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Abstract

The asymptotic properties of the quasi-maximum likelihood estimator
(QMLE) of vector autoregressive moving-average (VARMA) models are de-
rived under the assumption that the errors are uncorrelated but not nec-
essarily independent. Relaxing the independence assumption considerably
extends the range of application of the VARMA models, and allows to cover
linear representations of general nonlinear processes. Conditions are given
for the consistency and asymptotic normality of the QMLE. A particular
attention is given to the estimation of the asymptotic variance matrix, which
may be very different from that obtained in the standard framework. Modi-
fied versions of the Wald, Lagrange Multiplier and Likelihood Ratio tests are
proposed for testing linear restrictions on the parameters.

Key words: Echelon form, Lagrange Multiplier test, Likelihood Ratio test,
Nonlinear processes, QMLE, Structural representation, VARMA models,
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1. Introduction

This paper is devoted to the problem of estimating VARMA representa-
tions of multivariate (nonlinear) processes.
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In order to give a precise definition of a linear model and of a nonlinear
process, first recall that by the Wold decomposition (see e.g. Brockwell and
Davis, 1991, for the univariate case, and Reinsel, 1997, in the multivariate
framework) any zero-mean purely non deterministic d-dimensional stationary
process (Xt) can be written in the form

Xt =
∞
∑

ℓ=0

Ψℓǫt−ℓ, (ǫt) ∼ WN(0, Σ) (1)

where
∑

ℓ ‖Ψℓ‖2 < ∞. The process (ǫt) is called the linear innovation process
of the process X = (Xt), and the notation (ǫt) ∼ WN(0, Σ) signifies that (ǫt)
is a weak white noise. A weak white noise is a stationary sequence of cen-
tered and uncorrelated random variables with common variance matrix Σ.
By contrast, a strong white noise, denoted by IID(0, Σ), is an independent
and identically distributed (iid) sequence of random variables with mean 0
and variance Σ. A strong white noise is obviously a weak white noise, because
independence entails uncorrelatedness, but the reverse is not true. Between
weak and strong white noises, one can define a semi-strong white noise as a
stationary martingale difference. An example of semi-strong white noise is
the generalized autoregressive conditional heteroscedastic (GARCH) model.
In the present paper, a process X is said to be linear when (ǫt) ∼ IID(0, Σ)
in (1), and is said to be nonlinear in the opposite case. With this definition,
GARCH-type processes are considered as nonlinear. Leading examples of
linear processes are the VARMA and the sub-class of the vector autoregres-
sive (VAR) models with iid noise. Nonlinear models are becoming more and
more employed because numerous real time series exhibit nonlinear dynam-
ics, for instance conditional heteroscedasticity, which can not be generated
by autoregressive moving-average (ARMA) models with iid noises.1

The main issue with nonlinear models is that they are generally hard
to identify and implement. This is why it is interesting to consider weak
(V)ARMA models, that is ARMA models with weak white noises, such linear

1To cite few examples of nonlinear processes, let us mention the self-exciting threshold
autoregressive (SETAR), the smooth transition autoregressive (STAR), the exponential
autoregressive (EXPAR), the bilinear, the random coefficient autoregressive (RCA), the
functional autoregressive (FAR) (see Tong, 1990, and Fan and Yao, 2003, for references
on these nonlinear time series models). All these nonlinear models have been initially
proposed for univariate time series, but have multivariate extensions.
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representations being universal approximations of the Wold decomposition
(1). Linear and nonlinear processes also have exact weak ARMA representa-
tions because a same process may satisfy several models, and many important
classes of nonlinear processes admit weak ARMA representations (see Francq,
Roy and Zakoïan, 2005, and the references therein).

The estimation of autoregressive moving-average (ARMA) models is how-
ever much more difficult in the multivariate than in univariate case. A first
difficulty is that non trivial constraints on the parameters must be imposed
for identifiability of the parameters (see Reinsel, 1997, Lütkepohl, 2005). Sec-
ondly, the implementation of standard estimation methods (for instance the
Gaussian quasi-maximum likelihood estimation) is not obvious because this
requires a constrained high-dimensional optimization (see Lütkepohl, 2005,
for a general reference and Kascha, 2007, for a numerical comparison of alter-
native estimation methods of VARMA models). These technical difficulties
certainly explain why VAR models are much more used than VARMA in
applied works. This is also the reason why the asymptotic theory of weak
ARMA model estimation is mainly limited to the univariate framework (see
Francq and Zakoïan, 2005, for a review on weak ARMA models). Notable
exceptions are Dufour and Pelletier (2005) who study the asymptotic prop-
erties of a generalization of the regression-based estimation method proposed
by Hannan and Rissanen (1982) under weak assumptions on the innovation
process, and Francq and Raïssi (2007) who study portmanteau tests for weak
VAR models.

For the estimation of ARMA and VARMA models, the commonly used
estimation method is the QMLE, which can also be viewed as a nonlinear
least squares estimation (LSE). The asymptotic properties of the QMLE of
VARMA models are well-known under the restrictive assumption that the
errors ǫt are independent (see Lütkepohl, 2005). The asymptotic behavior
of the QMLE has been studied in a much wider context by Dunsmuir and
Hannan (1976) and Hannan and Deistler (1988) who proved consistency,
under weak assumptions on the noise process and based on a spectral analy-
sis. These authors also obtained asymptotic normality under a conditionally
homoscedastic martingale difference assumption on the linear innovations.
However, this assumption precludes most of the nonlinear models. Little
is thus known when the martingale difference assumption is relaxed. Our
aim in this paper is to consider a flexible VARMA specification covering the
structural forms encountered in econometrics, and to relax the independence
assumption, and even the martingale difference assumption, in order to be
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able to cover weak VARMA representations of general nonlinear models.
The paper is organized as follows. Section 2 presents the structural weak

VARMA models that we consider here. Structural forms are employed in
econometrics in order to introduce instantaneous relationships between eco-
nomic variables. The identifiability issues are discussed. It is shown in Sec-
tion 3 that the QMLE is strongly consistent when the weak white noise (ǫt) is
ergodic, and that the QMLE is asymptotically normally distributed when (ǫt)
satisfies mild mixing assumptions. The asymptotic variance of the QMLE
may be very different in the weak and strong cases. Section 4 is devoted
to the estimation of this covariance matrix. In Section 5 it is shown how
the standard Wald, LM (Lagrange multiplier) and LR (likelihood ratio) tests
must be adapted in the weak VARMA case in order to test for general linear-
ity constraints. This section is also of interest in the univariate framework
because, to our knowledge, these tests have not been studied for weak ARMA
models. Numerical experiments are presented in Section 6. The proofs of
the main results are collected in the appendix.

2. Model and assumptions

Consider a d-dimensional stationary process (Xt) satisfying a structural
VARMA(p, q) representation of the form

A00Xt −
p
∑

i=1

A0iXt−i = B00ǫt −
q
∑

i=1

B0iǫt−i, (ǫt) ∼ WN(0, Σ0), (2)

where Σ0 is non singular and t ∈ Z = {0,±1, . . .}. The standard
VARMA(p, q) form, which is sometimes called the reduced form, is obtained
for A00 = B00 = Id. The structural forms are mainly used in econometrics
to identify structural economic shocks and to allow instantaneous relation-
ships between economic variables. Of course, constraints are necessary for
the identifiability of the (p + q + 3)d2 elements of the matrices involved in
the VARMA equation (2). We thus assume that these matrices are param-
eterized by a vector ϑ0 of lower dimension. We then write A0i = Ai(ϑ0)
and B0j = Bj(ϑ0) for i = 0, . . . , p and j = 0, . . . , q, and Σ0 = Σ(ϑ0), where
ϑ0 belongs to the parameter space Θ ⊂ Rk0 , and k0 is the number of un-
known parameters, which is typically much smaller that (p + q + 3)d2. The
parametrization is often linear (see Example 1 below), and thus satisfies the
following smoothness conditions.
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A1: The applications ϑ 7→ Ai(ϑ) i = 0, . . . , p, ϑ 7→ Bj(ϑ) j = 0, . . . , q
and ϑ 7→ Σ(ϑ) admit continuous third order derivatives for all ϑ ∈ Θ.

For simplicity we now write Ai, Bj and Σ instead of Ai(ϑ), Bj(ϑ) and
Σ(ϑ). Let Aϑ(z) = A0 −

∑p
i=1 Aiz

i and Bϑ(z) = B0 −
∑q

i=1 Biz
i. We assume

that Θ corresponds to stable and invertible representations, namely

A2: for all ϑ ∈ Θ, we have det Aϑ(z) det Bϑ(z) 6= 0 for all |z| ≤ 1.

To show the strong consistency of the QMLE, we will use the following as-
sumptions.

A3: We have ϑ0 ∈ Θ, where Θ is compact.

A4: The process (ǫt) is stationary and ergodic.

A5: For all ϑ ∈ Θ such that ϑ 6= ϑ0, either the transfer functions

A−1
0 B0B

−1
ϑ (z)Aϑ(z) 6= A−1

00 B00B
−1
ϑ0

(z)Aϑ0(z)

for some z ∈ C, or

A−1
0 B0ΣB′

0A
−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 .

Remark 1. The previous identifiability assumption is satisfied when the pa-
rameter space Θ is sufficiently constrained. Note that the last condition in
A5 can be dropped for the standard reduced forms in which A0 = B0 = Id,
but may be important for structural VARMA forms (see Example 1 below).
The identifiability of VARMA processes has been studied in particular by
Hannan (1976) who gave several procedures ensuring identifiability. In par-
ticular A5 is satisfied when we impose A0 = B0 = Id, A2, the common
left divisors of Aϑ(L) and Bϑ(L) are unimodular (i.e. with nonzero constant
determinant), and the matrix [Ap : Bq] is of full rank.

The structural form (2) allows to handle seasonal models, instantaneous
economic relationships, VARMA in the so-called echelon form representation,
and many other constrained VARMA representations.
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Example 1. Assume that income (Inc) and consumption (Cons) variables
are related by the equations Inct = c1 + α01 Inct−1 + α02 Const−1 + ǫ1t and
Const = c2 + α03 Inct + α04 Inct−1 + α05 Const−1 + ǫ2t. In the stationary case
the process Xt = {Inct − E(Inct), Const − E(Const)}′ satisfies a structural
VAR(1) equation

(

1 0
−α03 1

)

Xt =

(

α01 α02

α04 α05

)

Xt−1 + ǫt.

We also assume that the two components of ǫt correspond to uncorrelated
structural economic shocks, with respective variances σ2

01 and σ2
02. We thus

have
ϑ′

0 = (α01, α02, α03, α04, α05, σ
2
01, σ

2
02).

Note that the identifiability condition A5 is satisfied because for all ϑ =
(α1, α2, α3, α4, α5, σ

2
1, σ

2
2)

′ 6= ϑ0 we have

I2−
(

α1 α2

α1α3 + α4 α2α3 + α5

)

z 6= I2−
(

α01 α02

α01α03 + α04 α02α03 + α05

)

z

for some z ∈ C, or
(

σ2
1 σ2

1α3

σ2
1α3 σ2

1α
2
3 + σ2

2

)

6=
(

σ2
01 σ2

01α03

σ2
01α03 σ2

01α
2
03 + σ2

02

)

.

3. Quasi-maximum likelihood estimation

Let X1, . . . , Xn be observations of a process satisfying the VARMA rep-
resentation (2). Note that from A2 the matrices A00 and B00 are invertible.
Introducing the innovation process

et = A−1
00 B00ǫt,

the structural representation Aϑ0(L)Xt = Bϑ0(L)ǫt can be rewritten as the
reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i. (3)

For all ϑ ∈ Θ, we recursively define ẽt(ϑ) for t = 1, . . . , n by

ẽt(ϑ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(ϑ),
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with initial values ẽ0(ϑ) = · · · = ẽ1−q(ϑ) = X0 = · · · = X1−p = 0. It
will be shown that these initial values are asymptotically negligible and, in
particular, that ẽt(ϑ0) − et → 0 almost surely as t → ∞. The Gaussian
quasi-likelihood is given by

L̃n(ϑ) =
n
∏

t=1

1

(2π)d/2
√

det Σe

exp

{

−1

2
ẽ′t(ϑ)Σ−1

e ẽt(ϑ)

}

,

where
Σe = Σe(ϑ) = A−1

0 B0ΣB′
0A

−1′

0 .

Note that the variance of et is Σe0 = Σe(ϑ0) = A−1
00 B00Σ0B

′
00A

−1′

00 . A quasi-
maximum likelihood estimator (QMLE) is a measurable solution ϑ̂n of

ϑ̂n = arg max
ϑ∈Θ

L̃n(ϑ) = arg min
ϑ∈Θ

ℓ̃n(ϑ), ℓ̃n(ϑ) =
−2

n
log L̃n(ϑ).

The following theorem shows that, for the consistency of the QMLE, the
conventional assumption that the noise (ǫt) is an iid sequence can be re-
placed by the less restrictive ergodicity assumption A4. Dunsmuir and Han-
nan (1976) for VARMA in reduced form, and Hannan and Deistler (1988)
for VARMAX models, obtained an equivalent result, using spectral analysis.
For the proof, we do not use the spectral analysis techniques employed by
the above-mentioned authors, but we follow the classical technique of Wald
(1949), as was done by Rissanen and Caines (1979) to show the strong con-
sistency of the Gaussian maximum likelihood estimator of VARMA models.

Theorem 1. Let (Xt) be the causal solution of the VARMA equation (2)
satisfying A1–A5 and let ϑ̂n be a QMLE. Then ϑ̂n → ϑ0 a.s. as n → ∞.

For the asymptotic normality of the QMLE, it is necessary to assume that
ϑ0 is not on the boundary of the parameter space Θ.

A6: We have ϑ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ.

We now introduce mixing assumptions similar to those made by Francq
and Zakoïan (1998), hereafter FZ. We denote by αǫ(k), k = 0, 1, . . . , the
strong mixing coefficients of the process (ǫt).

A7: We have E‖ǫt‖4+2ν < ∞ and
∑∞

k=0 {αǫ(k)} ν
2+ν < ∞ for some ν > 0.

7



We define the matrix of the coefficients of the reduced form (3) by

Mϑ0 = [A−1
00 A01 : · · · : A−1

00 A0p : A−1
00 B01B

−1
00 A00 : · · · : A−1

00 B0qB
−1
00 A00 : Σe0].

Now we need an assumption which specifies how this matrix depends on the

parameter ϑ0. Let
�

Mϑ0 be the matrix ∂vec(Mϑ)/∂ϑ′ evaluated at ϑ0.

A8: The matrix
�

Mϑ0 is of full rank k0.

One can easily verify that A8 is satisfied in Example 1.

Theorem 2. Under the assumptions of Theorem 1, and A6-A8, we have

√
n
(

ϑ̂n − ϑ0

)

L→ N (0, Ω := J−1IJ−1),

where J = J(ϑ0) and I = I(ϑ0), with

J(ϑ) = lim
n→∞

∂2

∂ϑ∂ϑ′
ℓ̃n(ϑ) a.s., I(ϑ) = lim

n→∞
Var

∂

∂ϑ
ℓ̃n(ϑ).

For VARMA models in reduced form, it is not very restrictive to assume
that the coefficients A0, . . . , Ap, B0, . . . , Bq are functionally independent of
the coefficient Σe. Thus we can write ϑ = (ϑ(1)′ , ϑ(2)′)′, where ϑ(1) ∈ Rk1

depends on A0, . . . , Ap and B0, . . . , Bq, and where ϑ(2) ∈ R
k2 depends on

Σe, with k1 + k2 = k0. With some abuse of notation, we will then write
et(ϑ) = et(ϑ

(1)).

A9: With the previous notation ϑ = (ϑ(1)′ , ϑ(2)′)′, where ϑ(2) = D vec Σe

for some matrix D of size k2 × d2.

The following theorem shows that for VARMA in reduced form, the QMLE
and LSE coincide. We denote by A⊗B the Kronecker product of two matrices
A and B.

Theorem 3. Under the assumptions of Theorem 2 and A9 the QMLE ϑ̂n =

(ϑ̂
(1)′

n , ϑ̂
(2)′

n )′ can be obtained from

ϑ̂(2)
n = D vec Σ̂e, Σ̂e =

1

n

n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n ),
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and

ϑ̂(1)
n = arg min

ϑ(1)
det

n
∑

t=1

ẽt(ϑ
(1))ẽ′t(ϑ

(1)).

Moreover

J =

(

J11 0
0 J22

)

, with J11 = 2E

{

∂

∂ϑ(1)
e′t(ϑ

(1)
0 )

}

Σ−1
e0

{

∂

∂ϑ(1)′
et(ϑ

(1)
0 )

}

and J22 = D(Σ−1
e0 ⊗ Σ−1

e0 )D′.

Remark 2. One can see that J has the same expression in the strong and
weak ARMA cases (see Lütkepohl (2005) page 480). On the contrary, the
matrix I is in general much more complicated in the weak case than in the
strong case.

Remark 3. In the standard strong VARMA case, i.e. when A4 is replaced
by the assumption that (ǫt) is iid, we have I = 2J , so that Ω = 2J−1. In the
general case we have I 6= 2J . As a consequence the ready-made software used
to fit VARMA do not provide a correct estimation of Ω for weak VARMA
processes. The problem also holds in the univariate case (see Francq and
Zakoïan, 2007, and the references therein).

4. Estimating the asymptotic variance matrix

Theorem 2 can be used to obtain confidence intervals and significance
tests for the parameters. The asymptotic variance Ω must however be esti-
mated. The matrix J can easily be estimated by its empirical counterpart.
For instance, under A9, one can take

Ĵ =

(

Ĵ11 0

0 Ĵ22

)

, Ĵ11 =
2

n

n
∑

t=1

{

∂

∂ϑ(1)
ẽ′t(ϑ̂

(1)
n )

}

Σ̂−1
e

{

∂

∂ϑ(1)′
ẽt(ϑ̂

(1)
n )

}

,

and Ĵ22 = D(Σ̂−1
e ⊗ Σ̂−1

e )D′. In the standard strong VARMA case Ω̂ = 2Ĵ−1

is a strongly consistent estimator of Ω. In the general weak VARMA case
this estimator is not consistent when I 6= 2J (see Remark 3). So we need a
consistent estimator of I. Note that

I = Varas
1√
n

n
∑

t=1

Υt =
+∞
∑

h=−∞

Cov(Υt, Υt−h), (4)
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where

Υt =
∂

∂ϑ

{

log det Σe + e′t(ϑ
(1))Σ−1

e et(ϑ
(1))
}

ϑ=ϑ0
. (5)

In the econometric literature the nonparametric kernel estimator, also called
heteroscedastic autocorrelation consistent (HAC) estimator (see Newey and
West, 1987, or Andrews, 1991), is widely used to estimate covariance matrices
of the form I. Let Υ̂t be the vector obtained by replacing ϑ0 by ϑ̂n in Υt.
The matrix Ω is then estimated by a "sandwich" estimator of the form

Ω̂HAC = Ĵ−1ÎHACĴ−1, ÎHAC =
1

n

n
∑

t,s=1

ω|t−s|Υ̂tΥ̂s,

where ω0, . . . , ωn−1 is a sequence of weights (see Andrews, 1991, and Newey
and West, 1987, for the problem of the choice of weights).

Interpreting (2π)−1I as the spectral density of the stationary process (Υt)
evaluated at frequency 0 (see Brockwell and Davis, 1991, p. 459), an alter-
native method consists in using a parametric AR estimate of the spectral
density of (Υt). This approach, which has been studied by Berk (1974) (see
also den Haan and Levin, 1997), rests on the expression

I = Φ
−1(1)ΣuΦ

−1(1)

when (Υt) satisfies an AR(∞) representation of the form

Φ(L)Υt := Υt +
∞
∑

i=1

ΦiΥt−i = ut, (6)

where ut is a weak white noise with variance matrix Σu. Let Φ̂r(z) = Ik0 +
∑r

i=1 Φ̂r,iz
i, where Φ̂r,1, · · · , Φ̂r,r denote the coefficients of the LS regression

of Υ̂t on Υ̂t−1, · · · , Υ̂t−r. Let ûr,t be the residuals of this regression, and let

Σ̂ûr
be the empirical variance of ûr,1, . . . , ûr,n.

We are now able to state the following theorem, which is an extension of
a result given in Francq, Roy and Zakoïan (2005).

Theorem 4. In addition to the assumptions of Theorem 2, assume that the
process (Υt) defined in (5) admits an AR(∞) representation (6) in which
the roots of detΦ(z) = 0 are outside the unit disk, ‖Φi‖ = o(i−2), and
Σu = Var(ut) is non-singular. Moreover we assume that ‖ǫt‖8+4ν < ∞ and
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∑∞
k=0{αX,ǫ(k)}ν/(2+ν) < ∞ for some ν > 0, where {αX,ǫ(k)}k≥0 denotes the

sequence of the strong mixing coefficients of the process (X ′
t, ǫ

′
t)

′. Then the
spectral estimator of I

ÎSP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) → I

in probability when r = r(n) → ∞ and r3/n → 0 as n → ∞.

5. Testing linear restrictions on the parameter

It may be of interest to test s0 linear constraints on the elements of ϑ0

(in particular A0p = 0 or B0q = 0). We thus consider a null hypothesis of the
form

H0 : R0ϑ0 = r0

where R0 is a known s0×k0 matrix of rank s0 and r0 is a known s0-dimensional
vector. The Wald, LM and LR principles are employed frequently for testing
H0. The LM test is also called the score or Rao-score test. We now examine if
these principles remain valid in the non standard framework of weak VARMA
models.

Let Ω̂ = Ĵ−1ÎĴ−1, where Ĵ and Î are consistent estimator of J and I, as
defined in Section 4. Under the assumptions of Theorems 2 and 4, and the
assumption that I is invertible, the Wald statistic

Wn = n(R0ϑ̂n − r0)
′(R0Ω̂R′

0)
−1(R0ϑ̂n − r0)

asymptotically follows a χ2
s0

distribution under H0. Therefore, the standard
formulation of the Wald test remains valid. More precisely, at the asymptotic
level α, the Wald test consists in rejecting H0 when Wn > χ2

s0
(1 − α). It

is however important to note that a consistent estimator of the form Ω̂ =
Ĵ−1Î Ĵ−1 is required. The estimator Ω̂ = 2Ĵ−1, which is routinely used in the
time series softwares, is only valid in the strong VARMA case.

We now turn to the LM test. Let ϑ̂c
n be the restricted QMLE of the

parameter under H0. Define the Lagrangean

L(ϑ, λ) = ℓ̃n(ϑ) − λ′(R0ϑ − r0),

where λ denotes a s0-dimensional vector of Lagrange multipliers. The first-
order conditions yield

∂ℓ̃n

∂ϑ
(ϑ̂c

n) = R′
0λ̂, R0ϑ̂

c
n = r0.
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It will be convenient to write a
c
= b to signify a = b + c. A Taylor expansion

gives under H0

0 =
√

n
∂ℓ̃n(ϑ̂n)

∂ϑ

oP (1)
=

√
n

∂ℓ̃n(ϑ̂c
n)

∂ϑ
− J

√
n
(

ϑ̂n − ϑ̂c
n

)

.

We deduce that

√
n(R0ϑ̂n − r0) = R0

√
n(ϑ̂n − ϑ̂c

n)
oP (1)
= R0J

−1
√

n
∂ℓ̃n(ϑ̂c

n)

∂ϑ
= R0J

−1R′
0

√
nλ̂.

Thus under H0 and the previous assumptions,

√
nλ̂

L→ N
{

0, (R0J
−1R′

0)
−1R0ΩR′

0(R0J
−1R′

0)
−1
}

, (7)

so that the LM statistic is defined by

LMn = nλ̂′
{

(R0Ĵ
−1R′

0)
−1R0Ω̂R′

0(R0Ĵ
−1R′

0)
−1
}−1

λ̂

= n
∂ℓ̃n

∂ϑ′
(ϑ̂c

n)Ĵ−1R′
0

(

R0Ω̂R′
0

)−1

R0Ĵ
−1∂ℓ̃n

∂ϑ
(ϑ̂c

n).

Note that in the strong VARMA case, Ω̂ = 2Ĵ−1 and the LM statistic takes
the more conventional form LM

∗
n = (n/2)λ̂′R0Ĵ

−1R′
0λ̂. In the general case,

strong and weak as well, the convergence (7) implies that the asymptotic
distribution of the LMn statistic is χ2

s0
under H0. The null is therefore

rejected when LMn > χ2
s0

(1 − α). Of course the conventional LM test with
rejection region LM

∗
n > χ2

s0
(1 − α) is not asymptotically valid for general

weak VARMA models.
Standard Taylor expansions show that

√
n(ϑ̂n − ϑ̂c

n)
oP (1)
= −√

nJ−1R′
0λ̂,

and that the LR statistic satisfies

LRn := 2
{

log L̃n(ϑ̂n) − log L̃n(ϑ̂c
n)
}

oP (1)
=

n

2
(ϑ̂n − ϑ̂c

n)′J(ϑ̂n − ϑ̂c
n)

oP (1)
= LM

∗
n.

Using the previous computations and standard results on quadratic forms of
normal vectors (see e.g. Lemma 17.1 in van der Vaart, 1998), we find that
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the LRn statistic is asymptotically distributed as
∑s0

i=1 λiZ
2
i where the Zi’s

are iid N (0, 1) and λ1, . . . , λs0 are the eigenvalues of

ΣLR = J−1/2SLRJ−1/2, SLR =
1

2
R′

0(R0J
−1R′

0)
−1R0ΩR′

0(R0J
−1R′

0)
−1R0.

Note that when Ω = 2J−1, the matrix ΣLR = J−1/2R′
0(R0J

−1R′
0)

−1R0J
−1/2

is a projection matrix. Its eigenvalues are therefore equal to 0 and 1, and
the number of eigenvalues equal to 1 is Tr J−1/2R′

0(R0J
−1R′

0)
−1R0J

−1/2 =
Tr Is0 = s0. Therefore we retrieve the well-known result that LRn ∼ χ2

s0

under H0 in the strong VARMA case. In the weak VARMA case, the asymp-
totic null distribution of LRn is complicated. It is possible to evaluate the
distribution of a quadratic form of a Gaussian vector by means of the Imhof
algorithm (Imhof, 1961), but the algorithm is time consuming. An alterna-
tive is to use the transformed statistic

n

2
(ϑ̂n − ϑ̂c

n)′Ĵ Ŝ−
LR

Ĵ(ϑ̂n − ϑ̂c
n) (8)

which follows a χ2
s0

under H0, when Ĵ and Ŝ−
LR

are weakly consistent esti-

mators of J and of a generalized inverse of SLR. The estimator Ŝ−
LR

can
be obtained from the singular value decomposition of any weakly consis-
tent estimator ŜLR of SLR. More precisely, defining the diagonal matrix
Λ̂ = diag(λ̂1, . . . , λ̂k0) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k0 denote the eigenvalues of
the symmetric matrix ŜLR, and denoting by P̂ an orthonormal matrix such
that ŜLR = P̂ Λ̂P̂ ′, one can set

Ŝ−
LR

= P̂ Λ̂−P̂ ′, Λ̂− = diag
(

λ̂−1
1 , . . . , λ̂−1

s0
, 0, . . . , 0

)

.

The matrix Ŝ−
LR

then converges weakly to a matrix S−
LR

satisfying
SLRS−

LR
SLR = SLR, because SLR has full rank s0.

6. Numerical illustrations

We first study numerically the behaviour of the QMLE for strong and
weak VARMA models of the form
(

X1t

X2t

)

=

(

0 0
0 a1(2, 2)

)(

X1,t−1

X2,t−1

)

+

(

ǫ1,t

ǫ2,t

)

−
(

0 0
b1(2, 1) b1(2, 2)

)(

ǫ1,t−1

ǫ2,t−1

)

,

(9)
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where
(

ǫ1,t

ǫ2,t

)

∼ IIDN (0, I2), (10)

in the strong case, and
(

ǫ1,t

ǫ2,t

)

=

(

η1,t(|η1,t−1| + 1)−1

η2,t(|η2,t−1| + 1)−1

)

, with

(

η1,t

η2,t

)

∼ IIDN (0, I2), (11)

in the weak case. Model (9) is a VARMA(1,1) model in echelon form. The
noise defined by (11) is a direct extension of a weak noise defined by Romano
and Thombs (1996) in the univariate case. The numerical illustrations of
this section are made with the free statistical software R (see http://cran.r-
project.org/). We simulated N = 1, 000 independent trajectories of size
n = 2, 000 of Model (9), first with the strong Gaussian noise (10), second
with the weak noise (11). Figure 1 compares the distribution of the QMLE
in the strong and weak noise cases. The distributions of â1(2, 2) and b̂1(2, 1)
are similar in the two cases, whereas the QMLE of b̂1(2, 2) is more accurate
in the weak case than in the strong one. Similar simulation experiments,
not reported here, reveal that the situation is opposite, that is the QMLE
is more accurate in the strong case than in the weak case, when the weak
noise is defined by ǫi,t = ηi,tηi,t−1 for i = 1, 2. This is in accordance with the
results of Romano and Thombs (1996) who showed that, with similar noises,
the asymptotic variance of the sample autocorrelations can be greater or less
than 1 as well (1 is the asymptotic variance for strong white noises).

Figure 2 compares the standard estimator Ω̂ = 2Ĵ−1 and the sandwich
estimator Ω̂ = Ĵ−1Î Ĵ−1 of the QMLE asymptotic variance Ω. We used the
spectral estimator Î = ÎSP defined in Theorem 4, and the AR order r is
automatically selected by AIC, using the function VARselect() of the vars
R package. In the strong VARMA case we know that the two estimators are
consistent. In view of the two top panels of Figure 2, it seems that the sand-
wich estimator is less accurate in the strong case. This is not surprising be-
cause the sandwich estimator is more robust, in the sense that this estimator
continues to be consistent in the weak VARMA case, contrary to the stan-

dard estimator. It is clear that in the weak case nVar
{

b̂1(2, 2) − b1(2, 2)
}2

is

better estimated by Ω̂SP(3, 3) (see the box-plot (c) of the right-bottom panel
of Figure 2) than by 2Ĵ−1(3, 3) (box-plot (c) of the left-bottom panel). The
failure of the standard estimator of Ω in the weak VARMA framework may
have important consequences in terms of identification or hypothesis testing.
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Table 1 displays the empirical sizes of the standard Wald, LM and LR
tests, and that of the modified versions proposed in Section 5. For the nomi-
nal level α = 5%, the empirical size over the N = 1, 000 independent replica-
tions should vary between the significant limits 3.6% and 6.4% with proba-
bility 95%. For the nominal level α = 1%, the significant limits are 0.3% and
1.7%, and for the nominal level α = 10%, they are 8.1% and 11.9%. When
the relative rejection frequencies are outside the significant limits, they are
displayed in bold type in Table 1. For the strong VARMA model I, all the
relative rejection frequencies are inside the significant limits. For the weak
VARMA model II, the relative rejection frequencies of the standard tests are
definitely outside the significant limits. Thus the error of first kind is well
controlled by all the tests in the strong case, but only by modified versions of
the tests in the weak case. Table 2 shows that the powers of all the tests are
very similar in the Model III case. The same is also true for the two modified
tests in the Model IV case. The empirical powers of the standard tests are
hardly interpretable for Model IV, because we have already seen in Table 1
that the standard versions of the tests do not well control the error of first
kind in the weak VARMA framework.

From these simulation experiments and from the asymptotic theory, we
draw the conclusion that the standard methodology, based on the QMLE,
allows to fit VARMA representations of a wide class of nonlinear multivariate
time series. This standard methodology, including in particular the signif-
icance tests on the parameters, needs however to be adapted to take into
account the possible lack of independence of the errors terms. In future
works, we intent to study how the existing identification (see e.g. Nsiri and
Roy, 1996) and diagnostic checking (see e.g. Duchesne and Roy, 2004) pro-
cedures should be adapted in the weak VARMA framework considered in the
present paper.

A. Technical proofs

We begin with a lemma useful to show the identifiability of ϑ0.

Lemma 1. Assume that Σ0 is non singular and that A5 holds
true. If A−1

0 B0B
−1
ϑ (L)Aϑ(L)Xt = A−1

00 B00ǫt with probability one and
A−1

0 B0ΣB′
0A

−1′

0 = A−1
00 B00Σ0B

′
00A

−1′

00 , then ϑ = ϑ0.

Proof: Let ϑ 6= ϑ0. Assumption A5 implies that either A−1
0 B0ΣB′

0A
−1′

0 6=
A−1

00 B00Σ0B
′
00A

−1′

00 or there exist matrices Ci such that Ci0 6= 0 for some
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Table 1: Empirical size of standard and modified tests: relative frequencies (in %)
of rejection of H0 : b1(2, 2) = 0. The number of replications is N = 1000.

Model Length n Level Standard Test Modified Test
Wald LM LR Wald LM LR

α = 1% 1.1 0.7 0.8 1.7 0.7 1.7
I n = 500 α = 5% 5.0 4.5 5.1 6.0 5.2 6.0

α = 10% 8.9 9.3 9.4 11.0 9.9 10.9

α = 1% 0.7 0.8 0.7 1.0 0.6 1.0
I n = 2, 000 α = 5% 5.0 4.3 4.6 5.5 5.1 5.5

α = 10% 9.2 8.6 8.8 10.0 9.0 10.2

α = 1% 0.0 0.0 0.0 1.4 1.4 1.3
II n = 500 α = 5% 0.6 0.5 0.6 6.2 6.5 6.1

α = 10% 2.3 2.2 2.2 12.0 11.2 12.0

α = 1% 0.0 0.0 0.0 0.9 0.7 0.9
II n = 2, 000 α = 5% 0.4 0.3 0.3 4.6 4.3 4.6

α = 10% 1.3 1.3 1.3 9.2 9.8 9.2

I: Strong VARMA(1,1) model (9)-(10) with ϑ0 = (0.95, 2, 0)
II: Weak VARMA(1,1) model (9)-(11) with ϑ0 = (0.95, 2, 0)

i0 > 0 and

A−1
0 B0B

−1
ϑ (z)Aϑ(z) − A−1

00 B00B
−1
ϑ0

(z)Aϑ0(z) =

∞
∑

i=i0

Ciz
i.

By contradiction, assume that A−1
0 B0B

−1
ϑ (L)Aϑ(L)Xt = A−1

00 B00ǫt =
A−1

00 B00B
−1
ϑ0

(L)Aϑ0(L)Xt with probability one. This implies that there exists
λ 6= 0 such that λ′Xt−i0 is almost surely a linear combination of the compo-
nents of Xt−i, i > i0. By stationarity, it follows that λ′Xt is almost surely a
linear combination of the components of Xt−i, i > 0. Thus λ′ǫt = 0 almost
surely, which is impossible when the variance Σ0 of ǫt is positive definite. ✷

Proof of Theorem 1: Note that, due to the initial conditions, {ẽt(ϑ)}
is not stationary, but can be approximated by the stationary ergodic process

et(ϑ) = A−1
0 B0B

−1
ϑ (L)Aϑ(L)Xt. (12)
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Table 2: Empirical power of standard and modified tests: relative frequencies (in
%) of rejection of H0 : b1(2, 2) = 0. The number of replications is N = 1000.

Model Length n Level Standard Test Modified Test
Wald LM LR Wald LM LR

α = 1% 6.8 5.9 6.6 8.0 6.5 7.9
III n = 500 α = 5% 20.5 19.4 20.4 21.6 20.1 21.7

α = 10% 29.5 29.0 29.4 30.6 29.5 30.6

α = 1% 1.7 1.8 1.7 15.5 14.3 15.6
IV n = 500 α = 5% 11.4 9.4 10.1 35.1 34.0 35.0

α = 10% 21.1 20.2 20.6 47.1 44.9 46.8

III: Strong VARMA(1,1) model (9)-(10) with ϑ0 = (0.95, 2, 0.05)
IV: Weak VARMA(1,1) model (9)-(11) with ϑ0 = (0.95, 2, 0.05)

From an extension of Lemma 1 in FZ, it is easy to show that
supϑ∈Θ ‖ẽt(ϑ) − et(ϑ)‖ → 0 almost surely at an exponential rate, as t → ∞.
We thus have

ℓ̃n(ϑ)
oP (1)
= ℓn(ϑ) :=

1

n

n
∑

t=1

lt(ϑ) as n → ∞,

where
lt(ϑ) = d log(2π) + log det Σe + e′t(ϑ)Σ−1

e et(ϑ).

Now the ergodic theorem shows that almost surely

ℓn(ϑ) → d log(2π) + Q(ϑ),

where Q(ϑ) = log det Σe + Ee′1(ϑ)Σ−1
e e1(ϑ). We have

Q(ϑ) = E {e1(ϑ0)}′ Σ−1
e {e1(ϑ0)} + log det Σe

+E {e1(ϑ) − e1(ϑ0)}′ Σ−1
e {e1(ϑ) − e1(ϑ0)}

+2E {e1(ϑ) − e1(ϑ0)}′ Σ−1
e e1(ϑ0).

The last expectation is null because the linear innovation et = et(ϑ0) is or-
thogonal to the linear past (i.e. to the Hilbert space Ht−1 generated by linear
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combinations of the Xu for u < t), and because {et(ϑ) − et(ϑ0)} belongs to
this linear past Ht−1. Moreover

Q(ϑ0) = log det Σe0 + Ee′1(ϑ0)Σ
−1
e0 e1(ϑ0)

= log det Σe0 + Tr Σ−1
e0 Ee1(ϑ0)e

′
1(ϑ0) = log det Σe0 + d.

Thus
Q(ϑ) − Q(ϑ0) ≥ Tr Σ−1

e Σe0 − log det Σ−1
e Σe0 − d ≥ 0 (13)

using the elementary inequality Tr(A−1B) − log det(A−1B) ≥
Tr(A−1A) − log det(A−1A) = d for all symmetric positive semi-definite
matrices of order d × d. At least one of the two inequalities in (13) is strict,
unless if e1(ϑ) = e1(ϑ0) with probability 1 and Σe = Σe0, which is equivalent
to ϑ = ϑ0 by Lemma 1. The rest of the proof relies on standard compactness
arguments, as in Theorem 1 of FZ. ✷

Proof of Theorem 2: In view of Theorem 1 and A6, we have almost surely

ϑ̂n → ϑ0 ∈
◦

Θ. Thus ∂ℓ̃n(ϑ̂n)/∂ϑ = 0 for sufficiently large n, and a Taylor
expansion gives

0
oP (1)
=

√
n

∂ℓn(ϑ0)

∂ϑ
+

∂2ℓn(ϑ0)

∂ϑ∂ϑ′

√
n
(

ϑ̂n − ϑ0

)

, (14)

using arguments given in FZ (proof of Theorem 2). The proof then directly
follows from Lemma 3 and Lemma 5 below. ✷

We first state elementary derivative rules, which can be found in Appendix
A.13 of Lütkepohl (1993).

Lemma 2. If f(A) is a scalar function of a matrix A whose elements aij

are function of a variable x, then

∂f(A)

∂x
=
∑

i,j

∂f(A)

∂aij

∂aij

∂x
= Tr

{

∂f(A)

∂A′

∂A

∂x

}

. (15)

When A is invertible, we also have

∂ log |det(A)|
∂A′

= A−1 (16)

∂Tr(CA−1B)

∂A′
= −A−1BCA−1 (17)

∂Tr(CAB)

∂A′
= BC (18)
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Lemma 3. Under the assumptions of Theorem 2, almost surely

∂2ℓn(ϑ0)

∂ϑ∂ϑ′
→ J,

where J is invertible.

Proof of Lemma 3: Let ϑ = (ϑ1, . . . , ϑk0)
′. In view of (15), (16) and (17),

for all i ∈ {1, . . . , k0}, we have

∂lt(ϑ)

∂ϑi

= Tr

{

Σ−1
e

∂Σe

∂ϑi

− Σ−1
e et(ϑ)e′t(ϑ)Σ−1

e

∂Σe

∂ϑi

}

+ 2
∂e′t(ϑ)

∂ϑi

Σ−1
e et(ϑ). (19)

Using the previous relations and (18), for all i, j ∈ {1, . . . , k0}, we have

∂2lt(ϑ)

∂ϑi∂ϑj
= Tr

{

Σ−1
e

∂2Σe

∂ϑi∂ϑj
− Σ−1

e

∂Σe

∂ϑi
Σ−1

e

∂Σe

∂ϑj
− Σ−1

e et(ϑ)e′t(ϑ)Σ−1
e

∂2Σe

∂ϑi∂ϑj

+Σ−1
e

∂Σe

∂ϑi
Σ−1

e et(ϑ)e′t(ϑ)Σ−1
e

∂Σe

∂ϑj
+ Σ−1

e et(ϑ)e′t(ϑ)Σ−1
e

∂Σe

∂ϑi
Σ−1

e

∂Σe

∂ϑj

−Σ−1
e

∂Σe

∂ϑi

Σ−1
e

∂et(ϑ)e′t(ϑ)

∂ϑj

}

+ 2
∂2e′t(ϑ)

∂ϑi∂ϑj

Σ−1
e et(ϑ)

+2
∂e′t(ϑ)

∂ϑi
Σ−1

e

∂et(ϑ)

∂ϑj
− 2Tr

{

Σ−1
e et(ϑ)

∂e′t(ϑ)

∂ϑi
Σ−1

e

∂Σe

∂ϑj

}

. (20)

Using Eete
′
t = Σe, Eet = 0, the uncorrelatedness between et and the linear

past Ht−1, ∂et(ϑ0)/∂ϑi ∈ Ht−1, and ∂2et(ϑ0)/∂ϑi∂ϑj ∈ Ht−1, we have

E
∂2lt(ϑ0)

∂ϑi∂ϑj

= Tr

{

Σ−1
e0

∂Σe(ϑ0)

∂ϑi

Σ−1
e0

∂Σe(ϑ0)

∂ϑj

}

+ 2E
∂e′t(ϑ0)

∂ϑi

Σ−1
e0

∂et(ϑ0)

∂ϑj

= J(i, j). (21)

The ergodic theorem and the next lemma conclude. ✷

Lemma 4. Under the assumptions of Theorem 2, the matrix

J = E
∂2lt(ϑ0)

∂ϑ∂ϑ′

is invertible.
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Proof of Lemma 4: In view of (21), we have J = J1 + J2, where

J2 = 2E
∂e′t(ϑ0)

∂ϑ
Σ−1

e0

∂et(ϑ0)

∂ϑ′

and

J1(i, j) = Tr

{

Σ
−1/2
e0

∂Σe(ϑ0)

∂ϑi

Σ
−1/2
e0 Σ

−1/2
e0

∂Σe(ϑ0)

∂ϑj

Σ
−1/2
e0

}

= h
′
ihj ,

with

hi = (Σ
−1/2
e0 ⊗ Σ

−1/2
e0 )di, di = vec

∂Σe(ϑ0)

∂ϑi

.

In the previous derivations, we used the well-known relations Tr(A′B) =
(vecA)′vecB and vec(ABC) = (C ′ ⊗ A)vecB. Note that the matrices J , J1

and J2 are semi-definite positive. If J is singular, then there exists a vector
c = (c1, . . . , ck0)

′ 6= 0 such that c
′J1c = c

′J2c = 0. Since Σ
−1/2
e0 ⊗ Σ

−1/2
e0 and

Σ−1
e0 are definite positive, we have c

′J1c = 0 if and only if

k0
∑

k=1

ckdk =
k0
∑

k=1

ckvec
∂Σe(ϑ0)

∂ϑk

= 0 (22)

and c
′J2c = 0 if and only if

∑k0

k=1 ck
∂et(ϑ0)

∂ϑk
= 0 a.s. Differentiating the two

sides of the reduced form representation (3), the latter equation yields the
VARMA(p − 1, q − 1) equation

∑p
i=1 A∗

i Xt−i =
∑p

j=1 B∗
j et−j . The identifia-

bility assumption A5 excludes the existence of such a representation. Thus

A∗
i =

k0
∑

k=1

ck
∂A−1

0 Ai

∂ϑk

(ϑ0) = 0, B∗
j =

k0
∑

k=1

ck
∂A−1

0 BjB
−1
0 A0

∂ϑk

(ϑ0) = 0. (23)

It can be seen that (22) and (23), for i = 1, . . . , p and j = 1, . . . , q, are

equivalent to
�

Mϑ0 c = 0. We conclude from A8. ✷

Lemma 5. Under the assumptions of Theorem 2,

√
n

∂ℓn(ϑ0)

∂ϑ

L→ N (0, I).
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Proof of Lemma 5: In view of (12), we have

∂et(ϑ0)

∂ϑi
=

∞
∑

ℓ=1

d′
ℓet−ℓ, (24)

where the sequence of matrices dℓ = dℓ(i) is such that ‖dℓ‖ → 0 at a geometric
rate as ℓ → ∞. By (19), we have for all m

∂lt(ϑ0)

∂ϑi
= Tr

[

Σ−1
e0

{

Id − ete
′
tΣ

−1
e0

} ∂Σe(ϑ0)

∂ϑi

]

+ 2
∂e′t(ϑ0)

∂ϑi
Σ−1

e0 et

= Yt,m,i + Zt,m,i

where

Yt,m,i = Tr

[

Σ−1
e0

{

Id − ete
′
tΣ

−1
e0

} ∂Σe(ϑ0)

∂ϑi

]

+ 2
m
∑

ℓ=1

e′t−ℓd
′
ℓΣ

−1
e0 et

Zt,m,i = 2
∞
∑

ℓ=m+1

e′t−ℓd
′
ℓΣ

−1
e0 et.

Let Yt,m = (Yt,m,1, . . . , Yt,m,k0)
′ and Zt,m = (Zt,m,1, . . . , Yt,m,k0)

′. The processes
(Yt,m)t and (Zt,m)t are stationary and centered. Moreover, under Assumption
A7 and m fixed, the process Y = (Yt,m)t is strongly mixing, with mixing
coefficients αY (h) ≤ αǫ (max{0, h − m}). Applying the central limit theorem
(CLT) for mixing processes (see Herrndorf, 1984) we directly obtain

1√
n

n
∑

t=1

Yt,m
L→ N (0, Im), Im =

∞
∑

h=−∞

Cov (Yt,m, Yt−h,m) .

As in FZ Lemma 3, one can show that I = limm→∞ Im exists. Since
‖Zt,m‖2 → 0 at an exponential rate when m → ∞, using the arguments
given in FZ Lemma 4, one can show that

lim
m→∞

lim sup
n→∞

P

{∥

∥

∥

∥

∥

n−1/2
n
∑

t=1

Zt,m

∥

∥

∥

∥

∥

> ε

}

= 0 (25)

for every ε > 0. From a standard result (see e.g. Brockwell and Davis, 1991,
Proposition 6.3.9), we deduce that

1√
n

n
∑

t=1

∂lt(ϑ0)

∂ϑ
=

1√
n

n
∑

t=1

Yt,m +
1√
n

n
∑

t=1

Zt,m
L→ N (0, I),
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which completes the proof. ✷

Proof of Theorem 3: Note that

ℓ̃n(ϑ) =
1

n

n
∑

t=1

l̃t(ϑ), l̃t(ϑ) = d log(2π) + log det Σe + ẽ′t(ϑ)Σ−1
e ẽt(ϑ).

Under the assumption of the theorem, ∂ẽ′t(ϑ)/∂ϑ(2) = 0, and (19) yields

∂l̃t(ϑ̂n)

∂ϑi
= Tr

[

Σ̂−1
e

{

Id − ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )Σ̂−1

e

} ∂Σe(ϑ̂n)

∂ϑi

]

for i = k1 + 1, . . . k0, with Σ̂e such that ϑ̂
(2)
n = D vec Σ̂e. Assumption A6

entails that the first order condition ∂ℓ̃n(ϑ̂n)/∂ϑ(2) = 0 is satisfied for n large
enough. We then have

Σ̂e = n−1
n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )

and
ℓ̃n(ϑ̂n) = d log(2π) + log det Σ̂e + d,

because

1

n

n
∑

t=1

ẽ′t(ϑ̂
(1)
n )Σ̂−1

e ẽt(ϑ̂
(1)
n ) = Tr

[

1

n

n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )Σ̂−1

e

]

= d.

The conclusion follows. ✷
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Figure 1: QMLE of N = 1, 000 independent simulations of the VARMA(1,1) model
(9) with size n = 2, 000 and unknown parameter ϑ0 = ((a1(2, 2), b1(2, 1), b1(2, 2)) =
(0.95, 2, 0), when the noise is strong (left panels) and when the noise is the weak noise (11)
(right panels). Points (a)-(c), in the box-plots of the top panels, display the distribution of

the estimation errors ϑ̂(i)−ϑ0(i) for i = 1, 2, 3. The panels of the middle present the Q-Q

plot of the estimates ϑ̂(3) = b̂1(2, 2) of the last parameter. The bottom panels display the
distribution of the same estimates. The kernel density estimate is displayed in full line,
and the centered Gaussian density with the same variance is plotted in dotted line.
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Figure 2: Comparison of standard and modified estimates of the asymptotic variance Ω
of the QMLE, on the simulated models presented in Figure 1. The diamond symbols
represent the mean, over the N = 1, 000 replications, of the standardized squared errors

n {â1(2, 2) − 0.95}2
for (a) (0.02 in the strong and weak cases), n

{

b̂1(2, 1) − 2
}2

for (b)

(1.02 in the strong case and 1.01 in the strong case) and n
{

b̂1(2, 2)
}2

for (c) (0.94 in the

strong case and 0.43 in the weak case).
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Estimating structural VARMA models with
uncorrelated but non-independent error terms:

Complementary results that are not submitted
for publication

A. Additional example

Example 2. Denoting by a0i(k, ℓ) and b0i(k, ℓ) the generic elements of the
matrices A0i and B0i, the Kronecker indices are defined by pk = max{i :
a0i(k, ℓ) 6= 0 or b0i(k, ℓ) 6= 0 for some ℓ = 1, . . . , d}. To ensure relatively
parsimonious parameterizations, one can specify an echelon form depending
on the Kronecker indices (p1, . . . , pd). The reader is refereed to Lütkepohl
(1993) for details about the echelon form. For instance, a 3-variate ARMA
process with Kronecker indices (1, 2, 0) admits the echelon form





1 0 0
0 1 0
× × 1



Xt −





× × 0
0 × 0
0 0 0



Xt−1 −





0 0 0
× × 0
0 0 0



Xt−2

=





1 0 0
0 1 0
× × 1



 ǫt −





× × ×
× × ×
0 0 0



 ǫt−1 −





0 0 0
× × ×
0 0 0



 ǫt−2

where × denotes an unconstrained element. The variance of ǫt is defined by 6
additional parameters. This echelon form thus corresponds to a parametriza-
tion by a vector ϑ of size k0 = 24.

B. Verification of Assumption A8 on Example 1

In this example, we have

Mϑ0 =

(

α01 α02 σ2
01 σ2

01α03

α01α03 + α04 α02α03 + α05 σ2
01α03 σ2

01α
2
03 + σ2

02

)

.

Thus

�

Mϑ0=





















1 α03 0 0 0 0 0 0
0 0 1 α03 0 0 0 0
0 α01 0 α02 0 σ2

01 σ2
01 2α03σ

2
01

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 α03 α03 α2

03

0 0 0 0 0 0 0 1





















1



is of full rank k0 = 7.

C. Details on the proof of Theorem 1

Lemma 6. Under the assumptions of Theorem 1, we have

sup
ϑ∈Θ

‖ẽt(ϑ) − et(ϑ)‖ ≤ Kρt,

where ρ is a constant belonging to [0, 1), and K > 0 is measurable with respect
to the σ-field generated by {Xu, u ≤ 0}.

Proof of Lemma 6: We have

et(ϑ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0et−i(ϑ) ∀t ∈ Z, (26)

and

ẽt(ϑ) = Xt−
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(ϑ) t = 1, . . . , n (27)

with the initial values ẽ0(ϑ) = · · · = ẽ1−q(ϑ) = X0 = · · · = X1−p = 0. Let

et(ϑ) =











et(ϑ)
et−1(ϑ)

...
et−q+1(ϑ)











, ẽt(ϑ) =











ẽt(ϑ)
ẽt−1(ϑ)

...
ẽt−q+1(ϑ)











.

From (26) and (27), we have

et(ϑ) = bt + Cet−1(ϑ) ∀t ∈ Z,

and
ẽt(ϑ) = b̃t + Cẽt−1(ϑ) t = 1, . . . , n,

where

C =

(

A−1
0 B1B

−1
0 A0 · · · A−1

0 BqB
−1
0 A0

I(q−1)d 0(q−1)d

)

, bt =











Xt −
∑p

i=1 A−1
0 AiXt−i

0d
...
0d











,

2



b̃t = bt for t > p, b̃t = 0qd for t ≤ 0, and

b̃t =











Xt −
∑t−1

i=1 A−1
0 AiXt−i

0d
...
0d











for t = 1, . . . , p.

Writing dt(ϑ) = et(ϑ) − ẽt(ϑ), we obtain for t > p,

dt(ϑ) = Cdt−1(ϑ) = C
t−pdp(ϑ)

= C
t−p
{(

bp − b̃p

)

+ C

(

bp−1 − b̃p−1

)

+ · · ·+ C
p−1
(

b1 − b̃1

)}

+ C
pb0.

Note that C is the companion matrix of the polynomial

P(z) = Id −
q
∑

i=1

A−1
0 BiB

−1
0 A0z

i = A−1
0 Bϑ(z)B−1

0 A0.

By A2, the zeroes of P(z) are of modulus strictly greater than one:

P(z) = 0 ⇒ |z| > 1 (28)

By a well-known result on companion matrices, (28) is equivalent to ρ(C) <
1, where ρ(C) denote the spectral radius of C. By the compactness of Θ,
we thus have

sup
ϑ∈Θ

ρ(C) < 1.

We thus have
sup
ϑ∈Θ

‖dt(ϑ)‖ ≤ Kρt,

where K and ρ are as in the statement of the lemma. The conclusion follows.
✷

Lemma 7. Under the assumptions of Theorem 1, we have

sup
ϑ∈Θ

∣

∣

∣
ℓ̃n(ϑ) − ℓn(ϑ)

∣

∣

∣
= o(1)

almost surely.

3



Proof of Lemma 7: We have

ℓ̃n(ϑ) − ℓn(ϑ) =
1

n

n
∑

t=1

{ẽt(ϑ) − et(ϑ)}′ Σ−1
e ẽt(ϑ) + e′t(ϑ)Σ−1

e {ẽt(ϑ) − et(ϑ)} .

In the proof of this lemma and in the rest on the paper, the letters K and ρ
denote generic constants, whose values can be modified along the text, such
that K > 0 and 0 < ρ < 1. By Lemma 6,

sup
ϑ∈Θ

∣

∣

∣
ℓ̃n(ϑ) − ℓn(ϑ)

∣

∣

∣
≤ K

n

n
∑

t=1

ρt

(

sup
ϑ∈Θ

‖et(ϑ)‖ + sup
ϑ∈Θ

‖ẽt(ϑ)‖
)

≤ K

n

n
∑

t=1

ρt sup
ϑ∈Θ

‖et(ϑ)‖ (29)

In view of (26), and using A1 and the compactness of Θ, we have

et(ϑ) = Xt +

∞
∑

i=1

Ci(ϑ)Xt−i, sup
ϑ∈Θ

‖Ci(ϑ)‖ ≤ Kρi. (30)

We thus have E supϑ∈Θ ‖et(ϑ)‖ < ∞, and the Markov inequality entails

∞
∑

t=1

P

(

ρt sup
ϑ∈Θ

‖et(ϑ)‖ > ε

)

≤ E sup
ϑ∈Θ

‖et(ϑ)‖
∞
∑

t=1

ρt

ε
< ∞.

By the Borel-Cantelli theorem, ρt supϑ∈Θ ‖et(ϑ)‖ → 0 almost surely as
t → ∞. The Cesàro theorem implies that the right-hand side of (29)
converges to zero almost surely. ✷

Lemma 8. Under the assumptions of Theorem 1, any ϑ 6= ϑ0 has a neigh-
borhood V (ϑ) such that

lim inf
n→∞

inf
ϑ∗∈V (ϑ)

ℓ̃n(ϑ∗) > El1(ϑ0), a.s. (31)

Moreover for any neighborhood V (ϑ0) of ϑ0 we have

lim sup
n→∞

inf
ϑ∗∈V (ϑ0)

ℓ̃n(ϑ∗) ≤ El1(ϑ0), a.s. (32)

4



Proof of Lemma 8: For any ϑ ∈ Θ and any positive integer k, let Vk(ϑ)
be the open ball with center ϑ and radius 1/k. Using Lemma 7, we have

lim inf
n→∞

inf
ϑ∗∈Vk(ϑ)∩Θ

ℓ̃n(ϑ∗) ≥ lim inf
n→∞

inf
ϑ∗∈Vk(ϑ)∩Θ

ℓn(ϑ∗) − lim sup
n→∞

sup
ϑ∈Θ

|ℓn(ϑ) − ℓ̃n(ϑ)|

≥ lim inf
n→∞

n−1

n
∑

t=1

inf
ϑ∗∈Vk(ϑ)∩Θ

lt(ϑ
∗)

= E inf
ϑ∗∈Vk(ϑ)∩Θ

l1(ϑ
∗)

For the last equality we applied the ergodic theorem to the ergodic stationary
process

{

infϑ∗∈Vk(ϑ)∩Θ ℓt(ϑ
∗)
}

t
. By the Beppo-Levi theorem, when k increases

to ∞, E infϑ∗∈Vk(ϑ)∩Θ l1(ϑ
∗) increases to El1(ϑ). Because El1(ϑ) = d log(2π)+

Q(ϑ), the discussion which follows (13) entails El1(ϑ) > El1(ϑ0), and (31)
follows.

To show (32), it suffices to remark that Lemma 7 and the ergodic theorem
entail

lim sup
n→∞

inf
ϑ∗∈V (ϑ)∩Θ

ℓ̃n(ϑ
∗) ≤ lim sup

n→∞
inf

ϑ∗∈V (ϑ)∩Θ
ℓn(ϑ

∗) + lim sup
n→∞

sup
ϑ∈Θ

|ℓn(ϑ) − ℓ̃n(ϑ)|

≤ lim sup
n→∞

n−1

n
∑

t=1

lt(ϑ0)

= El1(ϑ0).

✷

The proof of Theorem 1 is completed by the arguments of Wald (1949).
More precisely, the compact set Θ is covered by a neighborhood V (ϑ0) of ϑ0

and a finite number of neighborhoods V (ϑ1), . . . , V (ϑk) satisfying (31) with
ϑ replaced by ϑi, i = 1, . . . , k. In view of (31) and (32), we have almost
surely

inf
ϑ∈Θ

ℓ̃n(ϑ) = min
i=0,1,...,k

inf
ϑ∈V (ϑi)∩Θ

ℓ̃n(ϑ) = inf
ϑ∈V (ϑ0)∩Θ

ℓ̃n(ϑ)

for n large enough. Since the neighborhood V (ϑ0) can be chosen arbitrarily
small, the conclusion follows.

5



D. Details on the proof of Theorem 2

Lemma 9. Under the assumptions of Theorem 2, we have

√
n sup

ϑ∈Θ

∥

∥

∥

∥

∥

∂ℓ̃n(ϑ)

∂ϑ
− ∂ℓn(ϑ)

∂ϑ

∥

∥

∥

∥

∥

= oP (1).

Proof of Lemma 9: Similar to (30), Assumption A1 entails that, for
k = 1, . . . , k0,

∂et(ϑ)

∂ϑk
=

∞
∑

i=1

C
(k)
i (ϑ)Xt−i,

∂ẽt(ϑ)

∂ϑk
=

t−1
∑

i=1

C
(k)
i (ϑ)Xt−i, (33)

C
(k)
i (ϑ) =

∂Ci(ϑ)

∂ϑk
, sup

ϑ∈Θ

∥

∥

∥
C

(k)
i (ϑ)

∥

∥

∥
≤ Kρi. (34)

Similar to Lemma 6, we then have

sup
ϑ∈Θ

∥

∥

∥

∥

∂ẽt(ϑ)

∂ϑ′
− ∂et(ϑ)

∂ϑ′

∥

∥

∥

∥

≤ Kρt. (35)

Using (19), we have

√
n

{

∂ℓ̃n(ϑ)

∂ϑk
− ∂ℓn(ϑ)

∂ϑk

}

= a1 + a2,

with

a1 =
2√
n

n
∑

t=1

{(

∂e′t(ϑ)

∂ϑk
− ∂ẽ′t(ϑ)

∂ϑk

)

Σ−1
e et(ϑ) +

∂ẽ′t(ϑ)

∂ϑk
Σ−1

e (et(ϑ) − ẽt(ϑ))

}

a2 = Tr

(

Σ−1
e

[

{ẽt(ϑ) − et(ϑ)} ẽ′t(ϑ) + et(ϑ) {ẽt(ϑ) − et(ϑ)}′
]

Σ−1
e

∂Σe

∂ϑk

)

.

From Lemma 6 and (35), it follows that

|a1| + |a2| ≤
K√
n

n
∑

t=1

bt, bt = ρt

{

sup
ϑ∈Θ

∥

∥

∥

∥

∂et(ϑ)

∂ϑk

∥

∥

∥

∥

+ sup
ϑ∈Θ

‖et(ϑ)‖ + Kρt

}

.

In view of (30) and (33)-(34), we have

E sup
ϑ∈Θ

∥

∥

∥

∥

∂et(ϑ)

∂ϑk

∥

∥

∥

∥

< ∞, E sup
ϑ∈Θ

‖et(ϑ)‖ < ∞.

6



By the Markov inequality, for all ε > 0 we thus have

P

(

K√
n

n
∑

t=1

bt > ε

)

≤ K

ε
√

n

n
∑

t=1

ρt → 0,

and the conclusion follows. ✷

Lemma 10. Under the assumptions of Theorem 2, (14) holds, that is

0
oP (1)
=

√
n

∂ℓn(ϑ0)

∂ϑ
+

∂2ℓn(ϑ0)

∂ϑ∂ϑ′

√
n
(

ϑ̂n − ϑ0

)

.

Proof of Lemma 10: By Lemma 9 and already given arguments, we have

0 =
√

n
ℓ̃n(ϑ̂n)

∂ϑ
=

√
n

ℓn(ϑ̂n)

∂ϑ
+
√

n
ℓ̃n(ϑ̂n)

∂ϑ
−√

n
ℓn(ϑ̂n)

∂ϑ

oP (1)
=

√
n

ℓn(ϑ̂n)

∂ϑ
.

Taylor expansions of the functions ∂ℓn(·)/∂ϑi around ϑ0 give

√
n

ℓn(ϑ̂n)

∂ϑ
=

√
n

∂ℓn(ϑ0)

∂ϑ
+

[

∂2ℓn(ϑ∗
i )

∂ϑi∂ϑj

]√
n
(

ϑ̂n − ϑ0

)

,

for some ϑ∗
i between ϑ̂n and ϑ0.

From (20) and Lemma 2, one can see that the random terms involved in

∂3lt(ϑ)

∂ϑk1∂ϑk2∂ϑk3

are linear combinations of the elements of the following matrices

et(ϑ)e′t(ϑ), et(ϑ)
∂e′t(ϑ)

∂ϑki

, et(ϑ)
∂2e′t(ϑ)

∂ϑki
∂ϑkj

,

∂et(ϑ)

∂ϑki

∂e′t(ϑ)

∂ϑkj

,
∂et(ϑ)

∂ϑki

∂2e′t(ϑ)

∂ϑkj
∂ϑkℓ

, et(ϑ)
∂3e′t(ϑ)

∂ϑki
∂ϑkj

∂ϑkℓ

.

Since all these matrices have finite expectations uniformly in ϑ ∈ Θ, we have

E sup
ϑ∈Θ

∣

∣

∣

∣

∂3lt(ϑ)

∂ϑk1∂ϑk2∂ϑk3

∣

∣

∣

∣

< ∞ (36)
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for all k1, k2, k3 ∈ {1, . . . , k0}. Now a second Taylor expansion yields

∂2ℓn(ϑ∗
i )

∂ϑi∂ϑj

=
∂2ℓn(ϑ0)

∂ϑi∂ϑj

+
∂

∂ϑ′

{

∂2ℓn(ϑ∗)

∂ϑi∂ϑj

}

(ϑ∗
i − ϑ0)

=
∂2ℓn(ϑ0)

∂ϑi∂ϑj
+ o(1) a.s.

using the ergodic theorem, (36) and the almost sure convergence of ϑ∗
i to ϑ0.

The proof is complete. ✷

Now we need the following covariance inequality obtained by Davydov
(1968).2

Lemma 11 (Davydov (1968)). Let p, q and r three positive numbers such
that p−1 + q−1 + r−1 = 1. Davydov (1968) showed that

|Cov(X, Y )| ≤ K0‖X‖p‖Y ‖q [α {σ(X), σ(Y )}]1/r , (37)

where ‖X‖p
p = EXp, K0 is an universal constant, and α {σ(X), σ(Y )} de-

notes the strong mixing coefficient between the σ-fields σ(X) and σ(Y ) gen-
erated by the random variables X and Y , respectively.

Lemma 12. Under the assumptions of Theorem 2, (25) holds, that is

lim
m→∞

lim sup
n→∞

P

{∥

∥

∥

∥

∥

n−1/2
n
∑

t=1

Zt,m

∥

∥

∥

∥

∥

> ε

}

= 0.

Proof of Lemma 12: For i = 1, . . . , k0, by stationarity we have

var

(

1√
n

n
∑

t=1

Zt,m,i

)

=
1

n

n
∑

t,s=1

Cov(Zt,m,i, Zs,m,i)

=
1

n

∑

|h|<n

(n − |h|)Cov(Zt,m,i, Zt−h,m,i)

≤
∞
∑

h=−∞

|Cov(Zt,m,i, Zt−h,m,i)| .

2Davydov, Y. A. (1968) Convergence of Distributions Generated by Stationary
Stochastic Processes. Theory of Probability and Applications 13, 691–696.
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Because ‖dℓ‖ ≤ Kρℓ, we have

|Zt,m,i| ≤ K

∞
∑

ℓ=m+1

ρℓ‖et‖‖et−ℓ‖.

Using also E‖et‖4 < ∞, it follows from the Hölder inequality that

sup
h

|Cov(Zt,m,i, Zt−h,m,i)| = sup
h

|EZt,m,iZt−h,m,i| ≤ Kρm. (38)

Let h > 0 such that [h/2] > m. Write

Zt,m,i = Zh−

t,m,i + Zh+

t,m,i,

where

Zh−

t,m,i = 2

[h/2]
∑

ℓ=m+1

e′t−ℓd
′
ℓΣ

−1
e0 et, Zh+

t,m,i = 2
∞
∑

ℓ=[h/2]+1

e′t−ℓd
′
ℓΣ

−1
e0 et.

Note that Zh−

t,m,i belongs to the σ-field generated by {et, et−1, . . . , et−[h/2]} and
that Zt−h,m,i belongs to the σ-field generated by {et−h, et−h−1, . . .}. Note also
that αe(·) = αǫ(·) and that, by A7, E|Zh−

t,m,i|2+ν < ∞ and E|Zt−h,m,i|2+ν <
∞. Lemma 11 then entails that

∣

∣

∣
Cov(Zh−

t,m,i, Zt−h,m,i)
∣

∣

∣
≤ Kαν/(2+ν)

ǫ ([h/2]). (39)

By the argument used to show (38), we also have

∣

∣

∣
Cov(Zh+

t,m,i, Zt−h,m,i)
∣

∣

∣
≤ Kρhρm. (40)

In view of (38), (39) and (40),

∞
∑

h=0

|Cov(Zt,m,i, Zt−h,m,i)| ≤ Kρm + K
∞
∑

h=m

αν/(2+ν)
ǫ (h) → 0

as m → ∞ by A7. We have the same bound for h < 0. The conclusion
follows from the Markov inequality. ✷
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