenous �uctuations.11

4. Conclusion

In this paper, we show that the local dynamics in Gokan�s model change dramatically if the gov-

ernment transfers its revenue to the households in a lump sum way. Our analysis indicates that

(1) the existence of constant government transfer reduces the range of the elasticity of capital-labor

substitution inducing endogenous �uctuations, and (2) the result that the rate of money growth has

no impact on local dynamics in Gokan�s model may not hold under the alternative assumption.
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Notes:

1. It includes that (1) in contrast with the case in Gokan�s model, the bifurcation parameter�

the steady state share of government revenue to after-tax income� takes di¤erent values when the

system undergoes Fip or Hopf bifurcations and; (2) for the high (resp. the low) steady state, the

sub-intervals of � (the elasticity of capital-labor substitution) and  (the value of the wage-elasticity

of labor supply 1
�1), in which we discuss the (in)determinacy results, will be quite di¤erent from

those in Gokan�s model.

2. If we consider the case where government revenue is �nanced with a mixture of money and

labor income taxes, our model will not be solvable.

3. The points (Ti; Di) (i = 1; 2) move on �1, and �2 towards the line (AC) and disappear when

T goes up through T2. See Grandmont et al. (1998) for a description of ABC triangle.

4. We should investigate if the half line �1 for the low steady state and the half line �2 for

the high steady state cross the triangle ABC in the diagram. If they cross the line [BC], a Hopf

bifurcation arises. If they cross the line [AB], a Flip bifurcation arises.

5. D
eT �2=0
2 , T

eT �2=0
2 are the values of D2 and T2 as eT �2 = 0. Since the position of the half line

depends on � and , but not on T , we should investigate how the half line locates when � varies in

the interval (0;+1) and  in the interval (1;+1). That is, we need impose some restrictions on ,

when we observe the variation of the bifurcation parameter.

6. Under this assumption, � = 1� �(1�s)
s�� = 4�15�

5�15� ,
gDet = 2 � 1� s��(1�s)

s�� = 2 � 1� 5�1
5�15� ,

D
eT �2=0
2 = 

�
1 + s��(1�s)

��s

�
= 

�
1 + 4

15��5

�
, T

eT �2=0
2 = 1 +  + s��(1�s)

��s = 1 +  + 5�1
15��5 , and

� =  2�(1�s)�s
s��(1�s)�� +

s��(1�s)
s�� � 1 =  5�30�

(4�15�)(5�15�) �
6�15�
5�15� . We use the numerical case to make the

model analytically solvable since the model dynamics depend on the magnitude of �(1� s)=s.

7. Note that the lines with the starting point (�) lie in the right hand side of the line AB, which

implies that �ip bifurcations can not occur, while the lines with the starting point (�) lie in the left
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hand side of the line AB, and �ip bifurcations may occur to �2. Moreover, as � < s, the starting

point should lie in the the left hand side of the line AC. As gDet < �1 (under the restrictions � < s),

the high steady state is always a saddle, while the low steady state can pass through a �ip bifurcation

(from a saddle to a source).

8. T
eT �2=0
2 = D

eT �2=0
2 + 1 + �(1�s)

��s ( � 1) < �D
eT �2=0
2 � 1 can imply this.

9. �(a�) > 1
�(a�) + 2 can imply this.

10. The slope decreases from 0 to �1.

11. As Gokan suggested to us, the low steady state is always a source for the range of elasticity

of the capital�labor substitution higher than the capital share in production and thus the range of

the parameter leading to indeterminacy and local bifurcations signi�cantly shrinks compared with

the one in the case of constant government expenditure �nanced by endogenous labor income taxes

as considered in Gokan (2006).
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5. Figures

Figure 1.

Figure 2. � > s:
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Figure 3.0. Possible Dynamics

Figure 3.1. Only a Flip bifurcation occurs to �2

Figure 3.2. Flip and Hopf bifurcations may occur to �2
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Figure 3.3. Only a �ip bifurcation occurs to �2.

Figure 3.4. A Flip bifurcation can occur to �1
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Figure 4.1. when �1 < slope < 0, only �ip bifurcations can occur to �1.

Figure 4.2. the slope is less than �1, bifurcations can not arise along the half lines.

Figure 4.3. Only a Hopf bifurcation can arise when (T
eT �2=0
2 ; D

eT �2=0
2 ) lies in the right hand side of

the line AB.
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