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Christian Francq∗, Lajos Horvath†and Jean-Michel Zakoïan‡
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Variance targeting estimation is a technique used to alleviate the numerical difficulties en-

countered in the quasi-maximum likelihood (QML) estimation of GARCH models. It relies on

a reparameterization of the model and a first-step estimation of the unconditional variance.

The remaining parameters are estimated by QML in a second step. This paper establishes the

asymptotic distribution of the estimators obtained by this method in univariate GARCH mod-

els. Comparisons with the standard QML are provided and the merits of the variance targeting

method are discussed. In particular, it is shown that when the model is misspecified, the VTE

can be superior to the QMLE for long-term prediction or Value-at-Risk calculation. An empir-

ical application based on stock market indices is proposed.

Keywords. Consistency and Asymptotic Normality, GARCH, Heteroskedastic Time Series, Quasi
Maximum Likelihood Estimation, Value-at-Risk, Variance Targeting Estimator.

1 Introduction

More than two decades after the introduction of ARCH models and their generalization (Engle (1982),
Bollerslev (1986)), the properties of GARCH type sequences are well understood and general statistical
methods have been established to work with this type of sequences. In recent years, special attention has
been given to the asymptotic properties of the Gaussian quasi-maximum likelihood estimation (QMLE) (see
Berkes, Horváth, and Kokoszka (2003), Francq and Zakoïan (2004), and the recent monograph by Straumann
(2005), among others). While many other estimation methods have been proposed for GARCH-type models
(for instance the Lp-estimators of Horváth and Liese (2004), the self-weighted QMLE of Ling (2007)), QMLE
can be recommended for at least two reasons: i) it is consistent under very mild conditions, in particular it
is robust to the distribution of the underlying iid process, and ii) no moment condition has to be imposed
on the observations to obtain consistency and asymptotic normality.

However, practitioners are often reluctant to directly apply the QMLE to their data. They generally
make use of closed-form estimators to reduce the dimensionality of the parameter space, or to speed-up the
convergence of the optimization routines. Such estimators are particularly attractive for the estimation of
multivariate GARCH models, or when a large number of univariate GARCH models have to be estimated
(see Bauwens and Rombouts (2007)). In the framework of a scalar BEKK (Engle and Kroner (1995)), Engle
and Mezrich (1996) proposed a two-step estimation method, the so-called variance targeting estimation
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(VTE) method. The method is based on a reparamerization of the volatility equation, in which the intercept
is replaced by the returns unconditional variance (the long-run variance). A first-step estimator of the
unconditional variance is computed while, conditioning on this estimate, the remaining parameters are
estimated by QML in a second step.

To our knowledge, the asymptotic properties of the VTE have not been established, and they are the main
aim of this paper. While the VTE method facilitates the estimation of parameters in GARCH models, even
in the simple univariate GARCH(1,1), it is not clear if this advantage is not paid for in terms of asymptotic
accuracy loss, when the VTE is compared to the QMLE. Intuitively, even if the sample variance converges
to the population variance, the use of a two-step procedure should deteriorate the asymptotic precision of
the GARCH QML estimates for Gaussian iid errors. The magnitude of the accuracy loss, however, cannot
be intuited. Moreover, for non Gaussian iid errors, the superiority of QMLE over the VTE cannot be taken
for granted.

On the other hand, the potential merits of the VTE may not be limited to numerical simplicity. This
procedure guarantees that the estimated unconditional variance of the GARCH model is equal to the sample
variance. It is therefore possible that, in case of misspecification, i.e. when the true underlying process is not
a GARCH, the GARCH approximation provided by the VTE is superior, in some sense, to that obtained by
QMLE. This issue will be examined through the problems of long-term prediction and Value-at-Risk (VaR)
calculation.

The VTE is a two-step estimator, the marginal variance being estimated in a first step and then plugged
in the quasi-likelihood in a second step. Two-step estimators are quite common in econometrics but, in
general, these estimators are given in closed form. From a technical point of view, the main difficulty here
is that the first step estimator is plugged in a criterion, not directly in a formula giving the second-step
estimator. This particularity makes the proof of the asymptotic properties of the VTE non standard.

The paper is organized as follows. Section 2 describes the reparameterization of the standard GARCH(1,1)
model and provides the asymptotic properties of the VTE. Section 3 proposes an extension to the GARCH(p, q)
model. Section 4 examines the performances of the VTE, by comparison to the QMLE, in the cases of well-
specified and misspecified models. An empirical comparison based on eleven stock indices is also proposed.
Section 5 concludes and outlines topics for future research. Proofs are relegated to an appendix.

2 Asymptotic distribution of the VTE in the GARCH(1,1) case

Consider the GARCH(1,1) model

{
ǫt =

√
htηt

ht = ω0 + α0ǫ
2
t−1 + β0ht−1, ∀t ∈ Z

(2.1)

where θ0 = (ω0, α0, β0)
′ is an unknown parameter,

(ηt) is a sequence of independent and identically distributed (i.i.d) random variables (2.2)

such that
Eη2

t = 1, (2.3)

and
ω0 > 0, α0 ≥ 0, β0 ≥ 0. (2.4)

Under the condition
α0 + β0 < 1 (2.5)

this model admits a second-order stationary solution (ǫt), whose unconditional variance is given by

γ0 := σ2(ω0, α0, β0) =
ω0

1 − α0 − β0
:=

ω0

κ0
.

A reparametrization of the model with ϑ0 = (γ0, α0, κ0)
′ yields

ǫt =
√

htηt, ht = ht−1 + κ0(γ0 − ht−1) + α0(ǫ
2
t−1 − ht−1), (2.6)
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which allows us to interpret κ0 as the speed of mean reversion in variance (see Christoffersen (2008)). Writing

ht = κ0γ0 + α0ǫ
2
t−1 + β0ht−1, κ0 + α0 + β0 = 1,

one can also interpret the volatility at time t, ht, as a weighted average of the long-run variance γ0, of the
square of the last return ǫ2t−1 and of the previous volatility ht−1. In this average, κ0 is the weight of the
long-run variance. Note that in this reparametrization, constraints (2.4) and (2.5) become

κ0, γ0 > 0, α0 ≥ 0, κ0 + α0 ≤ 1. (2.7)

Let (ǫ1, . . . , ǫn) be a realization of length n of the unique nonanticipative second-order stationary solution
(ǫt) to model (2.1) which satisfies (2.3) and (2.7). In this framework, VTE involves (i) reparametrizing the
model as in (2.6), (ii) estimating γ0 by the sample variance and then λ0 := (α0, κ0)

′ by the QML estimator.

The QMLE of θ0 is denoted by θ̂
∗

n := (ω̂∗
n, α̂∗

n, β̂∗
n)′. Two consistent estimators of γ0 are the sample

variance and the QML-based estimator, given by

σ̂2
n =

1

n

n∑

t=1

ǫ2t , and σ2(θ̂
∗

n) =
ω̂∗

n

1 − α̂∗
n − β̂∗

n

.

Horváth, Kokoszka and Zitikis (2006) showed that the difference σ̂2
n −γ0 and σ̂2

n −σ2(θ̂
∗

n) are asymptotically
normal, with different asymptotic variances. They also use the latter difference as a statistic for testing that
the model is correctly specified.

Consider a parameter space Λ ⊂ {(α, κ) | α ≥ 0, κ > 0, α + κ ≤ 1}. Set λ0 = (α0, κ0)
′ and write

λ = (α, κ)′ and β = 1 − α − κ. At this stage, we use the convention that all the vectors considered in the
sequel are column vectors even when, for simplicity, they are written as row vectors. In particular we write
ϑ0 = (γ0, λ0) instead of ϑ0 = (γ0, λ

′
0)

′. At the point ϑ = (γ, λ) ∈ (0,∞)× Λ, the Gaussian quasi-likelihood
of the sample is given by

L̃n(ϑ) = L̃n(γ, λ) =

n∏

t=1

1√
2πσ̃2

t (ϑ)
exp

{
− ǫ2t

2σ̃2
t (ϑ)

}
,

where the σ̃2
t (ϑ)’s are defined recursively, for t ≥ 1, by

σ̃2
t (ϑ) = κγ + αǫ2t−1 + (1 − κ − α)σ̃2

t−1(ϑ) (2.8)

with the initial values ǫ0 and σ̃2
0(ϑ) := σ2

0 . Since the parameter γ0 is estimated by the sample variance σ̂2
n,

the variance targeting version of the Gaussian quasi-likelihood function is

Ln(λ) = L̃n(σ̂2
n, λ) =

n∏

t=1

1√
2πσ2

t,n

exp

(
− ǫ2t

2σ2
t,n

)
,

where
σ2

t,n := σ2
t,n(λ) = κσ̂2

n + αǫ2t−1 + (1 − κ − α)σ2
t−1,n

with σ2
0,n = σ2

0 . A variance targeting estimator (VTE) of λ0 is defined as any measurable solution λ̂n of

λ̂n = arg max
λ∈Λ

Ln(λ) = arg min
λ∈Λ

l̃n(λ). (2.9)

where

l̃n(λ) = n−1
n∑

t=1

ℓt,n, and ℓt,n := ℓt,n(λ) =
ǫ2t

σ2
t,n

+ log σ2
t,n. (2.10)

Note that σ2
t,n = σ̃2

t (σ̂2
n, λ). For any ϑ = (γ, λ) ∈ (0,∞) × Λ we have 0 ≤ 1 − κ− α < 1, and one can define

the strictly stationary and ergodic process

σ2
t (ϑ) = κγ + αǫ2t−1 + (1 − κ − α)σ2

t−1(ϑ) =
∞∑

i=0

(1 − κ − α)i(κγ + αǫ2t−i−1). (2.11)
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Note that ht = σ2
t (γ0, λ0). We denote by ϑ̂n = (σ̂2

n, λ̂n) the VTE of ϑ0.
To show the strong consistency and the asymptotic normality of the VTE, the following assumptions

will be made.

A1: λ0 belongs to Λ and Λ is compact.

A2: η2
t has a non-degenerate distribution.

A3: α2
0

(
Eη4

t − 1
)

+ (1 − κ0)
2 < 1.

A4: λ0 belongs to the interior of Λ.

Note that A3 is the necessary and sufficient condition for Eǫ4t < ∞.

Theorem 2.1 Under assumptions A1-A2, α0 6= 0, and (2.2)–(2.5), the VTE satisfies

ϑ̂n → ϑ0,

almost surely as n → ∞ and, under the additional assumptions A3-A4, we have

√
n
(
ϑ̂n − ϑ0

)
d→ N (0, (Eη4

0 − 1)Σ),

where the matrix

Σ =

(
b −bK′J−1

−bJ−1K J−1 + bJ−1KK ′J−1

)

is non-singular with

b =
(α0 + κ0)

2

κ2
0

E(h2
t ) =

(α0 + κ0)
2γ2(2 − κ0)

κ0 {1 − α2
0 (Eη4

t − 1) − (1 − κ0)2}
and

J = E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂λ′

)

2×2

, K = E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂γ

)

2×1

. (2.12)

This result complements the paper of Horváth, Kokoszka and Zitikis (2006), where the asymptotic distribu-

tion of
√

n(σ̂2
n−γ0) was derived. Letting λ̂n = (λ̂1n, λ̂2n), the VTE of the original parameter θ0 = (ω0, α0, β0)

is defined by θ̂n = (ω̂n, α̂n, β̂n) where ω̂n = λ̂2nσ̂2
n, α̂n = λ̂1n, β̂n = 1 − λ̂1n − λ̂2n. Theorem 2.1 yields

the following result.

Corollary 2.1 Under the assumptions of Theorem 2.1, the VTE of θ0 satisfies

√
n
(
θ̂n − θ0

)
d→ N (0, (Eη4

0 − 1)L′
ΣL), L =




1 − α0 − β0 0 0
0 1 −1

ω0(1 − α0 − β0)
−1 0 −1


 .

It is important to note that the asymptotic normality of the VTE requires the existence of E(ǫ4t ), whereas the
strict stationarity is sufficient for the asymptotic normality of the QMLE (see Berkes, Horváth and Kokoszka

(2003) and Francq and Zakoïan (2004)). The QMLE of ϑ0 is denoted by ϑ̂
∗

n = (γ̂∗
n, α̂∗

n, κ̂∗
n). The asymptotic

variance matrix of ϑ̂
∗

n is (Eη4
0 − 1)Σ∗ where

(Σ∗)−1 = E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ′

)
=

(
κ2

0

(α0+κ0)2
E(1/h2

t ) K ′

K J

)
.

The following corollary allows us to compare the asymptotic variances of the QMLE and VTE.
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Corollary 2.2 Under the assumptions of Theorem 2.1, the asymptotic variance (Eη4
0 − 1)Σ of the VTE

and the asymptotic variance (Eη4
0 − 1)Σ∗ of the QMLE of ϑ0 satisfy

Σ− Σ
∗ = (b − a)CC ′,

where

C =

(
1

−J−1K

)
, a =

{
κ2

0

(α0 + κ0)2
E(1/h2

t ) − K′J−1K

}−1

.

Note that a > 0 because detΣ∗ = a detJ−1. It will be shown that b − a ≥ 0 (in a more general setting,
see Proposition 3.1 below), which implies that the VTE cannot be asymptotically more accurate than the
QMLE. Corollary 2.2 shows that, as expected, the VTE becomes much less accurate than the QMLE when
α2

0

(
Eη4

t − 1
)

+ (1 − κ0)
2 approaches 1. More interestingly, the relative loss of efficiency of the VTE is the

same for all 3 parameters γ0, α0 and κ0. In general the asymptotic variances of the GARCH coefficients
which are estimated by the two methods do not coincide. This point will be illustrated in Section 4.

3 Extension to the general GARCH(p, q) case

In this section we consider the general GARCH(p, q) model

{
ǫt =

√
htηt

ht = ω0 +
∑q

i=1 α0iǫ
2
t−i +

∑p
j=1 β0jht−j , ∀t ∈ Z

(3.1)

where (ηt) satisfies (2.2)-(2.3) and where the coefficients satisfy:

ω0 > 0, α0i ≥ 0 ∀i ∈ {1, . . . , q}, β0j ≥ 0 ∀j ∈ {1, . . . , p}. (3.2)

Under the condition
q∑

i=1

α0i +

p∑

j=1

β0j < 1. (3.3)

the observations have finite variance γ0 = ω0

{
1 −∑q

i=1 α0i −
∑p

j=1 β0j

}−1

. In this section we parameterize

the model with
ϑ0 = (γ0, α01, . . . , α0q, β01, . . . , β0p) = (γ0, λ0) ∈ (0,∞) × Λ,

where Λ is included in the simplex
{
λ = (λ1, . . . , λp+q) : λi ≥ 0 ∀i ∈ {1, . . . , p + q}, ∑p+q

i=1 λi < 1
}

.

The VTE of ϑ0 is ϑ̂n = (σ̂2
n, λ̂n), where σ̂2

n = n−1
∑n

t=1 ǫ2t ,

λ̂n = arg min
λ∈Λ

l̃n(λ), l̃n(λ) = n−1
n∑

t=1

ℓ̃t(σ̂
2
n, λ), ℓ̃t(ϑ) =

ǫ2t
σ̃2

t (ϑ)
+ log σ̃2

t (ϑ),

and the σ̃2
t (ϑ)’s are defined recursively, for t ≥ 1, by

σ̃2
t (ϑ) = σ̃2

t (γ, λ) = γ

(
1 −

p+q∑

i=1

λi

)
+

q∑

i=1

λiǫ
2
t−i +

p∑

j=1

λq+j σ̃
2
t−j(ϑ)

with fixed initial values for ǫ0, . . . , ǫ1−q and σ̃2
0(ϑ), . . . , σ̃2

1−p(ϑ). Define Aϑ(z) =
∑q

i=1 λiz
i and Bϑ(z) =

1 −∑p
j=1 λq+jz

j, with the convention Aϑ(z) = 0 if q = 0 and Bϑ(z) = 1 if p = 0. We need the following
additional identifiability assumption:

A5: if p > 0, Aϑ0
(z) and Bϑ0

(z) have no common root, Aϑ0
(1) 6= 0, and α0q + β0p 6= 0.

We can now state the following extension of Theorem 2.1 and Corollary 2.2.

5



Theorem 3.1 Under assumptions A1 with (3.2) and (3.3), A2 with (2.2) and (2.3), and A5, the VTE of
the GARCH(p, q) model (3.1) is strongly consistent. Under the additional assumptions Eǫ4t < ∞ and A4,
we have √

n
(
ϑ̂n − ϑ0

)
d→ N

{
0, (Eη4

0 − 1)Σ
}

, (3.4)

where the matrix

Σ =

(
c −cK′J−1

−cJ−1K J−1 + cJ−1KK ′J−1

)

is non-singular with

c =

(
1 −∑q

i=1 β0i

1 −∑q
i=1 α0i −

∑p
j=1 β0j

)2

E(h2
t )

and

J = E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂λ′

)

(p+q)×(p+q)

, K = E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂γ

)

(p+q)×1

.

Under these assumptions, the QMLE ϑ̂
∗

n satisfies

√
n
(
ϑ̂
∗

n − ϑ0

)
d→ N

{
0, (Eη4

0 − 1)Σ∗
}

, (3.5)

where
Σ

∗ = Σ− (c − d)CC ′, (3.6)

with

C =

(
1

−J−1K

)
, d =





(
1 −∑q

i=1 α0i −
∑p

j=1 β0j

1 −∑q
i=1 β0i

)2

E

(
1

h2
t

)
− K ′J−1K





−1

.

The following result shows that the VTE can never be asymptotically more efficient than the QMLE, re-
gardless of the values of the GARCH parameters and the distribution of ηt.

Proposition 3.1 Under the assumptions of Theorem 3.1, the asymptotic variance (Eη4
0 − 1)Σ of the VTE

and the asymptotic variance (Eη4
0 − 1)Σ∗ of the QMLE satisfy

Σ− Σ
∗ is positive semidefinite, but not positive definite.

The following result characterizes the parameters that are estimated with the same asymptotic accuracy by
the VTE and by the QMLE.

Corollary 3.1 Let the assumptions of Theorem 3.1 be satisfied, and let φ be a mapping from R
p+q+1 to R,

which is continuously differentiable in a neighborhood of ϑ0. If

∂φ

∂ϑ′ (ϑ0)

(
1

−K′J−1

)
= 0,

then the asymptotic distribution of the VTE of the parameter φ(ϑ0) is the same as that of the QMLE, in
the sense that

√
n
{
φ(ϑ̂n) − φ(ϑ0)

}
d→ N

(
0, s2

)
,

√
n
{
φ(ϑ̂

∗

n) − φ(ϑ0)
}

d→ N
(
0, s2

)
,

where

s2 = (Eη4
0 − 1)

∂φ

∂ϑ′Σ
∂φ

∂ϑ
(ϑ0).
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4 Comparisons with the QMLE

In this section we compare the effective performance of the QMLE and VTE. In the first subsection, we
numerically evaluate and compare the asymptotic variances of the two estimators. For simplicity, this
comparison is made in ARCH(1) models. The second subsection presents simulation results with the aim to
determine whether the ratio of the asymptotic variances gives a good idea of the ratio of accuracies of the
two estimators in finite samples. Subsection 4.3 studies the estimation of the parameters of a set of typical
financial time series using both methods. Subsection 4.4 considers the situation where the GARCH model is
misspecified. It will be shown that the fact that the VTE guarantees a consistent estimation of the long-run
variance may be a crucial advantage of the VTE over the QMLE.

4.1 Asymptotic variances of the QMLE and VTE for ARCH(1) models

For an ARCH(1) model, the asymptotic variances Σ and Σ
∗ of the VTE and QMLE are given by Theorem

3.1 with

c =
1

(1 − α0)2
Eh2

t , J = E

{
(ǫ2t−1 − γ0)

2

h2
t

}
, K = (1 − α0)E

{
ǫ2t−1 − γ0

h2
t

}
.

In particular, the asymptotic variance of the VTE α̂n of α0 is given by

lim
n→∞

Var{√n(α̂n − α0)} =
Eη4

0 − 1

E
{
(ǫ2t−1 − γ0)2/σ4

t

}
[
1 +

Eσ4
t

(
E
{
(ǫ2t−1 − γ0)/σ4

t

})2

E
{
(ǫ2t−1 − γ0)2/σ4

t

}
]

.

For the QMLE α̂∗
n of α0 the asymptotic variance is

lim
n→∞

Var{√n(α̂∗
n − α0)} =

Eη4
0 − 1

E
{
(ǫ2t−1 − γ0)2/σ4

t

}
[
1 +

(
E
{
(ǫ2t−1 − γ0)/σ4

t

})2

E(1/σ4
t )E

{
(ǫ2t−1 − γ0)2/σ4

t

}
−
(
E
{
(ǫ2t−1 − γ0)/σ4

t

})2

]

=
(Eη4

0 − 1)E
(
1/σ4

t

)

E (1/σ4
t )E

(
ǫ4t−1/σ4

t

)
−
{
E
(
ǫ2t−1/σ4

t

)}2 ,

where the first equality is obtained with the parametrization ϑ0 = (γ0, α0), and the second equality with
the parametrization θ0 = (ω0, α0).

The results presented in Table 1 are obtained from simulations of the matrices Σ and Σ
∗ above, with

expectations replaced by empirical means. More precisely, the table displays the mean of 1,000 independent
estimates of the matrices

2Σ = lim
n→∞

Var{√n(ϑ̂n − ϑ0)} and 2Σ∗ = lim
n→∞

Var{√n(ϑ̂
∗

n − ϑ
∗
0)},

where each estimation is obtained from empirical means based on a simulation of size n = 10, 000 of the
ARCH(1) model. It is seen that the variance targeting does not affect the asymptotic distribution of the
estimator of ϑ0 when α0 is small, but entails a dramatic loss of efficiency when α0 approaches the limit
implied by the existence of a fourth moment (α0 < 0.57 when ηt has a standard normal distribution).

Table 2 is the analog of Table 1, but gives the asymptotic variances of the QMLE and VTE for the
standard ARCH parameter θ0 = (ω0, α0). From this table, it is seen that the asymptotic distribution of the
VTE of the parameter ω0 should be close to that of the QMLE. This is not surprising because we know from
Corollary 3.1 that there exist transformations of ϑ0 which are estimated by VTE and QMLE with the same
asymptotic accuracy.

4.2 Sampling distribution of the QMLE and VTE

To compare the performance of the QMLE and VTE in finite samples, we computed the two estimators on
1,000 independent simulated trajectories of length n = 500, n = 5, 000 and n = 10, 000 of three ARCH(1)
models. The three ARCH(1) models have already been considered in Table 2. From this table we know the
asymptotic variances of the QMLE and VTE. For the three models, the first parameter is fixed to ω = 1
and the second varies from α = 0.3, α = 0.55 to α = 0.9. Note that for the last value of α, Assumption A3
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is not satisfied, so the asymptotic normality of the VTE is not guaranteed. Table 3 provides an overview of
these simulations experiments.

The most noticeable output is that the VTE performs remarkably well, and even outperforms the
(Q)MLE when n = 500. This finite-sample result counterbalances the result of Proposition 3.1 showing
that the VTE can not be asymptotically more efficient than the QMLE. As expected from Table 2, the
QMLE and VTE of ω have very similar accuracy, and the QMLE of α is slightly more accurate than the
VTE when n is large (i.e. n = 5, 000 and n = 10, 000) and α = 0.55 or α = 0.9.

Table 1: Asymptotic variances of the QMLE and VTE of ϑ0 for an ARCH(1) with γ0 = 1 and
ηt ∼ N (0, 1).

α0 = 0.1 α0 = 0.3 α0 = 0.5 α0 = 0.55 α0 = 0.7

QMLE

(
2.52 0.51
0.51 1.69

) (
4.80 2.24
2.24 2.84

) (
12.01 5.71
5.71 3.93

) (
15.94 7.11
7.11 4.20

) (
45.27 14.32
14.32 5.02

)

VTE

(
2.52 0.51
0.51 1.69

) (
5.06 2.36
2.36 2.90

) (
18.13 8.61
8.61 5.30

) (
28.78 12.82
12.82 6.74

)
∞

∞ means that the asymptotic variance does not exist

Table 2: Asymptotic variances of the QMLE and VTE of θ0 for an ARCH(1) with ω0 = 1 and
ηt ∼ N (0, 1).

α0 = 0.1 α0 = 0.3 α0 = 0.5 α0 = 0.55 α0 = 0.7

QMLE

(
3.5 −1.4
−1.4 1.7

) (
4.2 −1.8
−1.8 2.8

) (
4.9 −2.2
−2.2 3.9

) (
5.1 −2.2
−2.2 4.2

) (
5.6 −2.4
−2.4 5.1

)

VTE

(
3.5 −1.4
−1.4 1.7

) (
4.2 −1.8
−1.8 2.9

) (
4.9 −1.9
−1.9 6.1

) (
5.1 −2.1
−2.1 9.3

)
∞

4.3 Comparison of the QMLE and VTE on daily stock market returns

In this section, we consider daily returns of 11 indices, namely the CAC, DAX, DJA, DJI, DJT, DJU,
FTSE, Nasdaq,1 Nikkei, SMI and SP500. The samples extend from January 2, 1990, to January 22, 2009,
except for the indices for which such historical data do not exist. For each series, a GARCH(1,1) model
was estimated, by QMLE and by VTE. Table 4 displays the models estimated by the two procedures.
For these series of daily returns, it seems that the moment assumption Eǫ4t < ∞ is questionable, because

(α̂ + β̂)2 + (Êη4
0 − 1)α̂2 is often close to or larger than 1, and it is known that Eǫ4t < ∞ if and only if

(α0 + β0)
2 + (Eη4

0 − 1)α2
0 < 1. Therefore, the assumptions given in Theorem 3.1 to obtain the asymptotic

normality are likely to be unsatisfied. Nevertheless, it is seen from Table 4 that the parameters estimated
by VTE are always very close to those estimated by QMLE.

As expected, the VTE is more successful than the QMLE in terms of amount of computation time.
Table 5 compares the computation time of the QMLE and VTE for estimating the models of the 11 indices.
Two designs, corresponding to two different initial values, are considered. Design 1 corresponds to the initial
values α = 0.05, β = 0.85 and ω equal to (1 − α − β) times the empirical variance of the series. Design 2
corresponds to the initial values α = 0, β = 0 and ω = 1. The initial values of Design 1 are much closer to

1One outlier has been eliminated, since the Nasdaq index level was halved on January 3, 1994

8



Table 3: Sampling distribution of the QMLE and VTE of θ0 for ARCH(1) models with ηt ∼ N (0, 1).

parameter true value estimator bias RMSE min Q1 Q2 Q3 max
n = 500

ω 1.0 QMLE 0.000 0.092 0.755 0.934 0.997 1.059 1.343
VTE -0.001 0.092 0.759 0.932 0.995 1.062 1.335

α 0.3 QMLE -0.004 0.076 0.085 0.242 0.299 0.348 0.582
VTE -0.006 0.075 0.084 0.243 0.295 0.346 0.552

ω 1.0 QMLE 0.013 0.102 0.712 0.944 1.011 1.079 1.332
VTE 0.012 0.102 0.719 0.943 1.010 1.078 1.327

α 0.55 QMLE -0.012 0.092 0.233 0.474 0.536 0.601 0.789
VTE -0.026 0.088 0.236 0.463 0.524 0.579 0.895

ω 1.0 QMLE 0.012 0.114 0.623 0.928 1.010 1.087 1.435
VTE 0.036 0.111 0.637 0.955 1.032 1.108 1.428

α 0.9 QMLE -0.012 0.110 0.491 0.814 0.884 0.961 1.283
VTE -0.103 0.089 0.505 0.740 0.800 0.860 0.998

n = 5000
ω 1.0 QMLE 0.002 0.029 0.891 0.983 1.001 1.021 1.089

VTE 0.002 0.029 0.892 0.983 1.001 1.022 1.089
α 0.3 QMLE 0.000 0.024 0.219 0.284 0.301 0.316 0.389

VTE 0.000 0.024 0.218 0.285 0.301 0.317 0.413

ω 1.0 QMLE 0.002 0.032 0.910 0.981 1.003 1.022 1.104
VTE 0.002 0.032 0.880 0.980 1.002 1.021 1.102

α 0.55 QMLE -0.002 0.028 0.455 0.529 0.548 0.567 0.631
VTE -0.003 0.036 0.451 0.524 0.544 0.567 0.896

ω 1.0 QMLE 0.000 0.035 0.892 0.976 1.000 1.023 1.126
VTE 0.015 0.036 0.904 0.991 1.014 1.040 1.134

α 0.9 QMLE 0.001 0.035 0.797 0.877 0.902 0.924 1.027
VTE -0.053 0.047 0.713 0.814 0.843 0.875 0.999

n = 10000
ω 1.0 QMLE 0.001 0.009 0.972 0.994 1.000 1.007 1.032

VTE 0.001 0.009 0.972 0.994 1.000 1.007 1.031
α 0.3 QMLE -0.001 0.008 0.272 0.294 0.299 0.304 0.324

VTE -0.001 0.008 0.272 0.294 0.299 0.304 0.326

ω 1.0 QMLE 0.000 0.010 0.965 0.993 1.000 1.007 1.041
VTE 0.000 0.010 0.966 0.993 1.000 1.007 1.040

α 0.55 QMLE 0.000 0.009 0.525 0.544 0.550 0.556 0.578
VTE 0.000 0.013 0.521 0.542 0.549 0.557 0.695

ω 1.0 QMLE 0.000 0.012 0.966 0.992 1.000 1.008 1.043
VTE 0.010 0.015 0.955 1.001 1.010 1.020 1.051

α 0.9 QMLE 0.000 0.011 0.863 0.892 0.900 0.907 0.943
VTE -0.032 0.032 0.815 0.847 0.863 0.883 0.998

RMSE is the Root Mean Square Error, Qi, i = 1, 3, denote the quartiles.
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Table 4: Comparison of the QMLE and VTE of GARCH(1,1) models for 11 daily stock market
returns. The estimated standard deviation are displayed into brackets. The last column corresponds
to plug-in estimates of ρ4 = (α + β)2 + (Eη4

0
− 1)α2. We have Eǫ4

0
< ∞ if and only if ρ4 < 1.

Index estimator ω α β ρ4

CAC QMLE 0.033 (0.009) 0.090 (0.014) 0.893 (0.015) 1.0067
VTE 0.033 (0.009) 0.090 (0.014) 0.893 (0.015)

DAX QMLE 0.037 (0.014) 0.093 (0.023) 0.888 (0.024) 1.0622
VTE 0.036 (0.013) 0.095 (0.022) 0.888 (0.024)

DJA QMLE 0.019 (0.005) 0.088 (0.014) 0.894 (0.014) 0.9981
VTE 0.019 (0.005) 0.089 (0.012) 0.894 (0.007)

DJI QMLE 0.017 (0.004) 0.085 (0.013) 0.901 (0.013) 1.002
VTE 0.016 (0.004) 0.085 (0.012) 0.901 (0.013)

DJT QMLE 0.040 (0.013) 0.089 (0.016) 0.894 (0.018) 1.0183
VTE 0.042 (0.013) 0.086 (0.016) 0.894 (0.018)

DJU QMLE 0.021 (0.005) 0.118 (0.016) 0.865 (0.014) 1.0152
VTE 0.021 (0.004) 0.119 (0.013) 0.865 (0.013)

FTSE QMLE 0.013 (0.004) 0.091 (0.014) 0.899 (0.014) 1.0228
VTE 0.013 (0.004) 0.090 (0.013) 0.899 (0.014)

Nasdaq QMLE 0.025 (0.006) 0.072 (0.009) 0.922 (0.009) 1.0021
VTE 0.025 (0.006) 0.072 (0.009) 0.922 (0.009)

Nikkei QMLE 0.053 (0.012) 0.100 (0.013) 0.880 (0.014) 0.9985
VTE 0.054 (0.012) 0.098 (0.013) 0.880 (0.015)

SMI QMLE 0.049 (0.014) 0.127 (0.028) 0.835 (0.029) 1.0672
VTE 0.048 (0.014) 0.133 (0.025) 0.834 (0.029)

SP500 QMLE 0.014 (0.004) 0.084 (0.012) 0.905 (0.012) 1.0072
VTE 0.014 (0.003) 0.084 (0.011) 0.905 (0.012)

the final estimates than those of Design 2. Thus, it is not surprising to observe longer computation times in
Design 2 than in Design 1. In both designs, the QMLE is around 1.6 times slower than the VTE, and the
time required for the 2 estimates (QMLE+VTE) is not much bigger than that taken by the QMLE. More
interestingly, an examination of the estimated models shows that, in Design 2 (i.e. when the initial values
are far from the final estimates) and for two indices (namely the DJI and SP500) the QMLE is trapped in
a local estimate for which the likelihood is less than for the solution obtained in Design 1. For the VTE,
and also for VTE+QMLE method, the solutions obtained in the two designs are the same. From these
experiments, one can conclude that i) when the initial values are reasonably well chosen (in Design 1), there
is no sensible differences between the estimated parameters of the two methods; ii) the VTE is a little bit
faster and seems more robust relatively to the choice of the initial values; iii) the VTE provides good initial
values for the QMLE and may avoid that this estimator be trapped in local optima.

4.4 Variance targeting estimator in misspecified models

The variance targeting technique ensures robust estimation of the marginal variance, provided that it exists.
Indeed the variance of a model estimated by VTE converges to the theoretical variance, even if the model
is misspecified. For the convergence to hold true, it suffices that the observed process be stationary and
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Table 5: Comparison of the computation time of the QMLE and VTE (in seconds of CPU time), for

estimating the models of the 11 indices of Table 4. The method VTE+QMLE consists in using the VTE as

initial values for the QMLE. Design 1 and 2 correspond to different initial values (see the text).

Design 1 Design 2
VTE 39.0 55.5
QMLE 61.6 88.1
VTE+QMLE 85.1 98.9

ergodic with a finite second order moment. This is generally not the case when the misspecified model is
estimated by QMLE.

In the next sections, we consider two applications where this robustness feature of the VTE is particularly
attractive.

4.4.1 Prediction over long horizons with models estimated by VTE

We will study the asymptotic behavior of the GARCH(1,1) predictions when the forecast horizon is large,
and when the data generating process (DGP) may be different from the GARCH(1,1) model in (2.1). The
results of this section can be extended to general GARCH(p, q) models, but the presentation will be simpler
with GARCH(1,1) models. With the (possibly misspecified) GARCH(1,1) model, h-step ahead prediction
intervals for ǫn+h are given by

[√
σ̂2

n+h|nF̂−1
η (α/2),

√
σ̂2

n+h|nF̂−1
η (1 − α/2)

]
,

where 1−α is the nominal asymptotic probability of the interval, F̂η(α) denotes an estimate of the α-quantile
of the distribution Fη of η1, and σ̂2

n+h|n is the estimate of the h-step ahead forecast error variance, given by

σ̂2
n+h|n = γ̂∗

n +
{
σ2

n(ϑ̂
∗

n) − γ̂∗
n

} (1 − κ̂∗
n)h+1

1 − κ̂∗
n

when the GARCH model is estimated by QMLE, and by

σ̂2
n+h|n = σ̂2

n +
{

σ2
t (ϑ̂n) − σ̂2

n

} (1 − κ̂n)h+1

1 − κ̂n

when the GARCH model is estimated by VTE. When the GARCH(1,1) model is misspecified, the true
parameter value ϑ0 does not exist, but one can expect that the QMLE and VTE converge to some so-called
"pseudo" true values. More precisely, under stationarity, ergodicity and other general conditions, see White

(1982), ϑ̂
∗

n → ϑ̃
∗

= (γ̃∗, λ̃
∗
) almost surely as n → ∞, where the pseudo true value ϑ̃

∗
is defined by

ϑ̃
∗

= arg min
ϑ

Eℓ1(ϑ), ℓt(ϑ) =
ǫ2t

σ2
t (ϑ)

+ log σ2
t (ϑ).

Similarly, one should generally have

ϑ̂n → ϑ̃ = (γ̃, λ̃) a.s. with γ̃ = Eǫ21 and λ̃ = arg min
λ

Eℓ1(γ̃, λ).

Assume that these pseudo-true values λ̃ = (α̃, κ̃) and λ̃
∗

= (α̃∗, κ̃∗) are such that κ̃ < 1 and κ̃∗ < 1. When
the horizon h is large, the asymptotic prediction interval is thus equivalent to

[√
γ̃∗F−1

η (α/2),
√

γ̃∗F−1
η (1 − α/2)

]
, (4.1)
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Figure 1: Asymptotic prediction intervals based on the true model (between the full lines), for a

GARCH(1,1) estimated by QMLE (dotted lines) and a GARCH(1,1) estimated by VTE (dashed lines).

The horizontal full lines are the bounds of the large-horizon prediction intervals (4.1). The DGP is the

Markov-switching model (4.3). The figure on the left corresponds to predictions when the present volatility

σn is low, and the figure on the right corresponds to predictions in the case when σn is large.

with the QMLE, and equivalent to
[√

Eǫ21F
−1
η (α/2),

√
Eǫ21F

−1
η (1 − α/2)

]
, (4.2)

with the VTE. Note that the long horizon prediction intervals (4.1) obtained with QMLE are not correct
when γ̃∗ 6= Eǫ21, which is generally the case for misspecified models. On the contrary, even when the model
is misspecified, the probability that ǫn+h belongs to the VTE asymptotic prediction interval (4.2) tends to
the nominal probability 1 − α as the horizon h increases.

Example 4.1 To give an elementary illustration, consider the Markov-switching model

ǫt = ω(∆t)ηt, (4.3)

where ηt is an iid noise, (∆t) is a stationary irreducible and aperiodic Markov chain, independent of (ηt),
with state-space {1, . . . , d}. For Figure 1, we took ηt ∼ N (0, 1), d = 2 regimes with ω(1) = 1 and ω(2) = 5,
and the transition probabilities P (∆t = 1|∆t−1 = 1) = P (∆t = 2|∆t−1 = 2) = 0.9. It can be noted that (ǫt)
is a white noise and that (ǫ2t ) is an autocorrelated process. Therefore, it is not unrealistic to assume that
an empirical researcher would fit a misspecified GARCH model to data generated by Model (4.3). In our
experiments, we fitted a GARCH(1,1) model by the two methods, on a simulation of size 1,000 of Model
(4.3). Figure 1 shows the h-step ahead prediction intervals obtained from the true model and from the
estimated GARCH models. It can be seen that, in particular when the prediction horizon h is large, the
prediction intervals based on the false GARCH(1,1) model estimated by VTE are close to those obtained
with the right model. When the GARCH parameters are estimated by QMLE, the prediction intervals are
clearly oversized when the horizon h is large (indicating a pseud-true value γ̃∗ larger than Eǫ21, for this
particular model).

4.4.2 Estimating long horizon Value-at-Risk

Value-at-Risk is one of the most important market-risk measurement tool (see e.g. the web site http:

//www.gloriamundi.org/ which is entirely devoted to VaR). For a portfolio whose value at time t is a
random variable Vt, the profits and losses function at the horizon h is Lt,t+h = −(Vt+h − Vt). At the
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confidence level α ∈ (0, 1), the horizon h and the date t, the (conditional) VaR is the (1−α)-quantile of the
conditional distribution of Lt,t+h given the information available at time t:

VaRt,h(α) = inf {x ∈ R | P (Lt,t+h ≤ x | Vu, u ≤ t) ≥ 1 − α} .

Introducing the log-returns ǫt = log(Vt/Vt−1), we have

VaRt,h(α) = [1 − exp {qt,h(α)}] Vt, (4.4)

where qt,h(α) is the α-quantile of the conditional distribution of the future returns ǫt+1 + · · · + ǫt+h. The
following lemma shows how to approximate VaRt,h(α) for large h, under some α-mixing condition on the
process (ǫt).

Lemma 4.1 Assume that (ǫt) is a strictly stationary process such that Eǫt = 0,
∑∞

h=1 {αǫ(h)}ν/(2+ν)
< ∞

and E|ǫt|2+ν < ∞ for some ν > 0. Let Var(ǫt) = ω2. We have

lim
h→∞

√
h ω Φ−1(α)/qt,h(α) = 1 a.s.

Remark 4.1 The mixing condition of the lemma is satisfied for a variety of processes, in particular GARCH-
type processes (see for instance Carrasco and Chen (2002) and Francq and Zakoïan (2006). This condition
is also satisfied for the Markov-switching process (4.3). Indeed, the Markov chain (∆t) enjoys a number of
mixing properties (see e.g. Theorem 3.1 in Bradley, 2005). In particular, there exist K > 0 and ρ ∈ (0, 1)
such that α∆(k) ≤ Kρk for all k ∈ N. Because (ηt) and (∆t) are independent, and ǫt is a measurable
function of ∆t and ηt, Theorem 5.2 in Bradley (2005) entails that αǫ(k) ≤ Kρk.

For any conditionally heteroscedatic process of the form ǫt = σt(θ0)ηt, where ηt ∼ Fη, the VaR at horizon 1
is given by

VaRt,1(α) =
[
1 − exp

{
σt(θ0)F

−1
η (1 − α)

}]
Vt,

in view of (4.4). Hence, if θ̂n is an estimator of θ0, an obvious estimator of VaRt,1(α) is obtained by plugging.
In general, exact VaR’s at horizon h > 1 cannot be computed explicitly. It is therefore of interest to use the
previous lemma to approximate the VaR at a long horizon h. Given an estimator ω̂ of ω, one can take

V̂aRt,h(α) =
[
1 − exp

{√
h Φ−1(α) ω̂

}]
Vt. (4.5)

When (ǫt) follows a GARCH model, both the VTE and the QMLE methods provide consistent estima-
tors of ω. When the GARCH model is misspecified, only the VTE guarantees consistency of ω̂, and thus
asymptotically valid estimates for long horizon VaR’s. This is illustrated in the next example.

Example 4.2 (Example 4.1 continued) We shall consider VaR at horizons h = 1 and h = 10 obtained
from estimated GARCH(1,1) models, when the observations are drawn from the Markov-switching process
(4.3). For the sake of comparison, we shall also consider the theoretical VaR’s of the true model, obtained
at horizon 1 as the solution of

1 − α =

d∑

j=1

Fη

{
VaRt,1(α)

σ(j)

}
P (∆t+1 = j | ǫu, u ≤ t)

and approximated for large h by

VaRt,h(α) =
[
1 − exp

{√
h Φ−1(α) ω

}]
Vt, ω =

d∑

j=1

ω(j)P (∆t = j).

Figure 2 shows samples paths of Lt,t+h, for h = 1 and h = 10, obtained with ηt ∼ N (0, 1), d = 2 regimes,
ω(1) = 1/200 and ω(2) = 5/200. The full line indicates the VaR at the 5% level, computed with the true
model, using the asymptotic approximation for h = 10. The VaR estimated by VTE from a misspecified
GARCH(1,1) model, displayed in dashed line, appears to be very close to the correct VaR, especially when
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h is large. This is not the case for the VaR estimated by QMLE (dotted lines), which strongly overestimates
for h = 10. Standard evaluation of the performance of VaR estimation methods relies on comparing the
percentages of exceptions (losses larger than the estimated VaR) with the nominal level α, on out-of-sample
observations. Such a procedure is often referred to as "backtesting". Table 6 displays the average VaR
(in percentages of the portfolio value Vt, that is 100/N

∑N
t=1 VaRt,h(α)/Vt) together with the number of

violations, over a very long period of time. This table confirms the conclusions drawn from Figure 2: the
VaR at the horizon h = 10 computed with the misspecified GARCH(1,1) is more satisfactory in terms of
backtesting when the model is estimated by VTE than by QMLE.

Table 6: Backtesting comparison of the VaR estimations given by the true HMM model (4.3), the

GARCH(1,1) model estimated by QMLE, and the GARCH(1,1) estimated by VTE on n = 1, 000 obser-

vations. The comparison is made out-of-sample, on a simulation of size N = 50, 000 of the profit and loss

(P&L) function, for the two horizons h = 1 and h = 10 and the three levels α = 1%, α = 5% and α = 10%.

α = 1%
h = 1 h = 10

HMM QMLE VTE HMM QMLE VTE
Relative VaR average (in %) 4.64 4.01 3.78 12.42 17.77 12.17

Exceptions (in %) 1.01 2.28 2.57 1.52 0.13 1.67

α = 5%
h = 1 h = 10

HMM QMLE VTE HMM QMLE VTE
Relative VaR average (in %) 2.65 2.86 2.69 8.95 12.92 8.77

Exceptions (in %) 4.82 4.84 5.49 5.17 1.25 5.47

α = 10%
h = 1 h = 10

HMM QMLE VTE HMM QMLE VTE
Relative VaR average (in %) 1.87 2.23 2.10 7.05 10.22 6.90

Exceptions (in %) 9.99 7.32 8.17 9.08 3.39 9.42

5 Conclusion

VTE is a two-step estimation method which reduces the computational complexity of the optimization
procedure and guarantees that the implied variance is equal to the sample variance. This paper provides
asymptotic results for the VTE, allowing for valid inference procedures, such as tests or the construction
of confidence intervals, based on this method. This paper also compares the asymptotic and empirical
performances of the VTE to the standard QMLE.

One evident drawback of the VTE is that the existence of E(ǫ4t ) is required for the asymptotic normality,
whereas the strict stationarity suffices for the asymptotic normality of the QMLE. It was not immediately
clear how the asymptotic distribution of the VTE would compare to the standard QMLE asymptotic dis-
tribution. In particular, one might have thought that: i) the VTE could asymptotically outperform the
QMLE for some error distributions, ii) the variance targeting procedure would not substantially affect the
asymptotic precision of the GARCH coefficients, since the sample variance converges to the population vari-
ance. Our results show that both claims are incorrect: i) the asymptotic variance of the VTE can never

14



VaR at horizon h=1

P
&

L
 a

n
d
 V

a
R

0 20 40 60 80 100

−
6
0

−
2
0

2
0

6
0

VaR at horizon h=10

P
&

L
 a

n
d
 V

a
R

0 20 40 60 80

−
1
0
0

0
1
0
0

2
0
0

Figure 2: Sample paths of the P&L process generated by the Markov-switching model (4.3) and VaR at

the confidence level 5%. The full line corresponds to the exact VaR, the doted (resp. dashed) line to the

asymptotic approximation obtained from Lemma 4.1 applied to a GARCH model estimated by QMLE (resp.

VTE).

be smaller than that of the QMLE; ii) the variance targeting may result in a serious deterioration of the
asymptotic precision when the moment condition is close to be violated. On the other hand, the finite sample
performance of the VTE seems quite satisfactory. Moreover, our experiments on daily stock returns do not
show sensible differences between the estimated parameters of the two methods. Finally, we have shown
that, for some specific purposes such as long-term prediction, the fact that the VTE guarantees a consistent
estimation of the long-run variance may be a crucial advantage of the VTE over the QMLE.

While this paper has provided evidence there is value in considering a VTE in GARCH models, there
remain interesting questions in this area. Other moments could be targeted, not only the long run variance,
and it would be interesting to examine the asymptotic properties of the resulting estimators. In particular, in
a multivariate framework, "correlation targeting" has been considered by Engle (2002) for the specification
of the dynamic conditional correlation model.

Appendix: proofs

Let

ln(λ) = n−1
n∑

t=1

ℓt(γ0, λ), ℓt(γ, λ) = ℓt(ϑ) =
ǫ2t

σ2
t (ϑ)

+ log σ2
t (ϑ).

For t ≥ 1 we define

ℓ̃t(ϑ) =
ǫ2t

σ̃2
t (ϑ)

+ log σ̃2
t (ϑ).

In this appendix, the letters K and ρ denote generic constants, whose values can vary along the text, but
always satisfy K > 0 and 0 < ρ < 1.

A.1 Proof of consistency in Theorem 2.1

We will follow the proof that Francq and Zakoïan (2004), hereafter FZ, gave for the strong consistency of

the QMLE θ̂
∗

n. This result also entails the consistency of ϑ̂
∗

n, but is not directly applicable to show the

consistency of ϑ̂n, because the VTE is a two-step estimator which is not expressible as a function of the
QMLE.

The almost sure convergence of σ̂2
n to γ0 is a direct consequence of the ergodic theorem. To show the

strong consistency of λ̂n we employ the classical technique of Wald (1949). Following the lines of FZ, it
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suffices to establish the following results.

i) lim
n→∞

sup
λ∈Λ

|ln(λ) − l̃n(λ)| = 0, a.s.

ii) if σ2
t (γ0, λ) = σ2

t (γ0, λ0) a.s., then λ = λ0,

iii) if λ 6= λ0, then Eℓt(γ0, λ) > Eℓt(γ0, λ0),

iv) any λ 6= λ0 has a neighborhood V (λ) such that lim inf
n→∞

inf
λ∗∈V (λ)

l̃n(λ∗) > Eℓ1(γ0, λ0) a.s.

We first show i). Note that the difference between ln(λ) and l̃n(λ) is due to the replacement of γ0 by σ̂2
n,

and is also due to the initial values taken for ǫ0 and σ2
0(γ0, λ). To handle simultaneously the two sources of

difference, note that

σ2
t,n(λ) − σ2

t (γ0, λ) = κ(σ̂2
n − γ0) + β

{
σ2

t−1,n(λ) − σ2
t−1(γ0, λ)

}

= κ(σ̂2
n − γ0)

1 − βt

1 − β
+ βt

{
σ2

0 − σ2
0(γ0, λ)

}
.

Thus, since σ̂2
n converges to γ0 almost surely, we have

sup
λ∈Λ

|σ2
t,n − σ2

t (γ0, λ)| ≤ Kρt + o(1) a.s.

Note that K is a measurable function of {ǫu, u ≤ 0}. For the almost sure consistency, the trajectory is fixed
in a set a probability one and n tends to infinity. Thus K can be considered as a constant, i.e. K is almost
surely invariant with n. The point i) follows from

sup
λ∈Λ

|ln(λ) − l̃n(λ)| ≤ n−1
n∑

t=1

sup
λ∈Λ

{∣∣∣∣∣
σ2

t,n − σ2
t (γ0, λ)

σ2
t,nσ2

t (γ0, λ)

∣∣∣∣∣ ǫ
2
t +

∣∣∣∣∣log

(
1 +

σ2
t (γ0, λ) − σ2

t,n

σ2
t,n

)∣∣∣∣∣

}

≤
{

sup
λ∈Λ

1

κ2

}
1

γ0σ̂2
n

Kn−1
n∑

t=1

ρtǫ2t +

{
sup
λ∈Λ

1

κ

}
1

σ̂2
n

Kn−1
n∑

t=1

ρt + o(1)

and the arguments used in the proof in FZ.
The requirements ii) and iii) have already been proven in FZ in a more general framework (see the proof

of their Theorem 2.1). The proof of iv) is also a direct adaptation of the proof given in FZ. For the reader
convenience, we briefly restate the proofs of ii)-iv) in our particular GARCH(1,1) framework. To show ii)
note that

σ2
t (ϑ) =

κγ

1 − β
+ α

∞∑

i=0

βiǫ2t−i−1. (A.1)

Suppose that σ2
t (ϑ) = σ2

t (ϑ0) a.s. Then, in view of (A.1),

κγ

α + κ
+ α

∞∑

i=0

βiǫ2t−i−1 =
κ0γ0

α0 + κ0
+ α0

∞∑

i=0

βi
0ǫ

2
t−i−1.

Because the innovation of ǫ2t is not a.s. equal to zero under A2, we must have

κγ

α + κ
=

κ0γ0

α0 + κ0
, and αβi = α0β

i
0 ∀i ≥ 0.

This entails ϑ = ϑ0.
To show iii), we argue that for x > 0, log x ≤ x − 1, with equality if and only if x = 1. We thus have

Eℓt(ϑ) − Eℓt(ϑ0) = E log
σ2

t (ϑ)

σ2
t (ϑ0)

+ E
σ2

t (ϑ0)

σ2
t (ϑ)

− 1

≥ E

{
log

σ2
t (ϑ)

σ2
t (ϑ0)

+ log
σ2

t (ϑ0)

σ2
t (ϑ)

}
= 0
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with equality if and only if σ2
t (ϑ0)/σ2

t (ϑ) = 1 a.s., which is equivalent to ϑ = ϑ0 in view of ii).
Let us show iv). Let Vk(λ) be the open ball with center λ and radius 1/k. Using successively i), the

ergodic process, the monotone convergence theorem and iii), we obtain almost surely

lim inf
n→∞

inf
λ∗∈Vk(λ)∩Λ

l̃n(λ∗) ≥ lim inf
n→∞

inf
λ∗∈Vk(λ)∩Λ

ln(λ∗) − lim sup
n→∞

sup
λ∈Λ

|ln(λ) − l̃n(λ)|

≥ lim inf
n→∞

n−1
n∑

t=1

inf
λ∗∈Vk(λ)∩Λ

ℓt(γ0, λ
∗)

= E inf
λ∗∈Vk(λ)∩Λ

ℓ1(γ0, λ
∗)

> Eℓ1(γ0, λ0)

for k large enough, when λ 6= λ0.

A.2 Proof of asymptotic normality in Theorem 2.1

The proof of the asymptotic normality rests classically on a Taylor-series expansion of each component of the
score vector around ϑ0. In comparison to the proof given by FZ for the QMLE, additional difficulties come
from the fact that the VTE is a two-step estimator. On the other hand, the proof of of some technical parts
will be facilitated by the assumption Eǫ4t < ∞. Although restrictive, this moment assumption is required
for the asymptotic normality of the empirical variance σ̂2

n. Write λ = (λ1, λ2) and ϑ = (ϑ1, ϑ2, ϑ3). Noting
that, in (2.10), ℓt,n(λ) = ℓ̃t(σ̂

2
n, λ), we have

(0, 0)′ = n−1/2
n∑

t=1

∂

∂λ
ℓt,n(λ̂n) = n−1/2

n∑

t=1

∂

∂λ
ℓ̃t(ϑ̂n)

= n−1/2
n∑

t=1

∂

∂λ
ℓ̃t(ϑ0) +

(
1

n

n∑

t=1

∂2

∂λi∂ϑj
ℓ̃t(ϑ

∗
i )

)

2×3

√
n
(
ϑ̂n − ϑ0

)

= n−1/2
n∑

t=1

∂

∂λ
ℓ̃t(ϑ0) + Jn

√
n
(
λ̂n − λ0

)
+ Kn

√
n
(
σ̂2

n − γ0

)
(A.2)

where the ϑ∗
i are between ϑ̂n and ϑ0,

Jn =

(
1

n

n∑

t=1

∂2

∂λi∂λj
ℓ̃t(ϑ

∗
i )

)

2×2

, Kn =

(
1

n

n∑

t=1

∂2

∂γ∂λ1
ℓ̃t(ϑ

∗
1),

1

n

n∑

t=1

∂2

∂γ∂λ2
ℓ̃t(ϑ

∗
2)

)′

.

We will show that

i) E

∥∥∥∥
∂ℓt(ϑ0)

∂ϑ

∂ℓt(ϑ0)

∂ϑ′

∥∥∥∥ < ∞, E

∥∥∥∥
∂2ℓt(ϑ0)

∂ϑ∂ϑ′

∥∥∥∥ < ∞,

ii) A := E

(
1

σ4
t (ϑ0)

∂σ2
t (ϑ0)

∂ϑ

∂σ2
t (ϑ0)

∂ϑ′

)
is non-singular and Var

{
∂ℓt(ϑ0)

∂ϑ

}
=
{
Eη4

0 − 1
}

A,

iii) there exists a neighborhood V(ϑ0) of ϑ0 such that, for all i, j, k ∈ {1, . . . , p + q + 1},

E sup
ϑ∈V(ϑ0)

∣∣∣∣
∂3ℓt(ϑ)

∂ϑi∂ϑj∂ϑk

∣∣∣∣ < ∞,

iv)

∥∥∥∥∥n
−1/2

n∑

t=1

{
∂ℓt(ϑ0)

∂ϑ
− ∂ℓ̃t(ϑ0)

∂ϑ

}∥∥∥∥∥→ 0 and sup
ϑ∈V(ϑ0)

∥∥∥∥∥n
−1

n∑

t=1

{
∂2ℓt(ϑ)

∂ϑ∂ϑ′ − ∂2ℓ̃t(ϑ)

∂ϑ∂ϑ′

}∥∥∥∥∥→ 0

in probability when n → ∞,

v) n−1
n∑

t=1

∂2

∂ϑi∂ϑj
ℓt(ϑ

∗
k) → A(i, j) a.s.

vi) Xn :=

(
n1/2

(
σ̂2

n − γ0

)

n−1/2
∑n

t=1
∂

∂λ
ℓt(ϑ0)

)
⇒ N

{
0, (Eη4

0 − 1)

(
b 0
0 J

)}
.
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The derivatives of ℓt = ǫ2t /σ2
t + log σ2

t are given by

∂ℓt(ϑ)

∂ϑ
=

{
1 − ǫ2t

σ2
t

}{
1

σ2
t

∂σ2
t

∂ϑ

}
(ϑ), (A.3)

∂2ℓt(ϑ)

∂ϑ∂ϑ′ =

{
1 − ǫ2t

σ2
t

}{
1

σ2
t

∂2σ2
t

∂ϑ∂ϑ′

}
(ϑ) +

{
2

ǫ2t
σ2

t

− 1

}{
1

σ2
t

∂σ2
t

∂ϑ

}{
1

σ2
t

∂σ2
t

∂ϑ′

}
(ϑ). (A.4)

The same formulas hold for the derivatives of ℓ̃t, with σ2
t replaced by σ̃2

t .
For ϑ = ϑ0, ǫ2t /σ2

t = η2
t is independent of the terms involving σ2

t and its derivatives. To prove i) it will
therefore be sufficient to show that

E

∥∥∥∥
1

σ2
t

∂σ2
t

∂ϑ
(ϑ0)

∥∥∥∥ < ∞, E

∥∥∥∥
1

σ2
t

∂2σ2
t

∂ϑ∂ϑ′ (ϑ0)

∥∥∥∥ < ∞, E

∥∥∥∥
1

σ4
t

∂σ2
t

∂ϑ

∂σ2
t

∂ϑ′ (ϑ0)

∥∥∥∥ < ∞. (A.5)

The following expansions hold

∂σ2
t

∂ϑ
(ϑ) =

(
κ

1 − β
,

−κγ

(1 − β)2
+

∞∑

ℓ=0

βℓǫ2t−ℓ−1 − α

∞∑

ℓ=1

ℓβℓ−1ǫ2t−ℓ−1,
αγ

(1 − β)2
− α

∞∑

ℓ=1

ℓβℓ−1ǫ2t−ℓ−1

)′

.

Recall that A3 implies Eǫ4t < ∞. Moreover we have σ−2
t (ϑ0) ≤ κ−1

0 γ−1
0 < ∞. This allows us to prove the

first and third inequalities in (A.5). The second inequality is proved by exactly the same arguments, and i)
is proved. Note that we made use of the moment assumption Eǫ4t < ∞ to facilitate the proof of (A.5). This
moment assumption is actually unnecessary. Indeed, we will show, without this assumption, that for any
integer d, there exists a neighborhood V(ϑ0) of ϑ0 such that

E sup
θ∈V(ϑ0)

∣∣∣∣
1

σ2
t

∂σ2
t

∂ϑi

∣∣∣∣
d

< ∞, E sup
θ∈V(ϑ0)

∣∣∣∣
1

σ2
t

∂2σ2
t

∂ϑi∂ϑj

∣∣∣∣
d

< ∞ E sup
θ∈V(ϑ0)

∣∣∣∣
1

σ2
t

∂3σ2
t

∂ϑi∂ϑj∂ϑk

∣∣∣∣
d

< ∞. (A.6)

Choose V(ϑ0) small enough, so that all the parameters γ, κ, α and β be bounded away from zero. Using
the elementary inequality x/(1 + x) ≤ xs for all x ≥ 0 and all s ∈ (0, 1], for all ϑ ∈ V(ϑ0) we have

∣∣∣∣
1

σ2
t

∂σ2
t

∂γ
(ϑ)

∣∣∣∣ ≤ K,

∣∣∣∣
1

σ2
t

∂σ2
t

∂α
(ϑ)

∣∣∣∣ ≤ K +

∞∑

ℓ=0

βℓǫ2t−ℓ−1

K + αβℓǫ2t−ℓ−1

+ α

∞∑

ℓ=1

ℓβℓ−1ǫ2t−ℓ−1

K + αβℓǫ2t−ℓ−1

≤ K + K
∞∑

ℓ=0

βℓsǫ2s
t−ℓ−1 + K

∞∑

ℓ=0

ℓβℓsǫ2s
t−ℓ−1.

Similarly

∣∣∣∣
1

σ2
t

∂σ2
t

∂κ
(ϑ)

∣∣∣∣ ≤ K + K

∞∑

ℓ=0

βℓsǫ2s
t−ℓ−1 + K

∞∑

ℓ=0

ℓβℓsǫ2s
t−ℓ−1.

Under 2.5 we have Eǫ2t < ∞ and supϑ∈V(ϑ0) β < 1. Thus ‖ǫ2s
t ‖d < ∞ for some s ∈ (0, 1], and the first result

of (A.6) comes from the Hölder inequality. The other results of (A.6) are obtained with the same arguments.
Now we prove ii). If A is singular, there exists x = (x1, x2, x3) 6= 0 such that x′

{
∂σ2

t (ϑ0)/∂ϑ
}

= 0 a.s.
Since

∂σ2
t

∂ϑ
=

∂κγ

∂ϑ
+

∂α

∂ϑ
ǫ2t−1 +

∂β

∂ϑ
σ2

t−1 + β
∂σ2

t−1

∂ϑ
, (A.7)

the strict stationarity of σ2
t (ϑ0) implies

x′ ∂κγ

∂ϑ
(ϑ0) + x′ ∂α

∂ϑ
(ϑ0)ǫ

2
t−1 + x′ ∂β

∂ϑ
σ2

t−1(ϑ0) = 0 a.s.
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We thus have
x1κ0 + x3γ0 + x2ǫ

2
t−1 = (x2 + x3)σ

2
t−1(ϑ0) a.s.

This entails that x2ǫ
2
t−1 is a function of {ǫ2t−i, i > 1}, which is impossible under A2, unless x2 = 0. We then

obtain that x3 = 0 because σ2
t−1(ϑ0) is not almost surely constant. It then follows that x1 = 0. Finally we

obtained a contradiction and the non-singularity of A is proved.
Let us prove iii). Differentiating (A.4), we obtain

∂3ℓt(ϑ)

∂ϑi∂ϑj∂ϑk
=

{
1 − ǫ2t

σ2
t

}{
1

σ2
t

∂3σ2
t

∂ϑi∂ϑj∂ϑk

}
(ϑ) +

{
2

ǫ2t
σ2

t

− 1

}{
1

σ2
t

∂σ2
t

∂ϑi

}{
1

σ2
t

∂2σ2
t

∂ϑj∂ϑk

}
(ϑ) (A.8)

+

{
2

ǫ2t
σ2

t

− 1

}{
1

σ2
t

∂σ2
t

∂ϑj

}{
1

σ2
t

∂2σ2
t

∂ϑi∂ϑk

}
(ϑ) +

{
2

ǫ2t
σ2

t

− 1

}{
1

σ2
t

∂σ2
t

∂ϑk

}{
1

σ2
t

∂2σ2
t

∂ϑi∂ϑj

}
(ϑ)

+

{
2 − 6

ǫ2t
σ2

t

}{
1

σ2
t

∂σ2
t

∂ϑi

}{
1

σ2
t

∂σ2
t

∂ϑj

}{
1

σ2
t

∂σ2
t

∂ϑk

}
(ϑ).

Because infϑ∈V(ϑ0) σ2
t (ϑ) > 0 and Eǫ4t < ∞, we have

E sup
ϑ∈V(ϑ0)

{
1 − ǫ2t

σ2
t (ϑ)

}2

< ∞, E sup
ϑ∈V(ϑ0)

{
2

ǫ2t
σ2

t

− 1

}2

< ∞, E sup
ϑ∈V(ϑ0)

{
2 − 6

ǫ2t
σ2

t

}2

< ∞.

In view of this result and of (A.6) with d = 1, 2, 3, the Hölder inequality entails iii).
We now turn to the proof of iv). In view of (2.8) and (2.11), we have

σ2
t (ϑ) − σ̃2

t (ϑ) = βt
{
σ2

0(ϑ) − σ̃2
0

}
.

Therefore, choosing V(ϑ0) such that λ ∈ Λ for all ϑ ∈ V(ϑ0), we have

sup
ϑ∈V(ϑ0)

∣∣σ2
t (ϑ) − σ̃2

t (ϑ)
∣∣ ≤ Kρt, sup

ϑ∈V(ϑ0)

∥∥∥∥
∂σ2

t (ϑ)

∂ϑ
− ∂σ̃2

t (ϑ)

∂ϑ

∥∥∥∥ ≤ Kρt

and

sup
ϑ∈V(ϑ0)

∣∣∣∣
1

σ2
t (ϑ)

− 1

σ̃2
t (ϑ)

∣∣∣∣ = sup
ϑ∈V(ϑ0)

∣∣∣∣
1

σ2
t (ϑ)

{
σ̃2

t (ϑ) − σ2
t (ϑ)

} 1

σ̃2
t (ϑ)

∣∣∣∣ ≤ Kρt.

In view of (A.3), we then obtain

sup
ϑ∈V(ϑ0)

∥∥∥∥∥n
−1

n∑

t=1

{
∂ℓt(ϑ)

∂ϑ
− ∂ℓ̃t(ϑ)

∂ϑ

}∥∥∥∥∥ ≤ Kn−1
n∑

t=1

ρtΥt, a.s., (A.9)

where

Υt = sup
ϑ∈V(ϑ0)

{
1 +

ǫ2t
σ2

t

}{
1 +

1

σ2
t

∂σ2
t

∂ϑ

}
(ϑ).

Using Eǫ4t < ∞, infϑ∈V(ϑ0) σ2
t (ϑ) > 0 and (A.6), the Cauchy-Schwarz inequality shows that EΥt < ∞. By

the Borel-Cantelli lemma, it follows that ρtΥt → 0 a.s. and thus the right-hand side of (A.9) converges to 0
a.s. Using the same arguments, and replacing first derivatives with second derivatives, iv) is shown.

Similarly to the proof of (4.36) in FZ, v) follows from the Taylor expansion of n−1
∑n

t=1 ∂2ℓt(ϑ
∗
k)/∂ϑi∂ϑj

around θ0, the convergence of ϑ
∗
k to θ0, and iii).

The proof of vi) relies on a Central Limit Theorem for martingale differences. From Horváth, Kokoszka
and Zitikis (2006, Proof of Theorem 1) (see (A.15) below) we have the representation

σ̂2
n = γ0 +

1 − β0

κ0

1

n

n∑

t=1

ht(η
2
t − 1) + oP (n−1/2). (A.10)

Moreover, in view of (A.3)

n−1/2
n∑

t=1

∂

∂λ
ℓt(ϑ0) = n−1/2

n∑

t=1

1 − η2
t

ht

∂σ2
t

∂λ
(ϑ0). (A.11)
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We then have

Xn = n−1/2
n∑

t=1

(1 − η2
t )Zt + oP (1), Zt =

(
−(1 − β0)κ

−1
0 ht

h−1
t ∂σ2

t (ϑ0)/∂λ

)
. (A.12)

Notice that E
(
(1 − η2

t )Zt|Ft−1

)
= 0, where Ft is the σ-algebra generated by the random variables ǫt−i,

i ≥ 0. Moreover, we have

∂σ2
t

∂α
= ǫ2t−1 − σ2

t−1 + β
∂σ2

t−1

∂α
=

∞∑

i=0

βi(ǫ2t−i−1 − σ2
t−i−1),

∂σ2
t

∂κ
= γ − σ2

t−1 + β
∂σ2

t−1

∂κ
=

∞∑

i=0

βi(γ − σ2
t−i−1),

and thus

E

{
∂σ2

t

∂λ
(ϑ0)

}
= 0. (A.13)

It follows that

Var
{
(1 − η2

t )Zt

}
= (Eη4

0 − 1)

(
b 0
0 J

)
.

Notice that b is a positive real number and that the matrix J in the right-lower block of A is non-singular,
in view of the non-singularity of A. By assumptions A2 and A3, we get 0 < Eη4

0 − 1 < ∞, and thus the
matrix Var

{
(1 − η2

t )Zt

}
is nondegenerate. Hence for any λ ∈ R

3, the sequence
{
(1 − η2

t )λ′Zt,Ft

}
t

is a
square integrable stationary martingale difference. By (A.12), the central limit theorem of Billingsley (1961)
and the Wold-Cramer device we obtain the asymptotic normality of Xn, which proves v).

To complete the proof of the theorem, note that, from ii), iv) and v), it follows that the matrix Jn is
a.s. invertible for sufficiently large n. Therefore, in view of (A.2),

√
n
(
λ̂n − λ0

)
= −J−1

n

{
n−1/2

n∑

t=1

∂

∂λ
ℓ̃t(ϑ0) + Kn

√
n
(
σ̂2

n − γ0

)
}

.

It follows that, using iv),

√
n

(
σ̂2

n − γ0

λ̂n − λ0

)
=

(
1 0

−J−1
n Kn −J−1

n

)
Xn + oP (1).

Thus, by v), vi) and Slutsky’s lemma,
√

n
(
ϑ̂n − ϑ0

)
is asymptotically N (0,Σ) distributed, with

Σ =

(
1 0

−J−1K −J−1

)(
b 0
0 J

)(
1 −K′J−1

0 −J−1

)
.

The invertibility of Σ follows and the proof of Theorem 2.1 is complete.

A.3 Proof of Corollary 2.1

This corollary of Theorem 2.1 can be proven by a direct application of the delta method (see e.g. Theorem
3.1 in van der Vaart, 1998). Indeed the map φ which transforms ϑ0 into θ0 is differentiable at ϑ0, and the
Jacobian matrix of this map is

∂φ

∂ϑ′
0

=




∂(γ0κ0)/∂γ0 ∂(γ0κ0)/∂α0 ∂(γ0κ0)/∂κ0

∂α0/∂γ0 ∂α0/∂α0 ∂α0/∂κ0

∂(1 − κ0 − α0)/∂γ0 ∂(1 − κ0 − α0)/∂α0 ∂(1 − κ0 − α0)/∂κ0


 = L′.
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A.4 Proof of Corollary 2.2

It is known that for an invertible partitioned matrix

A =

(
A11 A12

A21 A22

)
,

if A11 is invertible, then we have

A−1 =




F −FA12A
−1
22

−A−1
22 A21F A−1

22 + A−1
22 A21FA12A

−1
22


 ,

where F = (A11 − A12A
−1
22 A21)

−1. Using this classical result we get

Σ
∗ =

(
a −aK′J−1

−aJ−1K J−1 + aJ−1KK′J−1

)
, a =

{
κ2

0

(α0 + κ0)2
E

(
1

h2
t

)
− K′J−1K

}−1

,

whereas

Σ =

(
b −bK′J−1

−bJ−1K J−1 + bJ−1KK′J−1

)
, b =

(α0 + κ0)
2

κ2
0

E(h2
t ).

Thus

Σ− Σ
∗ = (b − a)

(
1 −K′J−1

−J−1K J−1KK ′J−1

)
,

and the result follows.

A.5 Proof of Theorem 3.1

The consistency can be obtained as in FZ, by a direct extension of Theorem 2.1. Let us concentrate on the
asymptotic normality. Similarly to (A.2), we have

0p+q = n−1/2
n∑

t=1

∂

∂λ
ℓ̃t(ϑ̂n)

= n−1/2
n∑

t=1

∂

∂λ
ℓ̃t(ϑ0) +

(
1

n

n∑

t=1

∂2

∂λi∂ϑj
ℓ̃t(ϑ

∗
i )

)

(p+q)×(p+q+1)

√
n
(
ϑ̂n − ϑ0

)

= n−1/2
n∑

t=1

∂

∂λ
ℓ̃t(ϑ0) + Jn

√
n
(
λ̂n − λ0

)
+ Kn

√
n
(
σ̂2

n − γ0

)
, (A.14)

where the ϑ∗
i are between ϑ̂n and ϑ0,

Jn =

(
1

n

n∑

t=1

∂2

∂λi∂λj
ℓ̃t(ϑ

∗
i )

)

(p+q)×(p+q)

,

Kn =

(
1

n

n∑

t=1

∂2

∂γ∂λ1
ℓ̃t(ϑ

∗
1), . . . ,

1

n

n∑

t=1

∂2

∂γ∂λp+q
ℓ̃t(ϑ

∗
p+q)

)′

.

We now use the ARMA representation for ǫ2t :

ǫ2t = ω0 +

p∨q∑

i=1

(α0i + β0i)ǫ
2
t−i + νt −

p∑

j=1

β0jνt−j ,

with νt = ǫ2t − ht = ht(η
2
t − 1) and obvious conventions. Taking the average of both sides of the equality

when t varies from 1 to n, we obtain

σ̂2
n = ω0 +

p∨q∑

i=1

(α0i + β0i)σ̂
2
n +


1 −

p∑

j=1

β0j


 1

n

n∑

t=1

νt + OP (n−1),
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which allows us to extend the representation (A.15) of Horváth, Kokoszka and Zitikis (2006)

σ̂2
n = γ0 +

1 −∑p
j=1 β0j

1 −∑q
j=1 α0i −

∑p
j=1 β0j

1

n

n∑

t=1

ht(η
2
t − 1) + oP (n−1/2). (A.15)

Using (A.14), (A.15), and direct extensions of iv) and vi), we obtain

√
n
(
ϑ̂n − ϑ0

)
=

(
1 0

−J−1
n Kn −J−1

n

)
Xn + oP (1), (A.16)

where

Xn :=

(
n1/2

(
σ̂2

n − γ0

)

n−1/2
∑n

t=1
1−η2

t

ht

∂
∂λ

σ2
t (ϑ0)

)
⇒ N

{
0, (Eη4

0 − 1)

(
c 0
0 J

)}
,

noting that (A.13) still holds. The conclusion follows.

A.6 Proof of Proposition 3.1

Let

St =




eh−1
t

h−1
t

∂σ2

t

∂λ
(ϑ0)

e−1ht


 , e =

1 −∑q
i=1 α0i −

∑p
j=1 β0j

1 −∑q
i=1 β0i

.

Using (A.13), we observe that

E
(
StS

′
t

)
=




e2Eh−2
t K′ 1

K J 0
1 0 c


 .

We thus have
Σ

∗ =
{
E
(
GStS

′
tG

′
)}−1

, Σ = E
(
HStS

′
tH

′
)
,

where

G =
(

Ip+q+1 0
)
, H =

(
0 0 1

0 J−1 −J−1K

)
,

Ik denoting the identity matrix of size k. Note that GE
(
StS

′
t

)
H ′ = Ip+q. Letting Dt = Σ

∗GSt − HSt

we then obtain

EDtD
′
t = Σ

∗ + Σ − Σ
∗GE

(
StS

′
t

)
H ′ − HE

(
StS

′
t

)
G′

Σ
∗ = Σ − Σ

∗

which shows that Σ− Σ
∗ is positive semidefinite. It can be seen that the matrix

EDtD
′
t = (Σ∗G − H)E

(
StS

′
t

)
(Σ∗G − H)′

is not positive definite because

Σ
∗G − H =

(
d −dK′J−1 −1

−dJ−1K dJ−1KK′J−1 J−1K

)
=
(

dCC ′ −C
)

is of rank 1.

A.7 Proof of Corollary 3.1

The first convergence in distribution is a direct consequence of (3.4) and of the delta method. In view of
(3.5), (3.6) and the delta method we have

√
n
{

φ(ϑ̂
∗

n) − φ(ϑ0)
}

d→ N
(
0, s∗2

)
,

where

s∗2 = (Eη4
0 − 1)

∂φ

∂ϑ′Σ
∗ ∂φ

∂ϑ
= s2 − (c − d)

∂φ

∂ϑ′CC′ ∂φ

∂ϑ
.

The conclusion follows.
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A.8 Proof of Lemma 4.1

Let x ∈ R and let uh such that huh is a sequence of integers tending to ∞ and uh = o {1/ log log(huh)} as
h → ∞. Let

Dh = Dh(It) =

∣∣∣∣∣P
{

1√
h

h∑

i=huh+1

ǫt+i ≤ x | It

}
− P

{
1√
h

h∑

i=huh+1

ǫt+i ≤ x

}∣∣∣∣∣ ,

where It = σ{ǫu, u ≤ t}. By Lemma 5.2 in Dvoretzky (1972), we have EDh ≤ 4αǫ(huh). Moreover,∑
h α

ν/(2+ν)
ǫ < ∞ implies αǫ(h) = o

{
h−(1+δ)

}
for 0 < δ < 2/ν. Thus

∑

h≥1

αǫ(huh) ≤
∑

h≥1

{
log log(huh)

h

}1+δ

< ∞,

and the Borel-Cantelli lemma entails that

lim
h→∞

∣∣∣∣∣P
{

1√
h

h∑

i=huh+1

ǫt+i ≤ x | It

}
− P

{
1√
h

h∑

i=huh+1

ǫt+i ≤ x

}∣∣∣∣∣ = 0 a.s. (A.17)

The α-mixing processes (ǫt) thus satisfies a central limit theorem (see Herrndorf, 1984) and a law of the
iterated logarithm (see Berkes and Philipp (1979) and Dehling and Philipp (1982)). By the law of the
iterated logarithm, we have

1√
h

huh∑

i=1

ǫt+i =

√
uh√
huh

huh∑

i=1

ǫt+i → 0 a.s. (A.18)

Therefore, for all ε > 0, P (h−1/2
∑huh

i=1 ǫt+i > ε | It) → 0 a.s. It follows that

lim
h→∞

∣∣∣∣∣P
{

1√
h

h∑

i=1

ǫt+i ≤ x | It

}
− P

{
1√
h

h∑

i=huh+1

ǫt+i ≤ x | It

}∣∣∣∣∣ = 0 a.s., (A.19)

The central limit theorem entails h−1/2
∑h

i=1 ǫt+i
d→ N

(
0, ω2

)
as h → ∞. In view of (A.17)-(A.19) we then

obtain

lim
h→∞

∣∣∣∣∣P
{

1√
h

h∑

i=1

ǫt+i ≤ x | It

}
− Φ(x/ω)

∣∣∣∣∣ = 0 a.s., (A.20)

and the conclusion follows.
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