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1 Introduction

In recent years, the econometric literature on GARCH inference has been marked

by formidable improvements, in different directions. For the standard class of Engle

(1982) and Bollerslev (1986), optimal conditions for the consistency and asymptotic

normality of the quasi-maximum likelihood estimation (QMLE) seem to have been

obtained (see Berkes, Horváth and Kokoszka (2003), Francq and Zakoïan (2004)).

The main finding is that the strict stationarity is essentially sufficient, and no

moment on the observed process is required, for the asymptotic normality of the

QMLE of GARCH models. For the existence of the information matrix, fourth-

moment conditions have to be imposed on the underlying iid process, however. For

an ARMA-GARCH model, fourth-moment conditions have to be imposed on the

observed process. Alternative estimation methods have been considered when such

moments do not exist (see e.g. Hall and Yao (2003), Horváth and Liese (2004),

Ling (2007)).

Despite those theoretical improvements, the statistical inference in standard

GARCH models remains problematic. The main complication, in the inference

on GARCH models, results from the positivity constraints on the coefficients. The

QMLE is a constrained estimator and, as a consequence, its asymptotic distribution

when the parameter lies on the boundary is non standard. For the same reason,

standard tests of nullity on GARCH coefficients (such as the Wald and quasi-

likelihood ratio tests) have to be corrected (see Francq and Zakoïan (2008)).

Robinson (1991), Giraitis, Robinson and Surgailis (2000), Giraitis and Surgailis

(2002), Berkes and Horváth (2003) and Giraitis, Leipus, Robinson and Surgailis

(2004) proposed and analyzed a long memory alternative to the standard GARCH,

called "linear ARCH" (LARCH), defined by

ut = σtǫt, σt = b0 +

∞
∑

i=0

biut−i, ǫt iid (0, 1). (1.1)
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Under appropriate conditions, this model is consistent with long memory in u2
t ,

whereas an infinite order ARCH model fails to capture this property. From another

point of view, this model has the advantage over standard ARCH formulations to

be free of any positivity constraint on the volatility coefficients. Moreover, it is

amenable to multivariate extensions (see Doukhan, Teyssière and Winant, 2006).

Finite-order LARCH models were considered in Francq, Makarova and Zakoïan

(2007) (hereinafter FMZ) in the purpose of analyzing the properties if unit root

tests in presence of conditional heteroscedasticity. M-estimators of the location

parameter when the error process is LARCH has been considered by Beran (2006).

To our knowledge, only two working documents deal with the estimation of the full

parameter in LARCH models. Beran and Schützner (2008) consider in particular

the estimation of the parameters C and d when the LARCH(∞) have the form bi =

Cid, both in the short and long memory cases. One of the estimators considered

by these authors is a modified conditional maximum likelihood estimator, that will

be commented later. Truquet (2008) employs the same estimator, but focuses on

the short memory case and considers the estimation of general LARCH(q) models

with finite order q.

The present paper attempts to contribute further to the statistical inference

of finite-order LARCH models. As counterpart of the model flexibility, QMLE

encounters serious difficulties which can only be avoided by strict conditions on

the parameter space. It is also an aim of this paper to show that the behavior of

the QMLE can be very pathological in certain situations and that phrases such

that "QMLE is consistent under usual regularity conditions" should be taken with

caution in general. It will be seen that, for the LARCH models, an approach which

is more fruitful than the QMLE is to consider weighted least-squares estimation

(WLSE), as was done by Horváth and Liese (2004) and Ling (2007) in the context

of ARCH and ARMA-GARCH models.
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The paper is organized as follows. In Section 2, we give the basic assumptions

on the model and we establish the consistency and asymptotic normality of the

QMLE. Section 3 illustrates the possible inconsistency of the QMLE when the

stringent conditions used for the first theorem are in failure. Section 4 is devoted

to the weighted least-squares estimation. Section 5 considers specification testing.

Diagnostic checks are studied in Section 6. Section 7 reports simulation results.

Concluding remarks are given in Section 8 and all proofs are relegated to Appendix

A. Throughout the paper,
L→ denotes convergence in distribution. The spectral

radius of a square matrix A is denoted by ρ(A) and ⊗ denotes the Kronecker

product of matrices.

2 Model specification and QML estimation

The AR(p)-LARCH(q) model considered in this paper assumes that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xt = ψ01xt−1 + · · · + ψ0pxt−p + ut,

ut = (1 + b01ut−1 + · · · + b0qut−q)ǫt, ǫt iid (0, σ2
0ǫ), σ0ǫ > 0

(2.1)

where ψ01, . . . , ψ0p, b01, . . . , b0q are unknown real numbers.

The model for (ut) is a particular case of quadratic ARCH, as introduced by

Sentana (1995). Apart from the absence of positivity constraints on the coefficients,

this formulation has several distinctive feature compared to the standard ARCH.

The volatility is not bounded below by a positive constant, it is able to capture the

so-called leverage effect and it is not minimum at zero (see FMZ). This is illustrated

in Figure 1 for the LARCH(1) model.

Let

A0t =

⎛

⎝

b1:q−1ǫt b0qǫt

Iq−1 0q−1

⎞

⎠ ,
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Figure 1: News impact curve of ut in Model (2.1) with q = 1, b01 = −0.2 and

σǫ = 1 (full line) compared with the news impact curve of the ARCH(1) model

ut =
√

1 + b2
01u

2
t−1ǫt (dotted line). Source FMZ.

where b1:q−1 = (b01, . . . , b0q−1) and Ik is the k × k identity matrix. By convention

A0t = b01ǫt when q = 1. Let γ(A0) be the top-Lyapunov exponent of the sequence

A0 = (A0t), that is, for any norm ‖ · ‖ on the space of the q × q matrices, γ(A0) =

limt→∞ 1
t log ‖A0tA0t−1 . . . A01‖ a.s. In the above-mentioned paper, it was shown,

following the approach of Bougerol and Picard (1992a, 1992b) that the second

equation of (2.1) admits a strictly stationary solution (ut) if and only if

A1: γ(A0) < 0.

In the case q = 1, this condition reduces to |b01| < exp{−E log |ǫ1|}. Under A1, the

strictly stationary solution is unique, nonanticipative and ergodic. This solution

admits a second order moment if and only if
∑q

i=1 b2
0iσ

2
0ǫ < 1. In this case, the

solution is a conditionally heteroskedastic white noise. We also make the following

standard assumption on the AR part.

A2: the zeroes of the polynomial ψ0(z) := 1 −∑p
i=1 ψ0iz

i are outside the unit

disk.
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We now turn to the QMLE of

θ0 = (ψ01, . . . , ψ0p, b01, . . . , b0q, σ
2
0ǫ).

Assume we observe x−q−p+1, x−q−p+2, . . . , xn generated by Model (2.1), where the

first p+ q variables are considered as initial values. We consider a parameter space

Θ ⊂ R
p+q × (0,∞) and we denote by θ = (ψ1, . . . , ψp, b1, . . . , bq, σ

2
ǫ )

′ a generic

element of Θ. We assume

A3: θ0 ∈ Θ and Θ is a compact set,

and the identifiability condition

A4: the support of the law of ǫt does not reduce to a set of 2 points.

Let ut(θ) = xt −
∑p

i=1 ψixt−i and

σ2
t (θ) = σ2

ǫ {1 + b1ut−1(θ) + · · · + bqut−q(θ)}2 .

Denoting by Ln(θ) the quasi-likelihood, a QMLE of θ is a measurable solution of

θ̂n = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

ln(θ), (2.2)

where

ln(θ) = n−1
n
∑

t=1

ℓt(θ), and ℓt(θ) =
u2

t (θ)

σ2
t (θ)

+ log σ2
t (θ) ∈ [−∞,∞], (2.3)

with the conventions 1/0 + log 0 = +∞, 0/0 + log 0 = −∞ and +∞−∞ = +∞.

These conventions are required because ut(θ) and σ2
t (θ) may be equal to zero.

When σ2
t (θ) = 0 and ut(θ) 	= 0, the value θ can be precluded for the parameter.

This justifies the conventions, which lead to ln(θ) = ∞ for such values of θ. The

following "high-level" assumption, to be discussed below, can be made to avoid

such problems.
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A5: The variable infθ∈Θ σ2
t (θ) is almost surely (a.s.) bounded away from 0.

Consider the case where p = 0, q = 1 and ǫt has a compact support [−c, c]. This

case is quite artificial, and is just given for illustrating A5. When |b01c| < 1, the

white noise ut = ǫt +
∑∞

i=1 bi
01ǫtǫt−1 · · · ǫt−i belongs to [−c/(1 − b01c), c/(1 − b01c)]

with probability one. Thus, it is easy to see that A5 holds when {supθ∈Θ |b1|}c <

1/2. We will consider later the case where A5 does not hold. To establish the

asymptotic normality, we need the following additional assumptions.

A6: θ0 belongs to the interior of Θ,

A7: Eǫ4
1 < ∞ and ρ{E(A01 ⊗ A01 ⊗ A01 ⊗ A01)} < 1.

It can be shown that Assumption A7 entails the existence of Eu4
1 and, under

A2, that of Ex4
1. When q = 1, the condition is simply b4

01Eǫ4
1 < 1. Writing

A0t = Bǫt + J , where B and J are non-random matrices, the second part of A7

takes the more explicit form :

ρ

⎧

⎨

⎩

4
∑

j=1

∑

ij∈{0,1}
E(ǫi1+···+i4

1 )(Bi1 + J1−i1) ⊗ · · · ⊗ (Bi4 + J1−i4)

⎫

⎬

⎭

< 1.

Theorem 2.1 Under A1–A5 we have θ̂n → θ0 a.s. as n → ∞. Under the addi-

tional Assumptions A6-A7,
√

n(θ̂n − θ0) is asymptotically distributed as N (0,Σ),

where Σ = J −1IJ−1,

I = E

(

∂ℓ1(θ0)

∂θ

∂ℓ1(θ0)

∂θ′

)

, J = E

(

∂2ℓ1(θ0)

∂θ∂θ′

)

.

3 Inconsistency of the QML estimator

Assumption A5 is essential for the consistency of the QMLE. For illustration pur-

poses, consider the simplest version of Model (2.1), i.e. the AR(0)-LARCH(1)
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given by

xt = ut = ǫt(1 + b0ut−1). (3.1)

When ǫt follows a uniform distribution on [−1/2, 1/2] say, Assumption A5 is sat-

isfied for sufficiently small Θ ⊂ (−2, 2) × (0,∞) because σt(θ)/σǫ ∈ (0, 2). The

likelihood is then well-behaved (see the left panel in Figure 2). On the other hand,

when ǫt has a continuous distribution with a non compact support, Assumption

A5 is not satisfied because σ2
t (θ) = σ2

ǫ (1 + but−1)
2 cancels for θ = (−1/xt−1, σ

2
ǫ ).

Moreover, when xt 	= 0 the true value b0 cannot be equal to −1/xt−1, which ex-

plains that the likelihood is null at these points (see the right panel of Figure 2). It

should be noted that the non-smoothness of the likelihood is not due to the small

sample size n = 10. On the contrary, the number of points where the likelihood

vanishes increases with n, which would entail enormous computational burden for

any reasonable sample size.

For more general models, we can even show the inconsistency of the QMLE

when B4 is violated.

Proposition 3.1 Consider the general AR(p)-LARCH(q) model (2.1) with pq 	=
0. If the distribution of ǫt is absolutely continuous with respect to the Lebesgue

measure, for Θ sufficiently large, there exists an infinite number of sequences (θ̂n)

of QMLE, and these sequences are generally inconsistent.

Remark 3.1 This inconsistency result is very general for the model considered in

this paper. It applies in particular when ǫt is gaussian. This shows that Assumption

B4, though restrictive, is essential for the consistency result of Theorem 2.1.

Remark 3.2 The inconsistency of the QMLE may seem surprising. In the iid

case, frameworks where the QMLE is inconsistent include that of a mixture of two

gaussian distributions (Kiefer and Wolfowitz (1956), Redner and Walker (1984)),
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a one-parameter mixture (Ferguson (1982)), life distributions (Boyles, Marshall

and Proschan (1985)), distributions with nuisance parameters (Neyman and Scott

(1948)), the Rasch model (Ghosh, (1985)). In dynamic models however, examples

of inconsistency seem much less frequent.

-2 -1 1 2 0.5 1 1.5 2 2.5

Figure 2: Likelihood (as a function of b with σ2
ǫ fixed) of a simulation of length

n = 10 of Model (3.1) with b0 = 0.5 and, in the left panel ǫt ∼ U[−1/2,1/2], and in

the right panel ǫt ∼ N (0, 1).

4 Weighted least squares estimators

We have seen that the QMLE is in failure without restrictive assumptions on the

distribution of ǫt. Another popular estimation method in time series is the least

squares procedure. To avoid unnecessary moment conditions and to gain in effi-

ciency we will consider Weighted Least Squares Estimators (WLSE). The asymp-

totic properties of weighted M-estimators have been studied by Horváth and Liese

(2004), in the context of ARCH models. The asymptotic properties of weighted

LSE and QMLE have been studied, in the context of ARMA-GARCH models, by

Ling (2005).
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4.1 WSLE of the AR parameter

The WLSE of the AR parameter ψ = (ψ1, . . . , ψp)
′ are defined by

ψ̂WLS = arg min
ψ∈Θψ

1

n

n
∑

t=1

ωtu
2
t (ψ), ut(ψ) = xt −

p
∑

i=1

ψixt−i, (4.1)

where Θψ is the compact parameter space of the AR coefficients and the ωt’s are

weights, which are allowed to depend on the past values {xs, s < t} but not on ψ.

For simplicity, we assume that ωt only depends on r past values:

A8: ωt = f(xt−1, . . . , xt−r) for some function f : Rr → (0,+∞) and some

integer r ≥ 1.

The initial values x1−r, . . . , x0 required to compute ω1 are supposed to be available.

An attractive feature of the WLSE is that the minimization problem (4.1) does not

require optimization routine. Under A6, the solution is explicitly given by

ψ̂WLS =
(

X
′
ΩX

)−1
X

′
ΩY, (4.2)

where Ω = Diag(ω1, . . . , ωn), X is a n × p matrix with generic term xi−j and

Y
′ = (x1, . . . , xn). We introduce the following conditions.

A9: Eω1
∑p

i=1 x2
1−i < ∞ and Eω1|σ1(θ0)|

∑p
i=1 |x1−i| < ∞.

A10: Eω2
1σ

2
1(θ0)

∑p
i=1 x2

1−i < ∞.

We also introduce the notation X ′
t = (xt−1, · · · , xt−p).

Theorem 4.1 Under A1, A2, A8, A9, ψ̂WLS → ψ0 a.s. as n → ∞. If, in

addition, A10 holds, then

√
n(ψ̂WLS − ψ0)

L→ N (0,Σψ
WLS),

where Σψ
WLS = A−1

ψ BψA−1
ψ , Aψ = E (ω1X1X

′
1) , Bψ = E

(

ω2
1σ

2
1(θ0)X1X

′
1

)

.
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Remark 4.1 When applied with ωt ≡ 1, the Weighted Least Squares (WLS)

procedure yields the usual least squares estimator (LSE) and, for the asymptotic

normality, the fourth-order moments are required. Such moment conditions can be

avoided by choosing, for instance, ω−1
t = c0 +

∑q+p
i=1 cix

2
t−i where the ci are strictly

positive constants. In this case, no moment is needed since A9 and A10 are always

satisfied.

Remark 4.2 Under A5, it is well-known that the optimal choice of the weighting

matrix is

Ω
∗ = Diag(1/σ2

1(θ0), . . . , 1/σ
2
n(θ0)).

Of course the resulting estimator is infeasible because σ2
t (θ0) depends on the un-

known b0i coefficients.

4.2 WSLE of the LARCH parameter

We now consider the estimation of the LARCH coefficients. Let ût = ut(ψ̂), t =

1 − q, . . . , n, where ψ̂ denotes any consistent estimator of ψ. The WLS estimators

of the volatility parameter β = (b1, . . . , bq, σ
2
ǫ )

′ ∈ Θβ are defined by

β̂WLS = arg min
β∈Θβ

1

n

n
∑

t=1

τtν
2
t (ψ̂, β), νt(ψ, β) = u2

t (ψ) − σ2
t (ψ, β) (4.3)

where the positive weights τt ∈ Ft−1, the σ-field generated by ǫt−i, i > 0. We

introduce the following conditions.

A11: Eǫ4
1 < ∞ and Eτ1σ

4
1(θ0) < ∞.

A12: E supθ∈V(θ0)

∥

∥

∥
τ1

∂ν2
1 (θ)
∂θ

∂ν2
1 (θ)

∂θ′

∥

∥

∥
< ∞ for some neighborhood V(θ0) of θ0,

Eτ1|x1−i|ℓ < ∞, Eτ2
1 σ4

1(θ0)|x1−i|ℓ < ∞, and Eτ1ω1 |σ1(θ0)|3 |x1−i|ℓ′ < ∞
for all 1 ≤ i ≤ p + q, all 0 ≤ ℓ ≤ 4 and all 0 ≤ ℓ′ ≤ 3.
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Theorem 4.2 Under A1 − A3, A5, A8 with ωt replaced by τt, and A11,

β̂WLS → β0 a.s. as n → ∞.

If, in addition, A9, A10, A12 hold and ψ̂ = ψ̂WLS,

√
n

⎛

⎝

ψ̂WLS − ψ0

β̂WLS − β0

⎞

⎠

L→ N

⎧

⎨

⎩

0,ΣWLS :=

⎛

⎝

Σψ
WLS Σψβ

WLS

Σβψ
WLS Σβ

WLS

⎞

⎠

⎫

⎬

⎭

,

where

Σβ
WLS = A−1

β

{

Bβ + AβψA−1
ψ B′

βψ + BβψA−1
ψ A′

βψ + AβψA−1
ψ BψA−1

ψ A′
βψ

}

A−1
β ,

Σψβ
WLS = A−1

ψ

{

B′
βψ + BψA−1

ψ A′
βψ

}

A−1
β =

(

Σβψ
WLS

)′
,

with µ4 = Eǫ4
1/σ

4
ǫ , Yt =

∂σ2
t (ψ0,β0)

∂β , Zt = ∂νt(ψ0,β0)
∂ψ and

Aβ = E
(

τ1Y1Y
′
1

)

, Aβψ = E
(

τ1Y1Z
′
1

)

,

Bβ = (µ4 − 1)E
(

τ2
1 σ4

1(θ0)Y1Y
′
1

)

, Bβψ =
Eǫ3

1

σ3
ǫ

E
(

τ1ω1σ
3
1(θ0)Y1X

′
1

)

.

Remark 4.3 A remark similar to 4.1 holds. When ωt and τt are (strictly posi-

tive) constants, eighth-order moments are required for the asymptotic normality.

Choosing, for instance, ω−1
t = c0 +

∑q+p
i=1 cix

2
t−i and τ−1

t = c∗0 +
∑q+p

i=1 c∗i x
4
t−i where

the ci and c∗i are strictly positive constants, no moment is needed on the observed

process.

Remark 4.4 When the distribution of ǫt is symmetric, it can be seen that Σψβ
WLS =

0 and Σβ
WLS = A−1

β BβA−1
β . In this case, under A5, the optimal weights are

τt = 1/σ4
1(θ0) (see Remark 4.2).

4.3 Choice of the weights

As argued by Horváth and Liese (2004), a natural choice of the weight functions is

ωt =
1

1 + ‖X∗
t ‖2

, τt =
1

1 + ‖X∗
t ‖4

, (4.4)
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where X∗
t = (xt−1, . . . , xt−p−q)

′. Many other sequences of weights satisfy A8 −
A12. In the spirit of Ling (2007), and in connection to Huber’s robust estimator

for the regression model, one can consider sequences of weigths of the form

ωt =
1

max
{

1, C−1
(

∑p+q
i=1 |xt−i|1{|xt−1|>C}

)}2 , τt = ω2
t , (4.5)

where C is a positive constant. For the numerical illustrations we follow the sug-

gestion of Ling (2007), taking C as the 90% quantile of the absolute values of the

observations |x1|, . . . , |xn|. In view of the remarks 4.2 and 4.4, one can also propose

weights of the form

ωt =
1

ĥt

, τt = ω2
t , (4.6)

where ĥt is a strictly positive proxy of the volatility. In the sequel we choose ĥt as

being the implied volatility based on a standard ARCH(p + q) model.

5 Specification Testing

As we have seen, the QML estimator has a pathological behavior in our framework,

so we cannot consider the standard tests (Wald, score, likelihood ratio). Instead,

we will base our tests on the WLS criterion. For notational convenience we will

omit the subscript "WLS" in the estimators.

5.1 Wald tests

To test an assumption of the form Rθ0 = r, where r ∈ R
d and R is a full row-rank

d × (p + q + 1) matrix, the asymptotic normality results of Theorem 4.2 can be

used. Under H0 and the assumptions of this theorem, the Wald-type statistics

Wn = n(Rθ̂ − r)′(RΣ̂R′)−1(Rθ̂ − r)
L→ χ2

d,
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where θ̂ = (ψ̂′, β̂′)′, and Σ̂ denotes any consistent estimator of Σ. Empirical esti-

mates of Aβ , Aβψ, Bβ , Bβψ can be considered to construct such an estimator.

To test the nullity of all the coefficients bi it seems much more appropriate to

consider a score-type test, which does not require estimating the general model.

This is considered in the next section.

5.2 Testing for conditional homoscedasticity

The aim is to test for

H0 : b0 = 0

where b0 = (b01, . . . , b0q)
′. Under H0 the model reduces to a simple AR(p) model

with independent errors. Let θ̂c = (ψ̂′, 0′p, σ̂
2c
ǫ )′ denote the estimator constrained

by H0, where ψ̂ is defined in (4.2) and σ̂2c
ǫ is the constrained WLS estimator of σ2

ǫ

defined by

σ̂2c
ǫ =

1
∑n

t=1 τt

n
∑

t=1

τtû
2
t . (5.1)

A Rao score-type (or Lagrange multiplier) statistic is based on the derivative of

the second-step criterion at θ̂c. To derive the statistic, we start by evaluating the

asymptotic distribution of this derivative under H0. Let

Aβ =

⎛

⎝

Ab Abσ

Aσb Aσ

⎞

⎠ , A∗ = −Ab +
1

Aσ
AbσAσb.

Under the assumptions of Theorem 4.2, we have

∆
c
n :=

1√
n

n
∑

t=1

τt
∂ν2

t (ψ̂, 0q, σ̂
2c
ǫ )

∂b
L→ N (0,Σ∆ := A∗ΣbA

′
∗), (5.2)

where Σb is the top-left q × q block of the matrix Σβ. A Rao score-type statistic is

then given by

Rn = (∆c
n)′ Σ̂−1

∆ ∆
c
n

14



where Σ̂∆ denotes any H0-consistent estimator of Σ∆. This statistic follows asymp-

totically a χ2
q distribution under the null and the critical region at the asymptotic

level α is given by

{Rn > χ2
q(1 − α)}

where χ2
q(1 − α) denotes the 1 − α quantile of the χ2

q distribution.

We will now derive an explicit form for this statistic. It is known that, under

quite general assumptions, a version of the score test statistic based on the LSE

can be interpreted as the uncentred coefficient of determination of the regression

of the constant 1 on the components of the score vector (see for instance Godfrey,

1988, p.15). We will show that a similar interpretation holds for the statistic Rn

based on the WLSE. First notice that

∆
c
n =

−4σ̂2c
ǫ√

n

n
∑

t=1

τt(û
2
t − σ̂2c

ǫ )ût−1

where ût−1 = (ût−1, . . . , ût−q)
′. Note also that, under the null,

Σ∆ = 16σ4
0ǫ Var ǫ2

1E
(

τ2
1 u0u

′
0

)

,

where ut−1 = (ut−1, . . . , ut−q)
′. Writing ∆

c
n = −4σ̂2c

ǫ n−1/2
U

′
V with

U
′ =

(

τ1û0, . . . , τnûn−1

)

, V =
(

û2
1 − σ̂2c

ǫ , . . . , û2
n − σ̂2c

ǫ

)′

and using the estimator of Σ∆ defined by

Σ̂∆ = 16
(

σ̂2c
ǫ

)2
n−1

V
′
Vn−1

U
′
U,

we obtain the test statistic

Rn = n
V

′
U (U′

U)−1
U

′
V

V′V
,

which is n times the uncentred coefficient of determination of the regression of

û2
t − σ̂2c

ǫ on τtût−1, . . . , τtût−q.
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This test has of course similarities with the standard test for conditional het-

eroskedasticity of (ut) in the ARCH(q) (or GARCH(p, q)) framework. In this case,

a Rao-score test statistic is n times the R2 of the regression of u2
t over a constant

and u2
t−1, . . . , u

2
t−q.

6 Diagnostic checks

In this section we develop some diagnostic tools for the AR(p)-LARCH(q) model

(2.1). We first consider adequacy of the AR equation.

6.1 Diagnostic checking for the AR part

Conventional ways of testing adequacy of linear models involve checks that the

residuals are approximately uncorrelated. To this aim the portmanteau tests of

Box-Pierce (1970) and Ljung-Box (1978) are the most popular tools. We only

consider the Ljung-Box statistic (hereafter LB) which has the same asymptotic

behavior as the Box-Pierce statistic, but is the most widely used by practitioners.

The LB statistic is defined by

Qû
m = n(n + 2)

m
∑

h=1

ρ̂2
û(h)

n − h
(6.1)

where ρ̂û(h) is the residual autocorrelation at lag h and m is a fixed integer.

The standard test procedure consists, for m > p, in rejecting the AR(p) model if

Qû
m > χ2

m−p(1−α). The procedure is (approximately) valid when (i) the residuals

are obtained by least-squares, and (ii) the error terms of the AR equation are

iid. Because none of these conditions is satisfied in our framework, the standard

portmanteau tests require an adaptation. In the more general setting of weak

ARMA models, Francq, Roy and Zakoïan (2005) relaxed condition (ii), but we can

not directly use their results because we consider here WLS estimators.
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For p > 0, let ût = ut(ψ̂WLS) = ut(ψ̂), t = 1− q, . . . , n, be the AR(p) residuals,

where ψ̂WLS = ψ̂ is the WLS estimator defined in (4.2). For p = 0, one can set

ût = ut = xt. The residuals autocovariances and autocorrelations are defined by

γ̂û(ℓ) =
1

n

n−ℓ
∑

t=1

ûtût+ℓ and ρ̂û(ℓ) =
γ̂û(ℓ)

γ̂û(0)
. (6.2)

Let ρ̂û
m = (ρ̂û(1), . . . , ρ̂û(m))′ and Ut = (ut−1, . . . , ut−m)′. We denote by φ∗

i the

coefficients defined by

ψ−1(z) =

∞
∑

i=0

φ∗
i z

i, |z| ≤ 1.

Take φ∗
i = 0 when i < 0. Let λi = (φ∗

i−1, . . . , φ
∗
i−p)

′ ∈ R
p and let the p×m matrix

Λ = (λ1 λ2 · · · λm). (6.3)

The following lemma gives the asymptotic distribution of a vector of residual auto-

correlations of an AR(p) model, when the Data Generating Process (DGP) actually

follows an AR(p)-LARCH(q) model.

Lemma 6.1 Under the assumptions of Theorem 4.1,
√

nρ̂û
m

L→ N (0,Σρ̂û
m

), where

Σρ̂û
m

=
1

σ4
u

E(u2
1U1U

′
1) when p = 0,

and when p > 0,

Σρ̂û
m

= Λ′A−1
ψ BψA−1

ψ Λ +
1

σ4
u

E(u2
1U1U

′
1)

− 1

σ2
u

{

Λ′A−1
ψ E(ω1u

2
1X1U

′
1) + E(ω1u

2
1U1X

′
1)A

−1
ψ Λ

}

, (6.4)

where σ2
u = Eu2

1.

The following theorem is an obvious consequence of Lemma 6.1.
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Theorem 6.1 Suppose that the assumptions of Theorem 4.1 hold, in particular

that the AR order is correctly specified. Then the portmanteau statistic Qû
m

L→
∑m

i=1 ξi,mZ2
i , where ξm = (ξ1,m, . . . , ξm,m)′ is the eigenvalues vector of the matrix

Σρ̂û
m

and Z1, . . . , Zm are independent N (0, 1) variables.

It should be noted that an estimator Σ̂ρ̂û
m

of Σρ̂û
m

can be straightforwardly obtained

from the estimation of the sole AR part in model (2.1). Indeed, by inversion of the

estimated AR polynomial, an estimator of Λ is obtained. The matrices Aψ and Bψ

can be estimated by

Âψ =
1

n

n+1
∑

t=r∧p+1

ωtXtX
′
t, B̂ψ =

1

n

n+1
∑

t=r∧p+1

ω2
t û

2
t XtX

′
t, (6.5)

noting that Eω2
t σ

2
t (θ0)XtX

′
t = Eω2

t u
2
t XtX

′
t. Similarly the other matrices involved

in the right-hand side of (6.4) have the form of expectations and can therefore be

estimated by empirical means (with Ut replaced by Ût = (ût−1, . . . , ût−m)′). Finally

σ2
u is estimated by the empirical mean of the û2

t . Thus the diagnostic checking of

the AR part can be made at the end of the first stage of the WLS procedure,

and does not require estimating the LARCH parameter β. The distribution of the

quadratic form
∑m

i=1 ξ̂i,mZ2
i , where the ξ̂i,m are the eigenvalues of the matrix Σ̂ρ̂û

m
,

can then be computed using the algorithm by Imhof (1961).

Remark 6.1 When q = 0 and ωt = 1, i.e. when a standard AR model is estimated

by LS, it is well known that the asymptotic distribution of Qû
m can be approximated

by a χ2
m−p. No such simplification seems to hold with the general WLS, even in

the case q = 0. Similarly the law does not reduce to a χ2 when ωt = 1 and q > 0

(see the remark below), which is in accordance with the results obtained by Francq

et al. (2005) in the general framework of weak ARMA models.

Remark 6.2 It can be noticed that when p = 0 and b0 = (b01, . . . , b0q) = 0, the

process (Xt) is an iid white noise and the asymptotic distribution of the portman-
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teau statistic is the usual χ2
m distribution, because Σρ̂û

m
reduces to the m × m

identity matrix. Still when p = 0 but b 	= 0, the matrix Σρ̂û
m

is not the identity

matrix. For instance if q = 1 and the distribution of ǫt is symmetric, elementary

computations show that the first diagonal term of Σρ̂û
m

is

1 − b2
01σ

2
0ǫ

1 − b4
01Eǫ4

1

{

1 +
b2
01Eǫ4

1

σ2
0ǫ

(1 + 4b2
01σ

2
0ǫ)

}

	= 1 when b01 	= 0,

so that Qû
m does not asymptotically follow the χ2

m distribution.

Remark 6.3 Note that when Σρ̂û
m

is regular, the modified Box-Pierce statistic

Q̃û
m := nρ̂û

m
′Σ̂−1

ρ̂û
m

ρ̂û
m

asymptotically follows a χ2
m distribution, under the null hypothesis of adequacy of

the order p for the AR part. Since the asymptotic distribution of Q̃û
m is simpler than

that of Qû
m, the former seems more attractive for testing the overall significance

of ρ̂û(h), h = 1, . . . ,m. Note however that the regularity assumption on Σρ̂û
m

is

not very explicit, because the invertibility of this matrix depends on the unknown

coefficients and on the choice of the weights in the estimation procedure.

6.2 Diagnostic checking for the LARCH part

As proposed by Higgins and Bera (1992), the adequacy of ARCH-type models

can be assessed by means of the Box-Pierce statistic Qǫ̂2
m on the first m squared

standardized residual autocorrelations. The asymptotic distribution of Qǫ̂2
m has

been given by Li and Mak (1994), under regularity conditions which do not hold in

our framework. Because we use WLS estimators instead of the maximum-likelihood

estimator, the asymptotic distribution of Qǫ̂2
m will be different than that obtained

by Li and Mak (1994).

Recall that the WLS estimator defined in Theorem 4.2 is denoted by θ̂ =

(ψ̂′, β̂′)′, with ψ̂ = ψ̂WLS = (ψ̂1, . . . , ψ̂p)
′ and β̂ = β̂WLS = (b̂1, . . . , b̂q, σ̂

2
ǫ )

′. The
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autocovariances and autocorrelations of the squared (standardized) residuals are

defined by

γ̂ǫ2(ℓ) =
1

n

n
∑

t=ℓ+1

(

ǫ̂2
t − ǫ2

)(

ǫ̂2
t−ℓ − ǫ2

)

and ρ̂ǫ2(ℓ) =
γ̂ǫ2(ℓ)

γ̂ǫ2(0)
, (6.6)

for 0 ≤ ℓ < n, where for q > 0

ǫ̂t = ǫt(θ̂), ǫt(θ) =
ut(ψ)

1 +
∑q

i=1 biut−i(ψ)
, ǫ2 =

1

n

n
∑

t=1

ǫ̂2
t . (6.7)

When q = 0, we set ǫt(θ) = ut(ψ). In order to guarantee that ǫ̂t be almost surely

well defined, at least for n large enough, we make the following assumption

P

(

1 +

q
∑

i=1

b0iut−i = 0

)

= 0. (6.8)

Note that (6.8) is satisfied when the distribution of ǫt has a density with respect

to the Lebesgue measure. This assumption entails the (almost sure) existence of

(∂ǫt/∂θ) (θ0). Let ρ̂ǫ̂2
m = (ρ̂ǫ2(1), . . . , ρ̂ǫ2(m))′ and

Vt =
(

ǫ2
t − σ2

0ǫ

) (

ǫ2
t−1 − σ2

0ǫ, . . . , ǫ
2
t−m − σ2

0ǫ

)′
.

We also define the matrices

S =

⎛

⎝

A−1
ψ E(ω1u1X1V

′
1)

A−1
β AβψA−1

ψ E(ω1u1X1V
′
1) + A−1

β E(τ1ν1
∂σ2

1(ψ0,β0)
∂β V ′

1)

⎞

⎠

and

Λǫ2 =
(

λǫ2

1 , . . . , λǫ2

m

)′
, where λǫ2

ℓ = 2Eǫ1
∂ǫ1

∂θ
(θ0)(ǫ

2
1−ℓ − σ2

0ǫ).

The existence of these matrices requires moment conditions. Note that S = 0 when

Eǫ3
t = 0. We also need to reinforce Assumption (6.8). Thus we make the following

assumptions.

A13: If q > 0, there exist a neighborhood V (θ0) of θ0 and a positive number ι > 0 such that

P

(

inf
θ∈V (θ0)

∣

∣

∣

∣

∣

1 +

q
∑

i=1

biut−i(ψ)

∣

∣

∣

∣

∣

> ι

)

= 1.
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A14: Ex6
t < ∞.

With these notations and assumptions we have the following result.

Theorem 6.2 Suppose that the assumptions of Theorem 4.2 hold, in particular

that the AR order p and the LARCH order q are correctly specified. Assume also

that the assumptions A13 and A14 hold true. Then
√

nρ̂ǫ̂2
m

L→ N (0,Σ
ρ̂ǫ̂2

m
), where

Σ
ρ̂ǫ̂2

m
=

1

σ8
ǫ (µ4 − 1)2

{

σ8
ǫ (µ4 − 1)2Im + Λǫ2ΣWLSΛǫ2 ′

+ S′Λǫ2 ′

+ Λǫ2S
}

when q 	= 0, and

Σ
ρ̂ǫ̂2

m
= Im (6.9)

when q = 0.

Moreover the portmanteau statistic

Qǫ̂2
m := n(n + 2)

m
∑

h=1

ρ̂2
ǫ2(h)

n − h

L→
m
∑

i=1

ξǫ2
i,mZ2

i ,

where ξǫ2
1,m, . . . , ξǫ2

m,m are the eigenvalues of the matrix Σ
ρ̂ǫ̂2

m
and Z1, . . . , Zm are

independent N (0, 1) variables.

Remark 6.4 Assumption A13 is restrictive, but seems unavoidable since the port-

manteau statistics relies on rescaled residuals in which the inverses of σt(θ) are

taken in a neighborhood of θ0. However, simulation experiments show that the

portmanteau test behaves well in finite sample when (most of) the 1+
∑q

i=1 b̂iût−i

are far enough from 0.

Remark 6.5 In Remark 6.1 it was seen that the asymptotic distribution of Qû
m

depends, in a complicated way, of the weights and the coefficients, even in the case

q = 0. By contrast, (6.9) shows that the asymptotic distribution of Qǫ̂2
m is χ2

m

when the DGP is an AR model with iid innovations, whatever the AR order p and
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whatever the weights ωt. The χ2
m-asymptotic distribution for Qǫ̂2

m was obtained by

McLeod and Li (1983) in the case q = 0 and ωt = 1, which corresponds to the

standard LSE.

Remark 6.6 A remark similar to 6.3 holds. When Σ
ρ̂ǫ̂2

m
is regular and Σ̂

ρ̂ǫ̂2
m

denotes

any consistent estimator of Σ
ρ̂ǫ̂2

m
, the modified statistic

Q̃ǫ̂2

m := nρ̂ǫ̂2 ′

m Σ̂−1

ρ̂ǫ̂2
m

ρ̂ǫ̂2

m

asymptotically follows a χ2
m distribution, under the null hypothesis of adequacy of

the orders p and q.

7 Numerical Illustration

7.1 Monte Carlo study

This section examines the performance of the asymptotic estimation results in

finite samples through Monte Carlo experiments. Data are generated through the

AR(1)-LARCH(1) model

xt = ψ01xt−1 + ut, ut = (1 + b01ut−1)ǫt, ǫt iid N (0, σ2
0ǫ), σ0ǫ > 0. (7.1)

Table 1 compares the distribution of the QML, LS and WLS estimates of the 3

parameters ψ01, b01 and σ2
0ǫ over N = 500 independent simulations of the model,

for the sample sizes n = 100 and n = 1, 000. We used the version of the WLSE

defined by the weights (4.6) based on an ARCH proxy of the volatility. The failure

of the QMLE is perfectly explained by Proposition 3.1, since Assumption A5 is not

satisfied by the DGP. With the particular choice of parameters of these simulations

experiments, the LSE and WLSE provide very close results.
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Table 1: Comparison of the QML, LS and WLS estimators of the AR(1)-LARCH(1)

model (7.1). The number of replications is N = 500.

QMLE LSE WLSE

n = 100

Min Max Bias RMSE Min Max Bias RMSE Min Max Bias RMSE

ψ01 = 0.9 -136.71 29.69 -0.415 7.531 0.58 1.14 0.022 0.062 0.69 1 0.017 0.051

b01 = −0.5 -101.51 61.91 0.185 8.693 -1.03 -0.13 -0.111 0.18 -0.98 -0.13 -0.104 0.18

σ2
0ǫ = 1 -0.09 48.21 5.009 7.03 0.44 6.15 -0.121 0.368 0.53 2.14 -0.095 0.275

n = 1000

ψ01 = 0.9 -166.42 34.11 -0.327 9.265 0.7 0.88 0.004 0.028 0.72 0.86 0.002 0.022

b01 = −0.5 -215.38 942.05 2.009 43.999 -0.91 -0.3 -0.027 0.104 -0.62 -0.34 -0.028 0.058

σ2
0ǫ = 1 2.25 6.53 2.686 2.756 0.53 1.43 -0.036 0.118 0.82 1.27 -0.019 0.076

Table 2 compares the performance of four versions of the WLSE: the LSE

in which the weights are constant, the WLSE based on an ARCH proxy of the

volatility, the WLSEHL with the weights (4.4) of Horváth and Liese (2004), and the

WLSEL defined by the weights (4.5) proposed by Ling (2007) in a similar context.

With the value b01 = −0.54 the simulated process (xt) admits moments of order

eight, with b01 = −0.63 we have Ex6
t < ∞ but Ex8

t = ∞, with b01 = −0.75 we

have Ex4
t < ∞ and Ex6

t = ∞, with b01 = −0.99 we have Ex2
t < ∞ and Ex4

t = ∞,

and with b01 = −1.1 the second order moments do not exist. In the table, the best

(i.e. minimal) root mean squared error (RMSE) and the best bias of estimation are

displayed in bold. As expected the performance of the four versions is equivalent

when the DGP admits moments of hight order, and the performance of the LSE

decreases dramatically when |b01| increases. Overall the behavior of the WLSE and

WLSEHL remains satisfactory whatever the value of b01, with a slight advantage for

the WLSE in terms of RMSE. We thus used this WLSE version for the application

23



Table 2: Comparison of four different versions of the WLS estimator. The DGP is an

AR(1)-LARCH(1) process with a gaussian iid noise ǫt. The number of replications is

N = 500 and the length of the simulations is n = 100.

LSE WLSE WLSEHL WLSEL

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψ01 = 0.9 -0.020 0.057 0.016 0.052 0.006 0.069 0.010 0.053

b01 = −0.54 0.294 1.967 -0.071 0.205 0.011 0.340 -0.082 0.223

σ2
0ǫ

= 1 0.127 0.340 -0.045 0.336 -0.029 0.387 -0.083 0.291

ψ01 = 0.9 -0.022 0.061 0.016 0.053 0.007 0.072 0.010 0.055

b01 = −0.63 0.383 2.218 -0.079 0.226 -0.014 0.338 -0.096 0.481

σ2
0ǫ = 1 0.210 0.497 -0.067 0.333 -0.059 0.427 -0.139 0.392

ψ01 = 0.9 -0.026 0.068 0.016 0.054 0.008 0.077 0.01 0.058

b01 = −0.75 0.495 4.315 -0.059 0.277 -0.038 0.363 0.021 2.411

σ2
0ǫ = 1 0.403 1.109 -0.066 0.355 -0.107 0.497 -0.238 0.621

ψ01 = 0.9 -0.035 0.094 0.012 0.054 0.004 0.094 0.010 0.070

b01 = −0.99 2.200 9.022 -0.069 0.282 -0.009 0.576 1.864 8.840

σ2
0ǫ

= 1 2.864 11.589 -0.069 0.282 -0.241 0.828 -1.400 7.050

ψ01 = 0.9 -0.040 0.110 0.012 0.067 0.004 0.110 0.010 0.080

b01 = −1.1 2.417 9.138 -0.065 0.304 0.254 2.665 4.372 12.547

σ2
0ǫ

= 1 13.896 65.483 -0.096 0.708 -0.286 1.035 -5.591 44.282
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Table 3: Test of conditional homoscedasticity against a LARCH(q) model for stock

market indices.

m 1 2 3 4 5 6 7 8 9 10 11 12

CAC Rn 5 10.1 18.9 24.9 31.1 31 35.8 40 55.6 56.2 58.8 63

p-value 0.025 0.006 0 0 0 0 0 0 0 0 0 0

Changhai Rn 0.5 0.6 1.7 5.1 8.4 8.8 8.8 12.4 15 15.4 16 17.1

p-value 0.479 0.728 0.643 0.28 0.136 0.186 0.267 0.132 0.092 0.12 0.142 0.144

DAX Rn 8.3 14.4 17.7 19.3 21 21 22.4 23.1 30.1 30.3 36.9 37.9

p-value 0.004 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0 0.001 0 0

DJA Rn 5.5 23.9 26 26.2 29.8 30.8 36.7 38.7 41 45.1 45.7 50.2

p-value 0.019 0 0 0 0 0 0 0 0 0 0 0

DJT Rn 1.1 8.6 11.1 11.2 11.9 14.2 16.2 16.3 22.2 22.6 22.7 26.9

p-value 0.303 0.014 0.011 0.025 0.036 0.028 0.023 0.039 0.008 0.012 0.019 0.008

FTSE Rn 6.3 12.9 15.8 21 25.5 25.7 33.4 33.5 51.4 52.5 53 54

p-value 0.012 0.002 0.001 0 0 0 0 0 0 0 0 0

Nasdaq Rn 3.2 8.1 8.2 8.3 11.5 11.5 11.6 11.6 12 12.6 12.6 14.9

p-value 0.075 0.018 0.043 0.08 0.043 0.074 0.116 0.172 0.216 0.247 0.319 0.248

Nikkei Rn 11.6 28.5 32 32.1 44 45.8 50.7 53.1 57.2 58.5 59.3 64.1

p-value 0.001 0 0 0 0 0 0 0 0 0 0 0

SP 500 Rn 6.7 27.8 29.6 29.6 38.1 45.1 47.1 48.4 55.4 61.6 62.1 66.8

p-value 0.009 0 0 0 0 0 0 0 0 0 0 0

of the next section.

7.2 Application to financial series

8 Conclusion

LARCH is an attractive class of models for conditional heteroscedasticity, which is

able to capture different effects of the volatility, keeping the parsimony of the stan-

dard ARCH and avoiding the positivity constraints on the coefficients. However,

the QMLE is not recommended for these models. This paper has shown that this

method produces inconsistent estimator. The theoretical results were confirmed by
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Table 4: LARCH(5) models for stock market indices.

b1 b2 b3 b4 b5 σ2
ǫ

CAC Estimate -0.086 -0.075 -0.159 -0.136 -0.123 1.424

Standard Error 0.013 0.013 0.014 0.014 0.013 0.036

t-ratio -6.66 -5.65 -11.48 -10.04 -9.22

Changhai Estimate -0.084 -0.074 -0.104 -0.096 -0.11 1.878

Standard Error 0.025 0.025 0.025 0.025 0.025 0.095

t-ratio -3.4 -2.99 -4.15 -3.85 -4.35

DAX Estimate -0.141 -0.209 -0.164 -0.206 -0.139 1.228

Standard Error 0.017 0.018 0.018 0.019 0.018 0.038

t-ratio -8.29 -11.43 -9.1 -10.98 -7.66

DJA Estimate -0.219 -0.5 -0.421 0.218 -0.071 0.453

Standard Error 0.036 0.045 0.043 0.037 0.034 0.02

t-ratio -6.06 -11.08 -9.91 5.93 -2.09

DJT Estimate -0.034 -0.132 -0.114 0.044 -0.041 1.577

Standard Error 0.019 0.021 0.02 0.019 0.018 0.062

t-ratio -1.78 -6.42 -5.8 2.33 -2.25

FTSE Estimate -0.186 -0.113 -0.218 -0.211 -0.213 0.871

Standard Error 0.018 0.018 0.018 0.019 0.018 0.022

t-ratio -10.51 -6.38 -11.83 -11.33 -11.62

Nasdaq Estimate -0.344 -0.673 -0.099 -0.034 -0.051 0.691

Standard Error 0.024 0.03 0.022 0.022 0.023 0.025

t-ratio -14.33 -22.25 -4.43 -1.51 -2.26

Nikkei Estimate -0.042 -0.064 -0.056 -0.035 -0.055 1.762

Standard Error 0.013 0.014 0.014 0.013 0.014 0.057

t-ratio -3.19 -4.7 -4.11 -2.62 -4.06

SP 500 Estimate -0.323 -0.545 -0.257 0.086 -0.081 0.531

Standard Error 0.028 0.033 0.027 0.026 0.025 0.018

t-ratio -11.69 -16.63 -9.5 3.35 -3.22
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Table 5: Portmanteau test of adequacy of the AR(0) model (absence of linear part) for

the linear dynamics of nine stock market returns.

m 1 2 3 4 5 6 7 8 9 10 11

CAC Q̃û

m 0.1 0.4 5.1 5.8 10.6 11.3 12.6 12.8 12.8 12.9 13.4

p-val 0.816 0.824 0.163 0.212 0.059 0.08 0.083 0.12 0.173 0.227 0.267

Changhai Q̃û

m
0 1.1 3.3 5.8 6.1 8.3 8.6 8.7 8.7 9.2 11.2

p-val 0.853 0.577 0.351 0.218 0.292 0.219 0.283 0.371 0.463 0.509 0.427

DAX Q̃û

m
0.2 0.2 3.5 6 7.3 10.4 10.6 11.3 11.3 11.9 13.6

p-val 0.634 0.893 0.316 0.202 0.199 0.107 0.156 0.186 0.256 0.294 0.255

DJA Q̃û

m
0.6 1.2 1.2 1.4 1.9 4.2 8.4 8.5 9 9.5 10.2

p-val 0.458 0.547 0.751 0.847 0.859 0.65 0.297 0.384 0.435 0.486 0.51

DJT Q̃û

m
8.1 10.3 11.3 12.6 12.8 17.3 20.8 21.4 21.4 21.4 21.5

p-val 0.004 0.006 0.01 0.013 0.025 0.008 0.004 0.006 0.011 0.018 0.029

FTSE Q̃û
m 1.1 1.8 14.4 16.1 17.7 19.9 20 20.6 20.8 21.1 23.3

p-val 0.303 0.399 0.002 0.003 0.003 0.003 0.005 0.008 0.014 0.02 0.016

Nasdaq Q̃û
m 1.4 4 4 4.3 4.7 4.9 5.5 7.1 7.2 7.3 7.3

p-val 0.243 0.138 0.265 0.367 0.449 0.555 0.6 0.528 0.614 0.694 0.771

Nikkei Q̃û
m 0.4 9.3 9.5 9.5 9.5 10.9 10.9 11.2 11.5 14.5 14.7

p-val 0.532 0.01 0.024 0.05 0.091 0.091 0.142 0.192 0.242 0.152 0.195

SP 500 Q̃û

m 0.6 1.4 2.6 2.6 4.6 6.2 9.6 9.6 9.8 10.2 10.4

p-val 0.431 0.499 0.456 0.623 0.461 0.403 0.215 0.292 0.369 0.42 0.493
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finite-sample experiments. It is interesting to note that a major estimation tech-

nique, which is very robust under change of the distribution of the iid noise, fails

for a class of conditionally heteroscedastic models. To our knowledge, this is the

only example of failure of the QMLE, in GARCH-type models, that is not due to

the lack of a moment condition.

To overcome this problem, we proposed a self-weighted LSE. For AR-LARCH

models, this estimator was shown to be asymptotically normal under moment con-

ditions depending on the choice of weights for the AR and ARCH parts. These

results were used to construct Wald and score tests for testing conditional ho-

moscedasticity. Furthermore, diagnostic portmanteau tests were developed. Their

asymptotic distribution was shown to be far from the standard chi-square. It is

possible to extend the class to GARCH-type models, allowing the volatility to

depend on its own past values. This is left for future research.

Appendix: Proofs

A.1 Proof of Theorem 2.1

The scheme of the proof is standard (see e.g. Francq and Zakoïan, 2004, Theorems

2.1 and 3.1), and consists in showing

i) ut(θ) = ut(θ0) and σ2
t (θ) = σ2

t (θ0) Pθ0 a.s. for all t =⇒ θ = θ0,

ii) E|ℓt(θ0)| < ∞, and if θ 	= θ0, Eℓt(θ) > Eℓt(θ0),

iii) any θ 	= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

ln(θ∗) > Eℓ1(θ0), a.s.

We first prove i). In view of A2 and A5, we have σ2
t (θ0) = Var(xt | Ft−1) > 0

with probability 1, and it can be shown that ut(θ) = ut(θ0) entails that the first
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p components of θ and θ0 are the same. Let θ such that σ2
t = σ2

t (θ) = σ2
t (θ0) 	= 0

and ut = ut(θ) = ut(θ0) a.s. Writing σt(θ) = σǫ{b1ut−1 + vt−2(θ)} where vt−2(θ) =

1 +
∑q

i=2 biut−i, we have

σ2
t (θ0) = σ2

t (θ)

⇔ σ2
0ǫ{b01ut−1 + vt−2(θ0)}2 = σ2

ǫ {b1ut−1 + vt−2(θ)}2

⇔ (σ2
ǫ b

2
1 − σ2

0ǫb
2
01)σ

2
t−1η

2
t−1 + 2σt−1{σ2

ǫ b1vt−2(θ) − σ2
0ǫb01vt−2(θ0)}ηt−1

+{σ2
ǫ vt−2(θ) − σ2

0ǫvt−2(θ0)} := at−2η
2
t−1 + bt−2ηt−1 + ct−2 = 0.

By taking the expectation of the last equality conditional on Ft−2 we get at−2 +

ct−2 = 0. We thus have

at−2(η
2
t−1 − 1) = −bt−2ηt−1 a.s. (A.1)

Suppose that σ2
ǫ b

2
1 	= σ2

0ǫb
2
01, that is at−2 	= 0 a.s. It follows that ηt−1 	= 0 and

(η2
t−1 − 1)/ηt−1 = −bt−2/at−2 a.s. Because the two sides of this equality involve

independent variables, these variables are constant. Hence there is a constant c

such that η2
t−1 − 1 = cηt−1, but this contradicts A5. We thus have proved that

σ2
ǫ b

2
1 = σ2

0ǫb
2
01. If b1 = 0 we have b1 = b01. Now suppose b01 	= 0. Since at−2 = 0

a.s. we have, from (A.1),

bt−2 = 0 = {σ2
ǫ b1vt−2(θ) − σ2

0ǫb01vt−2(θ0)}σt−1ηt−1.

Multiplying the last equation by ηt−1 and taking the expectation conditional to

Ft−2 yields

σ2
ǫ b1σt−1vt−2(θ) = σ2

0ǫb01σt−1vt−2(θ0)

and thus, since by assumption σt−1 	= 0 and since we have σ2
ǫ b

2
1 = σ2

0ǫb
2
01,

b01vt−2(θ) = b1vt−2(θ0)
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which, by taking the expectation, implies b01 = b1. Proceeding similarly we get,

recursively, b0i = bi for all i. Finally, σǫ = σ0ǫ and θ = θ0.

Now we turn to ii). Note that, by A1 and A2, the process (xt) is station-

ary and ergodic (see e.g. Billingsley (1995, Theorem 36.4)). Since ℓt(θ) is a

measurable function of xt, . . . , xt−p−q, the process {ℓt(θ)} is also stationary and

ergodic. Moreover, in view of A5, Eℓt(θ) exists in R ∪ {+∞}. Thus the objec-

tive function ln(θ) converges a.s. to Eℓt(θ) as n → ∞. In FMZ it was shown

that under A1, Eσ2s
t (θ0) < ∞ for some sufficiently small s > 0. It follows that

Eℓt(θ0) = 1 + 1
sE log σ2s

t (θ0) exists in R. The limit criterion is minimum at the

true value because

Eℓt(θ) − Eℓt(θ0) = E

{

log
σ2

t (θ)

σ2
t (θ0)

+
σ2

t (θ0)

σ2
t (θ)

− 1

}

+E
{ut(θ) − ut(θ0)}2

σ2
t (θ)

+ E
2ǫtσt(θ0) {ut(θ) − ut(θ0)}

σ0ǫσ
2
t (θ)

≥ 0

using the fact that the last expectation is null (ǫt being orthogonal to the random

variable σt(θ0) {ut(θ) − ut(θ0)}σ−2
t (θ) ∈ Ft−1), and using the elementary inequality

log x ≤ x−1. Moreover the inequality is an equality if and only if ut(θ)−ut(θ0) = 0

and σ2
t (θ0) = σ2

t (θ) with probability 1, which by ii) implies θ = θ0.

As in Francq and Zakoïan (2004) we can show that the ergodic theorem and

the continuity of θ �→ Eθℓ1(θ) entail iii). A standard compactness argument allows

to complete the proof of the consistency.

Now we turn to the asymptotic normality. It is easy to see that the proof

follows from the following properties:

i) E

∥

∥

∥

∥

∂ℓt(θ0)

∂θ

∂ℓt(θ0)

∂θ′

∥

∥

∥

∥

< ∞ and n−1/2
n
∑

t=1

∂ℓt

∂θ
(θ0) ⇒ N (0,I) ,

ii) E

∥

∥

∥

∥

∂2ℓt(θ0)

∂θ∂θ′

∥

∥

∥

∥

< ∞ and n−1
n
∑

t=1

∂2ℓt

∂θi∂θj
(θ∗) → J (i, j) a.s.,
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for any θ∗ between θ̂n and θ0,

iii) I and J are not singular.

Differentiating (2.3) we obtain

∂ℓt(θ)

∂θ
=

{

1 − u2
t (θ)

σ2
t (θ)

}

1

σ2
t (θ)

∂σ2
t (θ)

∂θ
+ 2

ut(θ)

σ2
t (θ)

∂ut(θ)

∂θ

=

{

1 − u2
t (θ)

σ2
t (θ)

}

2

1 +
∑q

i=1 biut−i(θ)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−∑q
i=1 biXt−i

ut−1(θ)
...

ut−q(θ)

1+
Pq

i=1 biut−i(θ)

2σ2
ǫ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+2
ut(θ)

σ2
t (θ)

⎛

⎝

−Xt

0q+1

⎞

⎠ (A.2)

with Xt = (xt−1, . . . , xt−p)
′. Noting that

{

1 − u2
t (θ0)/σ

2
t (θ0)

}

= 1 − ǫ2
t /σ

2
ǫ and

ut(θ0)/σt(θ0) = ǫt/σǫ are centered and independent of the other random vari-

ables involved in ∂ℓt(θ0)/∂θ, it can be shown that, under A2, A5 and A7,

(∂ℓt(θ0)/∂θ,Ft) is a square integrable stationary martingale difference. Thus i)

comes from the Central Limit Theorem (CLT) of Billingsley (1961).

Differentiating (A.2) we obtain

∂2ℓt(θ)

∂θ∂θ′
=

(

1 − u2
t (θ)

σ2
t (θ)

)

1

σ2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′
+

(

2
u2

t (θ)

σ2
t (θ)

− 1

)

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

+
2

σ2
t (θ)

∂ut(θ)

∂θ

∂ut(θ)

∂θ′
+

2ut(θ)

σ2
t (θ)

∂2ut(θ)

∂θ∂θ′

−2ut(θ)

σ4
t (θ)

(

∂ut(θ)

∂θ

∂σ2
t (θ)

∂θ′
+

∂σ2
t (θ)

∂θ

∂ut(θ)

∂θ′

)

.

Using the Hölder inequality, the compactness assumption A3, the existence of

fourth-order moments for xt and ut(θ) and Assumption A5, it can be shown that

sup
θ∈Θ

∥

∥

∥

∥

∂ℓt(θ)

∂θ

∥

∥

∥

∥

4/3

< ∞.
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With the same arguments it can be shown that

sup
θ∈Θ

∥

∥

∥

∥

∂2ℓt(θ)

∂θ∂θ′

∥

∥

∥

∥

1

< ∞. (A.3)

The continuity of θ �→ ∂2ℓt(θ)/∂θ∂θ′, the ergodic theorem and the dominated

convergence theorem now entail that for any ε > 0 there exists a neighborhood

V(θ0) of θ0 such that, a.s.

lim
n→∞

1

n

n
∑

t=1

sup
θ∈V(θ0)

∥

∥

∥

∥

∂2ℓt(θ)

∂θ∂θ′
− ∂2ℓt(θ0)

∂θ∂θ′

∥

∥

∥

∥

≤ ε. (A.4)

A direct application of the ergodic theorem entails

lim
n→∞

1

n

n
∑

t=1

∂2ℓt(θ0)

∂θ∂θ′
= J a.s. (A.5)

Thus ii) comes from (A.3), (A.4),(A.5) and the strong consistency of θ̂n.

The arguments used by Francq and Zakoïan (2004, p 631) show that if I is

singular then there exists λ = (λ′
1, λ

′
2)

′, with λ1 ∈ R
p and λ2 ∈ R

q+1, such that a.s.

λ′ ∂ut(θ0)

∂θ
= 0 and λ′∂σ2

t (θ0)

∂θ
= 0. (A.6)

Because ∂ut(θ0)/∂θ = (−X ′
t, 0

′
q+1)

′ the first equality entails λ1 = 0, and the second

equality reduces to

0 = λ′
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂σ2
t (θ0)
∂b1
...

∂σ2
t (θ0)
∂bq

∂σ2
t (θ0)
∂σ2

ǫ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= λ′
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2σ2
0ǫ (1 +

∑q
i=1 b0iut−i)ut−1

...

2σ2
0ǫ (1 +

∑q
i=1 b0iut−i) ut−q

(1 +
∑q

i=1 b0iut−i)
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

a.s.

Using the stationarity, we deduce that, conditional on {ǫu, u < t} there exists a

polynomial of degree 2, P2(x) = a0 + a1x + a2x
2, such that P2(ut) = 0, which

contradicts A5. Moreover

J = E

(

1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0)

)

+ 2E

(

1

σ2
t

∂ut

∂θ

∂ut

∂θ′
(θ0)

)

:= A + B

where A is strictly positive definite, by the previous arguments, and B is positive

semi-definite. Thus I and J are invertible.
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A.2 Proof of Proposition 3.1

For any fixed integer t0, with probability one we have xt0−1 	= 0, xt0/xt0−1 	= ψ1

and x2
t0−1 − xt0xt0−2 	= 0. For Θ sufficiently large

θ(t0) :=

(

xt0

xt0−1
, 0′p−1,−

1

xt0−1 − xt0
xt0−1

xt0−2

, 0′q−1, 1

)

∈ Θ.

Note that ut {θ(t0)} = σ2
t {θ(t0)} = 0. It follows that, with the conventions given

after (2.3), Ln{θ(t0)} = +∞. The measurable sequences (θ̂n)n≥1 such that θ̂n =

θ(t0) for all n ≥ t0 are inconsistent sequences of QMLE.

A.3 Proof of Theorem 4.1.

Writing Y = Xψ0 + U with U
′ = (u1, . . . , un), we have

ψ̂WLS =
(

X
′
ΩX

)−1
X

′
Ω(Xψ0 + U) = ψ0 +

(

X
′
ΩX

)−1
X

′
ΩU = ψ0 + o(1)

a.s., because in view of the ergodic theorem

n−1
X

′
ΩX → Aψ, n−1

X
′
ΩU → EωtutXt = Eǫtσ

−1
ǫ Eσt(θ0)ωtXt = 0.

The consistency is shown. Applying the CLT of Billingsley (1961) to the square in-

tegrable stationary martingale difference (ωtutXt,Ft), we obtain that n−1/2
X

′
ΩU

converges in law to the N (0, Bψ) distribution. To complete the proof, it remains to

show that Aψ is invertible. If Aψ was singular then there would exist λ 	= 0 ∈ Rp

such that λ′√ωtXt = 0 which would imply λ′Xt = 0 with probability one. This

would entail that xt, ut and ǫt belong to Ft−1, and ǫt would be independent of ǫt.

This is clearly impossible because Eǫt = 0 and Eǫ2
t 	= 0. Thus Aψ is invertible,

and the proof is complete.
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A.4 Proof of Theorem 4.2.

Let

Q̂n(β) =
1

n

n
∑

t=1

τtν
2
t (ψ̂, β), Qn(β) =

1

n

n
∑

t=1

τtν
2
t (ψ0, β).

We first show that

lim
n→∞

sup
β∈Θβ

∣

∣

∣
Q̂n(β) − Qn(β)

∣

∣

∣
= 0 a.s. (A.7)

We have, for some constant K

∣

∣

∣
ν2

t (ψ̂, β) − ν2
t (ψ0, β)

∣

∣

∣

≤
∣

∣

∣
νt(ψ̂, β) − νt(ψ0, β)

∣

∣

∣
2 sup

θ∈Θ
|νt(ψ, β)|

≤ K

{

∣

∣

∣ut(ψ̂) − ut

∣

∣

∣ sup
ψ∈Θψ

|ut(ψ)|

+

(

q
∑

i=1

|bi|
∣

∣

∣ut−i(ψ̂) − ut−i

∣

∣

∣

)

sup
θ∈Θ

σ2
t (ψ, β)|

}

sup
θ∈Θ

|νt(ψ, β)|

and
∣

∣

∣ut(ψ̂) − ut

∣

∣

∣ ≤
p
∑

i=1

|ψ̂i − ψ0i||xt−i|.

It follows that

sup
β∈Θβ

∣

∣

∣
ν2

t (ψ̂, β) − ν2
t (ψ0, β)

∣

∣

∣
≤ Mt‖ψ̂ − ψ0‖,

where (Mt) is a strictly stationary process. For t fixed, the strong consistency of ψ̂

implies Mt‖ψ̂−ψ0‖ → 0 a.s. Therefore the Cesaro sum n−1
∑n

t=1 τtMt‖ψ̂−ψ0‖ → 0

a.s. and (A.7) is shown.

This result and the ergodic theorem show that Q̂n(β) → Q∞(β) :=

Eτtν
2
t (ψ0, β) ∈ R+∪{+∞}, a.s. and uniformly in a neighborhood of β, as n → ∞.

Since τtνt(ψ0, β0) = τt(1 +
∑

b0iut−i)
2(ǫ2

t − σ2
0ǫ) and τt {νt(ψ0, β) − νt(ψ0, β0)} =

τt

{

σ2
t (ψ0, β0) − σ2

t (ψ0, β)
}

∈ Ft−1 are orthogonal (when Q∞(β) is finite, which

is the case at β = β0 in view of the moment condition A11), it can be shown
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that under the identifiability condition A4, Q∞(β) > Q∞(β0) when β 	= β0. The

consistency follows from standard arguments.

Under A6, the derivative of the criterion defined in (4.3) vanishes at β̂ = β̂WLS ,

for sufficiently large n. A Taylor expansion at the order 1 of the derivative around

β0 yields

0 =
1√
n

n
∑

t=1

τt
∂ν2

t (ψ̂, β0)

∂β
+

(

1

n

n
∑

t=1

τt
∂2ν2

t (ψ̂, β0)

∂β∂β′ + Rn

)

√
n
(

β̂ − β0

)

,

where the element of the matrix Rn are of the form

Rn(i, j) =
1

n

n
∑

t=1

τt

{

∂2ν2
t (ψ̂, β∗)

∂βi∂βj
− ∂2ν2

t (ψ̂, β0)

∂βi∂βj

}

for some β∗ between β̂ and β0. In view of the consistency result, the moment

condition E supθ∈V(θ0)

∥

∥

∥
τt

∂2ν2
t (θ)

∂θ∂θ′

∥

∥

∥
< ∞, and the continuity of the derivative,

Rn(i, j) → 0 a.s. Similar arguments and a Taylor expansion around ψ0 yields

0 =
1√
n

n
∑

t=1

τt
∂ν2

t (ψ0, β0)

∂β
+

1

n

n
∑

t=1

τt
∂2ν2

t (ψ0, β0)

∂β∂ψ′
√

n(ψ̂ − ψ0)

+oP (1) +

(

1

n

n
∑

t=1

τt
∂2ν2

t (ψ0, β0)

∂β∂β′ + oP (1)

)

√
n
(

β̂ − β0

)

.

Applying the CLT of Billingsley (1961) to the square integrable stationary martin-

gale difference {(τtνt∂νt(ψ0, β0)/∂β′, ωtutX
′
t)
′,Ft}, we obtain

⎛

⎝

1√
n

∑n
t=1 τt

∂ν2
t (ψ0,β0)

∂β
√

n
(

ψ̂ − ψ0

)

⎞

⎠ =

⎛

⎝

−2√
n

∑n
t=1 τtνt

∂σ2
t (ψ0,β0)

∂β

A−1
ψ

1√
n

∑n
t=1 ωtutXt

⎞

⎠

L→

⎛

⎝

Zβ

Zψ

⎞

⎠ ∼ N

⎧

⎨

⎩

0,

⎛

⎝

4Bβ −2BβψA−1
ψ

−2A−1
ψ B′

βψ A−1
ψ BψA−1

ψ

⎞

⎠

⎫

⎬

⎭

.

Applying the ergodic theorem we have a.s.

1

n

n
∑

t=1

τt
∂2ν2

t (ψ0, β0)

∂β∂ψ′ → −2Aβψ,
1

n

n
∑

t=1

τt
∂2ν2

t (ψ0, β0)

∂β∂β′ → 2Aβ .
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By arguments already given Aβ is invertible. Thus

√
n

⎛

⎝

β̂ − β0

ψ̂ − ψ0

⎞

⎠

L→

⎛

⎝

(−2Aβ)−1 (Zβ − 2AβψZψ)

Zψ

⎞

⎠

and the proof follows.

A.5 Proof of (5.2)

A Taylor expansion at the order 1 around θ0 yields

0q+1 =
1√
n

n
∑

t=1

τt
∂ν2

t (ψ̂, b̂, σ̂2
ǫ )

∂β
=

1√
n

n
∑

t=1

τt
∂ν2

t (ψ̂, 0q, σ̂
2c
ǫ )

∂β

+
1

n

n
∑

t=1

τt
∂2ν2

t (θ0)

∂β∂β′
√

n

⎛

⎝

b̂

σ̂2
ǫ − σ̂2c

ǫ

⎞

⎠+ oP (1). (A.8)

Notice that the last component of the first term in the right-hand side is null. It

follows that
√

n(σ̂2
ǫ − σ̂2c

ǫ ) = − 1

Aσ
Aσb

√
nb̂ + oP (1).

Now using the first q components of (A.8) we get ∆
c
n = A∗

√
nb̂ + oP (1), from

which the convergence in (5.2) follows.

A.6 Proof of Lemma 6.1.

We start by establishing a lemma which will be used to show Lemma 6.1. Let, for

0 ≤ ℓ < n,

γ(ℓ) =
1

n

n−ℓ
∑

t=1

utut+ℓ and ρ(ℓ) =
γ(ℓ)

γ(0)

denote the white noise “empirical” autocovariances and autocorrelations. Let γm =

(γ(1), . . . , γ(m))′ and ρm = (ρ(1), . . . , ρ(m))′.
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Lemma A.1 Under the assumptions of Theorem 4.1,
√

n(ψ̂ − ψ0, γm)′
L→

N (0,Σψ̂,γm
) when p > 0, where

Σψ̂,γm
=

⎛

⎜

⎜

⎜

⎝

A−1
ψ BψA−1

ψ A−1
ψ E(ωtu

2
t XtU

′
t)

E(ωtu
2
t UtX

′
t)A

−1
ψ E(u2

t UtU
′
t)

⎞

⎟

⎟

⎟

⎠

.

Proof. From the proof of Theorem 4.1, we have

√
n(ψ̂ − ψ0) = A−1

ψ

1√
n

n
∑

t=1

ωtutXt + oP (1).

We have
√

nγm =
1√
n

n
∑

t=1

utUt.

Applying the CLT of Billingsley (1961) to the square integrable stationary martin-

gale difference {(ωtutX
′
t, utU

′
t)

′,Ft}, Lemma A.1 is proved.

Now, in view of Francq et al. (2004, proof of Theorem 2) we have

γ̂m := (γ̂(1), . . . , γ̂(m))′ = γm − σ2
uΛ′(ψ̂ − ψ0) + Op(1/n).

Hence, by Lemma A.1, the asymptotic distribution of
√

nγ̂m is normal, with mean

zero and covariance matrix

Varas(
√

nγ̂m) = Varas(
√

nγm) + σ4
uΛ′ Varas(

√
nψ̂)Λ

−σ2
uΛ′ Covas(

√
nψ̂,

√
nγm) − σ2

u Covas(
√

nγm,
√

nψ̂)Λ.

Finally, we have

ρ̂m = γ̂m/σ2
u + Op(1/n),

from which Lemma 6.1 straightforwardly follows.
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A.7 Proof of Theorem 6.2.

To show Theorem 6.2 we establish an intermediate result which is the analog of

Lemma A.1. We set

γǫ2(ℓ) =
1

n

n
∑

t=ℓ+1

(ǫ2
t − σ2

ǫ )(ǫ
2
t−ℓ − σ2

ǫ ) and ρǫ2(ℓ) =
γǫ2(ℓ)

γǫ2(0)

for 0 ≤ ℓ < n. Let γǫ2
m = (γǫ2(1), . . . , γǫ2(m))′ and ρǫ2

m = (ρǫ2(1), . . . , ρǫ2(m))′.

Write θ̂ = (ψ̂′
WLS , β̂′

WLS)′.

Lemma A.2 Under the assumptions of Theorem 4.2, when p + q 	= 0,

√
n

⎛

⎝

θ̂ − θ0

γǫ2
m

⎞

⎠

L→ N

⎧

⎨

⎩

0,Σ
θ̂,γǫ2

m
:=

⎛

⎝

ΣWLS S

S′ E(VtV
′
t )

⎞

⎠

⎫

⎬

⎭

.

Proof. The proof is written for pq 	= 0, but can be straightforwardly modified

when p = 0 or q = 0. From the proof of Theorem 4.2, we have

√
n(θ̂ − θ0) =

⎛

⎝

A−1
ψ 0

A−1
β AβψA−1

ψ A−1
β

⎞

⎠

⎛

⎝

1√
n

∑n
t=1 ωtutXt

1√
n

∑n
t=1 τtνt

∂σ2
t (ψ0,β0)

∂β

⎞

⎠+ oP (1).

Noting that
√

nγǫ2
m =

1√
n

n
∑

t=1

Vt,

and applying the CLT of Billingsley (1961) to the square integrable stationary

martingale difference

{

(

ωtutX
′
t, τtνt

∂σ2
t (ψ0,β0)
∂β′ , V ′

t

)′
,Ft

}

, Lemma A.2 is proved.

Now remark that Assumptions A13 and A14 entail the existence Λǫ2 . Consider

for simplicity the case of an AR(0)-BL(1), then

E‖ǫt
∂ǫt

∂b
(θ0)‖2 = E

(

u2
t ut−1

(1 + b01ut−1)2

)2

≤ Eu6
t

ι4
< ∞.

In the general case, one can similarly check that E‖ǫt
∂ǫt

∂θ ‖2 < ∞, from which the

existence of λǫ2

ℓ = 2Eǫt
∂ǫt

∂θ (ǫ2
t−ℓ −σ2

ǫ )(θ0), and thus of Λǫ2 , follow. The existence of

S is a consequence of A9-A12.

38



Replacing ǫ2 by σ2
ǫ in γ̂ǫ2(ℓ), we define

γ̃ǫ2(ℓ) =
1

n

n
∑

t=ℓ+1

(ǫ̂2
t − σ2

ǫ )(ǫ̂
2
t−ℓ − σ2

ǫ ), ℓ = 0, . . . , n − 1.

We similarly define ρ̃ǫ2(ℓ), γ̃m and ρ̃m. It is easy to check that γ̃ǫ2(ℓ) − γ̂ǫ2(ℓ) =

op(1). Consequently
√

nγ̃m and
√

nγ̂m have the same asymptotic distribution,

when existing. The same is true for
√

nρ̃m and
√

nρ̂m.

Note that γ̃ǫ2(ℓ) is a function of θ̂ which takes the value γǫ2(ℓ) at the point θ0.

Assumption A 13 entails that γ̃ǫ2(ℓ) is well defined, and even derivable, when n is

large enough for θ̂ ∈ V (θ0). Moreover, the ergodic theorem entails that a.s.

∂γ̃ǫ2(ℓ)

∂θ
(θ0) =

1

n

n
∑

t=ℓ+1

(ǫ2
t − σ2

ǫ )
∂ǫ2

t−ℓ

∂θ
(θ0) +

2

n

n
∑

t=ℓ+1

ǫt
∂ǫt

∂θ
(ǫ2

t−ℓ − σ2
ǫ )(θ0)

→ λǫ2

ℓ

for ℓ > 0. A Taylor expansion then gives

γ̃ǫ2
m := (γ̂ǫ2(1), . . . , γ̂ǫ2(m))′ = γǫ2

m + Λǫ2(θ̂ − θ0) + Op(1/n).

It follows from Lemma A.2 that
√

nγ̂ǫ2
m converges in law to a gaussian distribution

with mean zero and covariance matrix

E(VtV
′
t ) + Λǫ2ΣWLSΛǫ2 ′

+ S′Λǫ2 ′

+ Λǫ2S.

Since

γ̂ǫ2(0) → Var ǫ2
t = σ4

ǫ (µ4 − 1) a.s.,

and

E(VtV
′
t ) = σ8

ǫ (µ4 − 1)2Im,

the first result of Theorem 6.2 follows. In the case q = 0, the vector (∂ǫt/∂θ) (θ0)

belongs to Ft−1, which implies λǫ2

ℓ = 0. The simplification of the asymptotic

variance when q = 0 follows. The last result is obvious.
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Inconsistency of the QMLE and asymptotic normality of the
weighted LSE for a class of conditionally heteroscedastic models:

complementary results

A Technical details

A.1 Proof of Remark 4.2

The result stated in the remark can be viewed as a version of the Gauss-Markov theorem. Let

Dt = A−1
ψ ωtσt(θ0)Xt − A∗

ψ
−1σ−1

t (θ0)Xt,

where A∗
ψ = E

(

σ−2
t (θ0)XtX

′
t

)

. Note that A∗
ψ
−1 is the asymptotic variance of the WLSE based on the

weights σ−2
t (θ0). The result then follows from

EDtD
′
t = A−1

ψ BψA−1
ψ − A∗

ψ
−1.

A.2 Remark on Assumption (6.8)

We now show that (6.8) is satisfied when the distribution of ǫt admits a density f with respect to the Lebesgue
measure. To simplify the notation, consider the LARCH(1) case ut = (1 + b01ut−1)ǫt, the arguments being
the same in the general LARCH(q) case. Assumption (6.8) being always satisfied when b01 = 0, one can
assume that b01 �= 0 and ǫt has a density. Lemma A.1 below entails that P (ut = c) = 0 for all c �= 0.
Assumption (6.8) follows since, by stationarity, P (1 + b01ut−1 = 0) = P (ut = −1/b01) = 0.

Lemma A.1 If X and Y are two independent random variables and Y has a density f respect to the

Lebesgue measure λ, then for every ε there exists a δ such that

P (XY ∈ A) < ε if λ(A) < δ and 0 �∈ A. (A.1)

Proof. For all Borel set A which does not contain 0, we define the set 1
x
A = {y ∈ R : xy ∈ A}. The

independence of X and Y , the dominated convergence theorem and the absolute continuity of PY entail that
for every ε there exists a δ such that

P (XY ∈ A) =

∫

P (Y ∈
1

x
A)dPX(x) < ε if λ(A) < δ.

✷

A.3 Estimating the asymptotic covariance matrices of the estimators and test
statistics

The asymptotic variance Σ of the QMLE, given in Theorem 2.1, could be easily estimated under the as-
sumptions of this theorem, but, in view of the inconsistency result given in Proposition 3.1, this is not of
interest. So we focus on the WLSE.

The matrices Aψ and Bψ defined in Theorem 4.1 can be consistently estimated by the matrices Âψ and

B̂ψ defined by (6.5). On order to define estimates for the other matrices involved in ΣWLS , we set

Ŷt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2σ̂2
ǫ

(

1 +
∑q

i=1 b̂iût−i

)

ût−1

...

2σ̂2
ǫ

(

1 +
∑q

i=1 b̂iût−i

)

ût−q
(

1 +
∑q

i=1 b̂iût−i

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1



for t = p + q + 1, . . . , n. In view of Theorem 4.2, at first sight it could seen natural to estimate the matrices
Aβ and Bβ by

Âβ =
1

n

n+1
∑

t=r∧(p+q)+1

τtŶtŶ
′
t , B̂β =

µ̂4 − 1

n

n+1
∑

t=r∧(p+q)+1

τ2
t σ4

t (θ̂)ŶtŶ
′
t ,

where µ̂4 = n−1
∑n

t=p+q+1 ǫ̂4t /σ̂4
ǫ and ǫ̂t is defined as in (6.7) by ǫ̂t = ût/(1+

∑q

i=1 b̂iût−i). The estimator of

Âβ is indeed reasonable, but the estimators B̂β and µ̂4 have a bad behavior when 1+
∑q

i=1 b̂iût−i is close to
zero for some t, which likely to occur when Assumption A13 can not be made. It is therefore safer to use
the estimator

B̃β =
1

n

n+1
∑

t=r∧(p+q)+1

τ2
t ν̂2

t (θ̂)ŶtŶ
′
t , ν̂t = û2

t − σ2
t (θ̂).

We can then define an estimator of µ4 by

µ̃4 = 1 +

∥

∥

∥B̃β

∥

∥

∥

∥

∥

∥
n−1

∑n+1
t=r∧(p+q)+1 τ2

t σ4
t (θ̂)ŶtŶ ′

t

∥

∥

∥

.

Under the symmetry assumption Eǫ3t = 0, which has been made for the numerical illustrations of the
present paper, it can be seen that Bβψ = 0 and Bβψ = 0. Then the asymptotic variance of the WLSE can
be estimated by

Σ̂WLS =

(

Σ̂ψ
WLS 0

0 Σ̂β
WLS

)

, Σ̂ψ
WLS = Â−1

ψ B̂ψÂ−1
ψ , Σ̂β

WLS = Â−1
β B̃βÂ−1

ψ .

When the assumption Eǫ3t = 0 is relaxed, the matrices Bβψ and Bβψ must be estimated. This can be done
in an obvious way, setting

Ẑt = −2ûtXt + 2σ̂2
ǫ

(

1 +

q
∑

i=1

b̂iût−i

)

q
∑

i=1

b̂iXt−i

for t = p + q + 1, . . . , n. In view of (6.4), it is then natural to propose an estimator of Σρ̂û
m

of the form

Λ̂′Â−1
ψ B̂ψÂ−1

ψ Λ̂ +
1

σ̂4
u

1

n

n
∑

t=m+p+1

û2
t ÛtÛ

′
t

− 1

σ̂2
u

⎧

⎨

⎩

1

n
Λ̂′Â−1

ψ

n
∑

t=max{r,m+p}+1

ωtû
2
t XtÛ

′
t +

1

n

n
∑

t=max{r,m+p}+1

ωtû
2
t ÛtX

′
tÂ

−1
ψ Λ̂

⎫

⎬

⎭

,

where σ̂2
u = n−1

∑n

t=p+1 û2
t . There is however no guarantee that this estimator be positive definite. To avoid

the problem, it is preferable to define an estimator of Σρ̂û

m

by

Σ̂ρ̂û
m

=
1

nσ̂4
u

n
∑

t=max{r,m+p}+1

ΥtΥ
′
t,

where
Υt = ûtÛt − σ̂2

uωtûtΛ̂
′Â−1

ψ Xt.

Under the assumption Eǫ3t = 0, we have S = 0 and the estimation of Σ
ρ̂ǫ̂2

m

rests on the estimation of Λǫ2.

Noting that, when 1 +
∑q

i=1 biut−i(ψ) �= 0,

∂ǫt

∂θ
(θ) =

1

{1 +
∑q

i=1 biut−i(ψ)}
2

⎛

⎝

−{1 +
∑q

i=1 biut−i(ψ)}Xt + ut(ψ)
∑q

i=1 biXt−i

−ut(ψ)ut−1(ψ)
0

⎞

⎠

2



and, under A13 and A14,

λǫ2

ℓ := 2Eǫt

∂ǫt

∂θ
(ǫ2t−ℓ − σ2

ǫ )(θ0)

= 2σ2
0ǫE

1

(1 +
∑q

i=1 b0iut−i)

⎛

⎝

∑q

i=1 b0iXt−i

−ut−1

0

⎞

⎠ (ǫ2t−ℓ − σ2
0ǫ).

Thus, one can propose the estimator

Λ̂ǫ2 =
(

λ̂ǫ2

1 , . . . , λ̂ǫ2

m

)′

, λ̂ǫ2

ℓ =
2σ̂2

0ǫ

n

n
∑

t=p+q+ℓ+1

ǫ̂t

ût

⎛

⎝

∑q

i=1 b̂iXt−i

−ût−1

0

⎞

⎠ (ǫ̂2t−ℓ − σ̂2
0ǫ)I{ût �=0}.

B Implementation in R

The programs given in this section are written in the R language (see http://cran.r-project.org/).

B.1 Auxiliary routines

The function estimARCHq.qml(omega0,alpha0,u) computes the QMLE of an ARCH(q) model for the series
u, with initial values omega0 and alpha0.

estimARCHq.qml<- function(omega0,alpha0,u){

q<-length(alpha0); valinit<-c(omega0,alpha0)

res <- nlminb(valinit,objf.arch.qml, lower=c(0.05,rep(0.00,q)),upper=c(rep(Inf,q+1)), u=u)

res$par }

objf.arch.qml <- function(x,u){

q <- length(x)-1; omega <- x[1]; alpha <- x[2:(q+1)]; n <- length(u); sigma2<-as.numeric(n)

for (t in (q+1):n) sigma2[t]<-omega+sum(alpha[1:q]*(u[(t-1):(t-q)]^2))

qml <- mean(log(sigma2[(q+1):n])+u[(q+1):n]**2/sigma2[(q+1):n])

qml }

The function phi.star.ARinv(psi,lagmax=m) computes the coefficients ψ∗
1 , . . . , ψ∗

m defined by

(

1 −
p

∑

i=1

ψiz
i

)−1

= 1 +

∞
∑

i=1

ψ∗
i zi, |z| ≤ 1,

when the zeroes of the polynomial 1 −
∑p

i=1 ψiz
i are outside the unit circle.

phi.star.ARinv<- function(psi,lagmax=50){

p<-length(psi); psi.star<-rep(0,lagmax); psi.star[1]<-psi[1]

if(p>1) for(h in 2:p) psi.star[h]<-psi[h]+sum(psi[(h-1):1]*psi.star[1:(h-1)])

if(lagmax>p) for(h in (p+1):lagmax) psi.star[h]<- sum(psi[p:1]*psi.star[(h-p):(h-1)])

psi.star }

B.2 Weighted Least Squares Estimator (WLSE)

B.2.1 WSLE of the AR parameter

First consider the implementation of the AR WLSE defined in Theorem 4.1. The observation x1, . . . , xn are
stored in the vector x. The function WLSE.g.AR(psi.init,p,q,x) computes the WLSE of the autoregressive
parameter (ψ1, . . . , ψp). The weights are the inverse of the volatility of an ARCH(p + q) model fitted to
linear innovations, obtained from an initial value psi.init of the AR parameter.

###############################################################################################################

# WLSE for the AR part, with weights 1/sig^2 where sig^2 is the volatility of an ARCH(r) model #

WLSE.g.AR<- function(psi.init,p,q,x){

n<-length(x); if(p>0) X <- matrix(nrow=(n-p),ncol=p); u<-rep(as.numeric(NA),n)

if(p<=0) u<-x else {for (t in 1:p) u[t]<-x[t]-sum(psi.init[1:(t-1)]*x[(t-1):1])
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for (t in (p+1):n) u[t]<-x[t]-sum(psi.init[1:p]*x[(t-1):(t-p)])} # u contains the linear innovations

omega.init<-var(u[(p+1):n]) # initial value for the ARCH intercept

r<-p+q # order of the ARCH

if(r>0 & 0.1*r<1)omega.init<-var(u[(p+1):n])*(1-0.1*r) # initial values for the ARCH coefficients

if(r>0){arch.estim<-estimARCHq.qml(omega.init,rep(0.1,r),u[(p+1):n]) # fitting an ARCH(r) to the linear innovations

omega<-arch.estim[1] # estimated values of the intercept

alpha<-arch.estim[2:(r+1)]} else {omega<-omega.init}# estimated values of the other ARCH coefficients

omegainv<-rep(omega,n) # omegainv contains the inverse of the weights

if(r>0) for (t in (r+1):n) omegainv[t]<-omegainv[t]+sum(alpha[1:r]*u[(t-1):(t-r)]^2)

if(p<=0) psi<-c() else {for (j in 1:p) X[1:(n-p),j]<-x[(n-j):(p+1-j)]/sqrt(omegainv[n:(p+1)])

psi<-solve(t(X)%*%X,t(X)%*%(x[n:(p+1)]/sqrt(omegainv[n:(p+1)])) )}# psi is the WLSE

res<-x # linear innovations induced from the WLSE

if(p>0) {for (t in 1:p) res[t]<-x[t]-sum(psi[1:(t-1)]*x[(t-1):1])

for (t in (p+1):n) res[t]<-x[t]-sum(psi[1:p]*x[(t-1):(t-p)])}

if(p<=0) {A.psi<-c(); B.psi<-c(); Sigma.psi<-c()} else {A.psi<-matrix(0,nrow=p,ncol=p)

B.psi<-matrix(0,nrow=p,ncol=p)

for (t in (n:(p+1))) {A.psi<-A.psi+ c(x[(t-1):(t-p)])%*%t(c(x[(t-1):(t-p)]))/(n*omegainv[t])

B.psi<-B.psi+ c(x[(t-1):(t-p)])%*%t(c(x[(t-1):(t-p)]))*(res[t]^2)/(n*omegainv[t]^2)}

Sigma.psi<-solve(A.psi)%*%B.psi%*%solve(A.psi)} # estimes of the WLSE asymptotic variance

if(r>0){arch.estim<-estimARCHq.qml(omega,alpha,res[(p+1):n])

omega<-arch.estim[1]

alpha<-arch.estim[2:(r+1)] # re-estimation of the ARCH equation

omegainv<-rep(as.numeric(NA),n)

omegainv[1:r]<-omega # re-estimation of the weights

for (t in 1:(p+1)) omegainv[t]<-omega

if(r>1) {for (t in (p+2):(r+p))omegainv[t]<-omega+sum(alpha[1:(t-p-1)]*res[(t-1):(p+1)]^2)}

for (t in (r+p+1):n) omegainv[t]<-omega+sum(alpha[1:r]*res[(t-1):(t-r)]^2)}

list(psi=psi,res=res,A.psi=A.psi,B.psi=B.psi,

Sigma.psi=Sigma.psi,omegainv=omegainv)}

B.2.2 WSLE of the AR-LARCH model

The function WLSE.g.ARLARCH() computes the WLSE of all the coefficients of the AR(p)-LARCH(q) model.

An estimates of the information matrices Aψ, Bψ, Aβ , Bβ and of the asymptotic variances Σψ
WLS and Σβ

WLS
are also computed. Estimated standard deviations for the estimates are deduced.

###############################################################################################################

# WLSE for the AR-LARCH models with weights omega=1/sig^2 and tau=1/sig^4 #

WLSE.g.ARLARCH<- function(phi.init,b.init,sig.init,x,quantil=0.01){

p<-length(phi.init); q<-length(b.init); n<-length(x)

result<-WLSE.g.AR(phi.init,p,q,x) # estimation of the AR part

u<-result$res # linear innovations

omega<-1/(result$omegainv); tau<-omega^2 # the 2 sequences of weights

if(p<=0)sig.psi<-c() else sig.psi<-sqrt(diag(result$Sigma.psi)/n) # estimated sdv for the WLSE of the AR coefs

valinit<-c(b.init,sig.init)

res <- nlminb(valinit,objf.wlse, lower=c(rep(-Inf,q),0),

upper=c(rep(Inf,q),Inf),p=p,q=q,tau=tau, u=u) # estimation of the LARCH coefficients

beta<-res$par; b <- beta[1:q]; sig2 <- beta[q+1]

h<-rep(sig2,n); s<-rep(1,n)

if(q>0) for (t in (q+p+1):n) {s[t]<-1+sum(b[1:q]*u[(t-1):(t-q)]); h[t]<-sig2*(s[t])^2}

epsilon<-u; tol<-as.numeric(quantile(abs(s),quantil))

if(q>0){ for (t in (q+p+1):n) {if(abs(s[t])>=tol) epsilon[t]<-u[t]/s[t]}}

Y.hat<-matrix(0,nrow=(q+1),ncol=n)

for (t in (q+p+1):n) {if(q>0)Y.hat[1:q,t]<-2*sig2*s[t]*u[(t-1):(t-q)]; Y.hat[(q+1),t]<-s[t]**2}

A.beta<-matrix(0,nrow=(q+1),ncol=(q+1)); B.beta<-matrix(0,nrow=(q+1),ncol=(q+1))

for (t in (p+q+1):n){A.beta<-A.beta+tau[t]*Y.hat[,t]%*%t(Y.hat[,t])/n

B.beta<-B.beta+((tau[t]*h[t])^2)*Y.hat[,t]%*%t(Y.hat[,t])/n}

B.beta<-B.beta*var(epsilon^2)/(sig2**2); mu4<- var(epsilon^2)/(sig2**2)+1

Sigma.beta<-solve(A.beta)%*%B.beta%*%solve(A.beta)

sig.beta<-sqrt(diag(Sigma.beta)/n) # estimated standard deviations for WLSE of the beta coefficient

list(psi=result$psi,A.psi=result$A.psi,B.psi=result$B.psi, Sigma.psi=result$Sigma.psi, sig.psi=sig.psi,

beta=beta,A.beta=A.beta,B.beta=B.beta, Sigma.beta=Sigma.beta, sig.beta=sig.beta,

objf=res$objective,res=u,omega=omega,tau=tau,epsilon=epsilon,mu4=mu4,tol=tol) }

#

objf.wlse <- function(para,p,q,tau,u){ if(q>0) b <- para[1:q]

sig2 <- para[q+1]; n <- length(u); h<-rep(sig2,n)

if(q>0) for (t in (q+p+1):n) h[t]<-sig2*(1+sum(b[1:q]*u[(t-1):(t-q)]))^2

obj <- mean(tau[(p+q+1):n]*(u[(p+q+1):n]**2-h[(p+q+1):n])**2)
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obj }

B.3 Testing for LARCH effect

The following function performs a score test of the null hypothesis of conditional homoscedasticity against
that of a LARCH(q) model with coefficient b �= 0.

########################################################################

# score test for conditional homoscedasticity (against LARCH effect) #

score.LARCH<- function(u,tau,q) {

n<-length(u); sig2c<-sum(tau*u^2)/sum(tau)

U<-matrix(0,nrow=n,ncol=q); V<-rep(0,n)

for(t in (q+1):n){U[t,1:q]<-tau[t]*u[(t-1):(t-q)]; V[t]<-u[t]^2-sig2c}

score.stat<-n*as.numeric(t(V)%*%U%*%solve(t(U)%*%U)%*%t(U)%*%V/t(V)%*%V)

pval<-1-pchisq(score.stat,df=q); list(stat=score.stat,pval=pval) }

B.4 Checking the adequacy of the AR(p)-LARCH(q) model

B.4.1 Checking the adequacy of the AR equation

The following function performs the portmanteau test defined in Remark 6.3. It uses the function phi.star

defined in section B.1, and also the function rho(u,h) which computes the autocorrelation of the vector u

at lag h.

#####################################################################

# portmanteau test for the adequacy of the AR equation #

Portmanteau.AR<- function(m,x,psi,u,A.psi,B.psi,Sigma.psi,omega){

n<-length(u); p<-length(psi); r<-max(p,m); Upsilon<-matrix(0,nrow=m,ncol=n)

s2u<-mean(u^2); r<-max(p+q,p+m)+1; if(p>0) Ainv<-solve(A.psi); Sigma.rho<-matrix(0,nrow=m,ncol=m)

if(p>0) Lambda<-matrix(0,nrow=p,ncol=m); if(p>0 & m>0)phi.star<-phi.star.ARinv(psi,lagmax=(m-1))

if(p>0) for(i in 1:p){if(m>=i) Lambda[i,i]<-1; if(m>i) Lambda[i,(i+1):m]<-phi.star[1:(m-i)]}

if(p>0) for (t in r:n) Upsilon[,t]<-u[t]*u[(t-1):(t-m)]-s2u*omega[t]*u[t]*t(Lambda)%*%Ainv%*%x[(t-1):(t-p)]

if(p<=0) for (t in r:n) Upsilon[,t]<-u[t]*u[(t-1):(t-m)]

for (t in r:n) Sigma.rho<-Sigma.rho+Upsilon[,t]%*%t(Upsilon[,t]) /n

Sigma.rho<-Sigma.rho/s2u^2; rho.m <- rep(as.numeric(NA),m)

for(h in 1:m) rho.m[h]<-rho(u,h); Q.m<-n*t(rho.m)%*%solve(Sigma.rho)%*%rho.m

pval<-1-pchisq(Q.m,df=m); list(stat=Q.m,pval=pval)}

B.4.2 Checking the adequacy of the LARCH equation

The following function performs the portmanteau test defined in Remark 6.6.

########################################################################

# portmanteau test for the adequacy of the LARCH equation #

Portmanteau.LARCH<- function(m,x,u,psi,b,sig2,mu4,Sigma.psi,Sigma.beta,epsilon,tol){

n<-length(u); p<-length(psi); q<-length(b); Sigma.rho2<-diag(rep(1,m))

Sigma.WLS<-matrix(0,nrow=(p+q+1),ncol=(p+q+1))

if(p>0)Sigma.WLS<-{rbind(cbind(Sigma.psi,matrix(0,nrow=p,ncol=(q+1))),

cbind(matrix(0,nrow=(q+1),ncol=p),Sigma.beta))}

if(p==0)Sigma.WLS<-Sigma.beta;

if(q>0) {Lambda2<-matrix(0,nrow=m,ncol=(p+q+1))

X<-matrix(0,nrow=(p+q+1),ncol=n);Y<-matrix(0,nrow=m,ncol=n)

h<-rep(as.numeric(NA),n); s<-rep(0,n)

for (t in (q+p+1):n) {s[t]<-1+sum(b[1:q]*u[(t-1):(t-q)]); h[t]<-sig2*(s[t])^2

if(abs(s[t])>tol) {if(p>0) for (i in 1:q) X[1:p,t]<-X[1:p,t]+b[i]*x[(t-i-1):(t-i-p)]

X[(p+1):(p+q),t]<- -u[(t-1):(t-q)];X[,t]<-sig2*X[,t]/s[t] } }

for (t in (m+1):n) {Y[,t]<-epsilon[(t-1):(t-m)]^2- sig2; Lambda2<-Lambda2+2*Y[,t]%*%t(X[,t])/n }}

if(q>0) Sigma.rho2<-Sigma.rho2+Lambda2%*%Sigma.WLS%*%t(Lambda2)/(sig2^4*(mu4-1)^2)

rho2.m <- rep(as.numeric(NA),m)

for(h in 1:m) rho2.m[h]<-rho(epsilon^2,h); Q.m<-n*t(rho2.m)%*%solve(Sigma.rho2)%*%rho2.m

pval<-1-pchisq(Q.m,df=m); list(stat=Q.m,pval=pval)}
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Table 6: WLSE for a simulation of length n = 5, 000 of the AR(1)-LARCH(5) model (B.1).

Parameter ψ1 b1 b2 b3 b4 b5 σ2
ǫ

Value 0.25 0.0 0.0 0.0 0.0 0.25 1
Estimate 0.255 0.009 -0.004 0.002 0.011 0.245 1.008
(Standard Deviation) (0.014) (0.012) (0.012) (0.012) (0.012) (0.016) (0.022)
t-ratio 18.78 0.71 -0.34 0.19 0.87 15.67

Table 7: As Table 6, but the model is an AR(2)-LARCH(6), whereas the DGP is still the AR(1)-LARCH(5)
model (B.1).

ψ1 ψ2 b1 b2 b3 b4 b5 b6 σ2
ǫ

Value 0.25 0 0 0 0 0 0.25 0 1
Estimate 0.253 0.030 -0.015 -0.009 0.010 -0.008 0.247 -0.013 1.005
(Std) (0.014) (0.014) (0.012) (0.012) (0.012) (0.012) (0.016) (0.012) (0.022)
t-ratio 18.06 2.19 -1.26 -0.71 0.85 -0.67 15.55 -1.04

B.5 Application of the R programs

We simulated a trajectory of length n = 5, 000 of the AR(1)-LARCH(5) model

{

xt = 0.25xt−1 + ut,
ut = (1 + 0.25ut−5) ǫt, ǫt iid N (0, 1).

(B.1)

Table 6 displays the WLSE, when the fitted model corresponds to the DGP. Table 7 displays the WLSE
when the estimated model is an AR(2)-LARCH(6). From this table, one can see that, as expected, the
null hypothesis H0 : b6 = 0 can not be rejected. The conclusion is less clear concerning the null hypothesis
H0 : ψ2 = 0. Table 8 presents portmanteau tests based on a quadratic form of the first m autocorrelations
of the linear residuals ût, for an AR(1) model and for an AR(0) model (i.e. ût = ut = xt). As expected the
AR(0) is rejected and the AR(1) is not rejected. Table 9 clearly shows that the hypothesis of conditional
homoscedasticity must be rejected against that of a LARCH(q) for q ≥ 5. The portmanteau tests of Table 10
indicate significant autocorrelations for the squares of AR(1)-LARCH(q) residuals when q < 5. As expected
the portmanteau tests based on the AR(1)-LARCH(5) residuals do not reject the adequacy of the model,
which is indeed the data generating model.

Table 8: Portmanteau test of adequacy of the AR(1) model and of the AR(0) model (i.e. no linear part) for
the AR part of the AR-LARCH model.

m 1 2 3 4 5 6 7 8 9 10 11 12
Portmanteau test for the AR(0) model (absence of linear part)

Q̃û
m > 280

p-value ≃ 0
Portmanteau test for the AR(1) model

Q̃û
m 1.03 1.18 4.7 6.87 7.01 7.36 7.47 7.94 7.95 9.51 9.52 9.52

p-value 0.31 0.55 0.2 0.14 0.22 0.29 0.38 0.44 0.54 0.48 0.57 0.66
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Table 9: Test of conditional homoscedasticity against a LARCH(q) model for the linear innovations.

m 1 2 3 4 5 6 7 8 9 10
Rn 0.16 0.68 0.71 1.65 439.99 440.43 440.27 440.23 440.67 445.27
p-value 0.693 0.711 0.872 0.799 0 0 0 0 0 0

Table 10: Portmanteau test of adequacy of different AR(1)-LARCH(q) models.

m 1 2 3 4 5 6 7 8 9 10 11 12
Portmanteau test for the LARCH(0) model (i.e. absence of LARCH part)

Q̃ǫ̂2

m 0 0.36 0.56 2.97 16.35 19.09 19.22 19.53 21.01 21.94 25.64 26.92
p-value 0.975 0.836 0.906 0.564 0.006 0.004 0.008 0.012 0.013 0.015 0.007 0.008
Portmanteau test for the LARCH(1) model

Q̃ǫ̂2

m 0 0.35 0.54 2.61 16.05 18.97 19.11 19.46 20.92 21.84 25.57 26.88
p-value 0.995 0.84 0.91 0.625 0.007 0.004 0.008 0.013 0.013 0.016 0.008 0.008
Portmanteau test for the LARCH(2) model

Q̃ǫ̂2

m 0.01 0.22 0.27 2.16 15.24 18.19 18.43 18.74 19.89 20.75 24.65 25.97
p-value 0.928 0.894 0.966 0.706 0.009 0.006 0.01 0.016 0.019 0.023 0.01 0.011
Portmanteau test for the LARCH(3) model

Q̃ǫ̂2

m 0.01 0.26 0.31 2.3 15.4 18.31 18.52 18.83 19.99 20.86 24.73 26.05
p-value 0.929 0.878 0.958 0.681 0.009 0.006 0.01 0.016 0.018 0.022 0.01 0.011
Portmanteau test for the LARCH(4) model

Q̃ǫ̂2

m 0.01 0.38 0.44 2.48 15.61 18.6 18.8 19.1 20.3 21.18 24.81 26.08
p-value 0.909 0.829 0.933 0.648 0.008 0.005 0.009 0.014 0.016 0.02 0.01 0.01
Portmanteau test for the LARCH(5) model

Q̃ǫ̂2

m 0.03 0.72 1.96 3.8 4.31 7.78 7.95 8.02 8.32 9.03 10.78 12.61
p-value 0.869 0.698 0.582 0.434 0.506 0.255 0.337 0.432 0.502 0.529 0.462 0.398
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C Complementary simulation experiments

We first consider an extension of the AR(1)-LARCH(1) model considered in Section 7.1:

xt = ψ01xt−1 + ut, ut = (1 + b01ut−1)ǫt, ǫt iid (0, σ2
0ǫ), σ0ǫ > 0 (C.1)

with uniform and gaussian distributions for the error term. A simulation of length 100 of (ut), with gaussian
innovations, is displayed in Figure 3. Volatility clustering can be noticed, as well as the absence of significant
correlations and, on the contrary, the presence of significant autocorrelations for the squares.
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Figure 3: Simulation of Model (7.1) (or Model (C.1)) with ψ01 = 0, b01 = 0.9 and ǫt ∼ N (0, 1) (left panel), empirical

autocorrelations (middle panel) and empirical autocorrelations of the squares (right panel).

We first study the properties of the QMLE. The true parameter is taken to be φ01 = 0.9, b01 = −0.5
and ǫt ∼ U(−0.5,0.5) (thus σ2

0ǫ = 1/12). The number of replications is 500. Figure 4 displays boxplots and
Q-Q plots of the estimation errors when the sample size is n = 100. It is seen that the biases are very small
but that values very far from the true value can be obtained, particularly for the ARCH coefficient b01.
Moreover, the Q-Q plots indicate important departures from the normality, especially for the AR coefficient
ψ01. As n increases from 100 to 1000, the imprecision on the coefficient b01 becomes smaller and no significant
departure from the asymptotic normality is noticed, see Figure 5. Similar results are obtained for the WLSE
and the results displayed in Figure 6 indicate that the choice of the weights does not have dramatic effects
on the bias and accuracy of the estimators.

From these experiments, it could seem that QML is a reasonable estimation procedure for this model.
This is in fact the case because the error distribution has a sufficiently small compact support. Even if the
parameter space is not specified in the numerical procedure, values which would entail cancelation of the
volatility are not considered by the algorithm. We now investigate the properties of the QMLE and WLSE
when the errors distribution is gaussian. Figure 7 shows that the performance of the QMLE is very bad in
this case. Both bias and accuracy are disastrous. This confirms our discussion in Section 3. On the contrary,
the behavior of the WLSE remains satisfactory whatever the choice of the weights. It is seen that constant
weights are not the most appropriate in this case.

C.1 Comparison of different version of the WLSE

Table 11 is the same than Table 2, but for simulations is n = 1000 instead of n = 100. The conclusion is
similar: the WLSE base on an ARCH proxy of the volatility seems to be superior to the 3 other versions of
the WLSE, specially in terms of RMSE. The difference seems even more important for n = 1, 000 than for
n = 100.

C.2 Empirical distribution of the portmanteau tests

The asymptotic validity of the portmanteau tests of adequacy of the AR equation in shown in Theorem 6.1
under very mild assumptions. To prove the asymptotic validity of the portmanteau tests of adequacy of
the LARCH equation, Theorem 6.2 required the two restrictive assumptions A13 and A14. The simulation
experiments of this section aim to see whether these assumptions are indeed necessary or not in practice. We
simulated N = 500 independent trajectories of length n = 100 of the AR(1)-LARCH(1) model considered in
Section 7.1:

{

xt = 0.9xt−1 + ut,
ut = (1 + but−1) ǫt, ǫt iid N (0, 1),

(C.2)
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Figure 4: boxplots (left-top panel) and Q-Q plots (other panels) of the 500 QML estimation errors. The data are

generated from Model (C.1) with ψ01 = 0.9, b01 = −0.5 and ǫt ∼ U(−0.5,0.5). The sample size is n = 100.

for different values of b. For each of the N trajectories, we computed the test statistics Q̃û
m and Q̃ǫ̂2

m for
m = 6. The asymptotic distribution of these two statistics is the χ2

6. Figures 8 and 9 show that the empirical

distributions of the portmanteau test statistics are close to the χ2
6, except for the Q̃ǫ̂2

m statistics when b is
large (i.e. b = 0.6 and b = 0.9).
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Figure 5: Same as Figure 4 but for n = 1, 000.
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Figure 6: boxplots of 500 estimation errors, for the QMLE (left-top panel) and the WLSE with different choices of

the weights (other panels). The data are generated as in Figure 4.
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Figure 7: Same as in Figure 6 but with ǫt ∼ N (0, 1).

Table 11: As Table 2, but for simulations is n = 1000 (Comparison of four different versions of the WLS estimator. The

DGP is an AR(1)-LARCH(1) process with a gaussian iid noise ǫt. The number of replications is N = 500 and the length of the

simulations is n = 1000).

LSE WLSE WLSEHL WLSEL

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ψ01 = 0.9 -0.004 0.020 0.001 0.014 0.001 0.021 0.001 0.016
b01 = −0.62 0.016 0.822 -0.007 0.064 0.000 0.105 -0.011 0.15
σ2
0ǫ

= 1 0.106 0.271 -0.004 0.067 -0.005 0.115 -0.024 0.149

ψ01 = 0.9 -0.004 0.021 0.001 0.014 0.001 0.021 0.001 0.016
b01 = −0.63 -0.044 1.522 -0.007 0.064 0.000 0.106 -0.011 0.155
σ2
0ǫ

= 1 0.115 0.300 -0.004 0.067 -0.006 0.116 -0.025 0.155

ψ01 = 0.9 -0.007 0.027 0.001 0.013 0.000 0.023 0.001 0.018
b01 = −0.75 0.440 4.999 -0.008 0.068 0.000 0.118 0.006 0.248
σ2
0ǫ

= 1 0.310 1.319 -0.006 0.072 -0.008 0.132 -0.038 0.267

ψ01 = 0.9 -0.019 0.064 0.001 0.012 0.000 0.028 0.001 0.025
b01 = −0.99 1.997 8.935 -0.008 0.075 0.000 0.147 1.584 7.623
σ2
0ǫ

= 1 7.656 34.513 -0.007 0.085 -0.019 0.192 -0.186 0.922

ψ01 = 0.9 -0.033 0.095 0.001 0.015 -0.001 0.033 0.002 0.032
b01 = −1.1 1.323 6.825 -0.011 0.081 0.004 0.172 4.731 12.839
σ2
0ǫ

= 1 122.564 1221.361 -0.011 0.093 -0.021 0.238 -0.697 2.086
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Figure 8: Distributions of the portmanteau test statistics Q̃û
6 for the adequacy of the AR(1) part (left panels) and

of Q̃ǫ̂
2

6 for the adequacy of the LARCH(1) part (right panels). The kernel density estimators are based on N = 500

replications of size n = 100 of the AR(1)-LARCH(1) model (C.2) for b = 0, b = 0.2 or b = 0.4. The density of the χ2
6

is plotted in dotted line.
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Table 12: Portmanteau test of adequacy of the AR(1) model for the linear dynamics of nine stock market
returns.

m 1 2 3 4 5 6 7 8 9 10

CAC Q̃û
m 0.4 0.9 5.8 6.5 11.3 12 13.3 13.4 13.4 13.7

p-value 0.508 0.642 0.124 0.162 0.046 0.062 0.066 0.097 0.143 0.188

Changhai Q̃û
m 2.5 3.9 5.9 9.1 9.5 11.2 11.4 11.6 11.7 12

p-value 0.111 0.146 0.119 0.059 0.092 0.082 0.122 0.17 0.228 0.284

DAX Q̃û
m 2.7 2.7 5.8 8.3 9.5 12.7 12.9 13.6 13.7 14.1

p-value 0.1 0.258 0.121 0.082 0.092 0.048 0.075 0.092 0.135 0.169

DJA Q̃û
m 1.9 2.5 2.6 2.6 3.4 5 10.3 10.6 11.4 12

p-value 0.164 0.288 0.462 0.623 0.639 0.54 0.172 0.228 0.246 0.286

DJT Q̃û
m 0.3 2.5 4.2 4.8 4.9 8.2 13.4 13.7 13.9 13.9

p-value 0.61 0.281 0.245 0.306 0.434 0.225 0.062 0.089 0.126 0.178

FTSE Q̃û
m 2.9 3.7 16.3 17.7 19.1 21.2 21.3 21.9 22.1 22.5

p-value 0.09 0.159 0.001 0.001 0.002 0.002 0.003 0.005 0.009 0.013

Nasdaq Q̃û
m 7 9.5 9.6 9.8 10.1 11.5 12 12.2 13.2 13.2

p-value 0.008 0.009 0.022 0.045 0.072 0.074 0.102 0.143 0.154 0.212

Nikkei Q̃û
m 6.4 14.3 14.4 14.5 14.5 16.3 16.3 16.5 16.8 20.2

p-value 0.012 0.001 0.002 0.006 0.013 0.012 0.023 0.035 0.052 0.027

SP 500 Q̃û
m 3.3 3.9 4.8 4.8 6.9 8.7 12.1 12.1 12.3 12.9

p-value 0.069 0.146 0.191 0.313 0.229 0.193 0.098 0.148 0.197 0.229

D Complementary results for the application to the stock market

indices

Figure 11 displays the returns of the nine stock market indices used in the empirical application. Figure 12
shows the autocorrelation function (ACF), and Figure 13 shows the ACF of the squares of the series. For
each series, the squares are much more autocorrelated than the initial returns, which is very standard for
such financial series.

Table 12 of the present section and Table 5 of Section 7.2 display portmanteau tests for the adequacy of
an AR(1) model, or of an AR(0) model, for the linear part. Very often the AR(0) is not rejected, meaning
that no linear part in needed, which is in accordance to the standard economic theory of efficient markets.

Based on the portmanteau tests defined in Theorem 6.2, Table 13 clearly rejects the AR(1)-LARCH(1)
model, for all the stock market returns. In view of Table 14, the LARCH(5) model is also frequently rejected.
Note however that, in view of the empirical results of Section C.2, the results provided by these portmanteau
tests must be interpreted with caution. In view of Figure 14, the assumption A13 required in Theorem 6.2
is not plausible for most of the indices, except for the Changhai and the Nikkei. For these two indices, the
empirical study conducted in Section C.2 indicates that the portmanteau tests based on Q̃ǫ̂2

m are likely to
perform reasonably well. Even for these two indices, Table 14 indicates that the portmanteau tests reject
the LARCH(5) model. This leads to think that for the non linear part of the model, a LARCH(q) with a
small order q, is not perfectly adequate. To solve the problem one can consider two types of extensions: (i)
introducing a parametrization of the bi coefficients in (1.1), for instance of the form bi = cid, and allowing
for q = ∞, (ii) adding a persistence term of the form βσt−1 to the volatility. Such extensions are left for
future work.
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Table 13: Portmanteau tests of adequacy of the AR(1)-LARCH(1) model for nine stock market returns.

m 1 2 3 4 5 6 7 8 9

CAC Q̃ǫ̂2

m 0.7 90.6 244.9 274.3 343.2 410.5 448.3 514.9 577.3
p-value 0.412 0 0 0 0 0 0 0 0

Changhai Q̃ǫ̂2

m 0 2 35.9 49.4 69.2 69.9 74.6 76.3 81
p-value 0.879 0.362 0 0 0 0 0 0 0

DAX Q̃ǫ̂2

m 1.5 176.1 227.2 280.4 351.7 419.8 447.9 562.4 576.9
p-value 0.228 0 0 0 0 0 0 0 0

DJA Q̃ǫ̂2

m 1.2 35.9 113.2 158.4 207 245.5 280.8 296.6 320.6
p-value 0.268 0 0 0 0 0 0 0 0

DJT Q̃ǫ̂2

m 0 22.7 74.7 81.6 98.7 108.5 111 114.4 156
p-value 0.988 0 0 0 0 0 0 0 0

FTSE Q̃ǫ̂2

m 0.1 105.8 207.7 238.4 312.5 344.8 358 468.6 516.9
p-value 0.737 0 0 0 0 0 0 0 0

Nasdaq Q̃ǫ̂2

m 0 4.3 30.7 56.4 109.9 115.6 116.4 119.5 131
p-value 0.871 0.117 0 0 0 0 0 0 0

Nikkei Q̃ǫ̂2

m 0.5 38.1 78.8 103.1 152.9 201.5 252.2 270.3 284.9
p-value 0.495 0 0 0 0 0 0 0 0

SP 500 Q̃ǫ̂2

m 4.9 51.7 94.1 131.5 188.9 210.9 252 281.2 311.4
p-value 0.027 0 0 0 0 0 0 0 0

Table 14: Portmanteau tests for the adequacy of the LARCH(5) model for nine stock market returns.

m 1 2 3 4 5 6 7 8 9

CAC Q̃ǫ̂2

m 47.1 69.3 76 97.7 113.5 137.2 165.7 213.4 236.9
p-value 0 0 0 0 0 0 0 0 0

Changhai Q̃ǫ̂2

m 2.1 6.2 22.2 23.9 24.1 24.5 25 26.2 27.5
p-value 0.145 0.045 0 0 0 0 0.001 0.001 0.001

DAX Q̃ǫ̂2

m 6.1 13.1 14.2 15.2 17.2 19.2 21 25.1 31.4
p-value 0.014 0.001 0.003 0.004 0.004 0.004 0.004 0.001 0

DJA Q̃ǫ̂2

m 0.3 0.3 0.4 13.9 30.8 31.4 31.4 39 42.1
p-value 0.567 0.841 0.937 0.008 0 0 0 0 0

DJT Q̃ǫ̂2

m 22.4 26.7 33.3 37.4 43.4 57 78.9 90.2 110.8
p-value 0 0 0 0 0 0 0 0 0

FTSE Q̃ǫ̂2

m 3 5.5 5.5 7.5 8.2 19.3 31.7 52.1 53.3
p-value 0.085 0.065 0.141 0.11 0.143 0.004 0 0 0

Nasdaq Q̃ǫ̂2

m 0 0 0 0 0 0.3 1.1 1.2 1.3
p-value 0.997 0.994 0.999 1 1 0.999 0.992 0.997 0.998

Nikkei Q̃ǫ̂2

m 17.4 25.6 48.4 72.8 98.9 159.6 203 216.3 230.8
p-value 0 0 0 0 0 0 0 0 0

SP 500 Q̃ǫ̂2

m 0.1 0.2 1.2 3.9 9 16.6 25.6 34.1 40.2
p-value 0.701 0.924 0.757 0.422 0.111 0.011 0.001 0 0
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Figure 11: Nine stock market indices.
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Figure 12: ACF of nine stock market indices.
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Figure 14: Comparison between the estimated volatility of the stock market indices and zero (the horizontal line).
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