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Abstract

A univariate first order stochastic cycle can be represented as an element of a bivariate first order

vector autoregressive process, or VAR(1), where the transition matrix is associated with a Givens

rotation. From the geometrical viewpoint, the kernel of the cyclical dynamics is described by a

clockwise rotation along a circle in the plane. The reduced form of the cycle is either ARMA(2,1),

with complex roots, or AR(1), when the rotation angle equals 2kπ or (2k + 1)π, k = 0, 1, . . ..

This paper generalizes this representation in two directions. According to the first, the cyclical

dynamics originate from the motion of a point along an ellipse. The reduced form is also ARMA(2,1),

but the model can account for certain types of asymmetries. The second deals with the multivariate

case: the cyclical dynamics result from the projection along one of the coordinate axis of a point

moving in R
n along an hyper-sphere. This is described by a VAR(1) process whose transition matrix

is obtained by a sequence of n-dimensional Givens rotations. The reduced form of an element of

the system is shown to be ARMA(n, n − 1). The properties of the resulting models are analyzed in

the frequency domain, and we show that this generalization can account for a multimodal spectral

density.

The illustrations show that the proposed generalizations can be fitted successfully to some well-

known case studies of the econometric and time series literature. For instance, the elliptical model

provides a parsimonious but effective representation of the mink-muskrat interaction. The hyper-

spherical model provides an interesting re-interpretation of the cycle in US Gross Domestic Product

quarterly growth and the cycle in the Fortaleza rainfall series.

Keywords: State space models; Predator-Prey Interaction; Givens Rotations.



1 Introduction

Modeling and interpreting cycles has attracted a great deal of attention in the time series literature.

Many substantive applications can be found in diverse fields such as macroeconomics, biology, physics,

meteorology and climatology.

Our current paradigm draws from the pioneering work of Yule (1927), who derived a stochastic cycle

model by randomly shifting the amplitude and the phase of a deterministic cycle (a sine wave). Yule

showed that this is equivalent to an autoregressive model, ψt = 2 cos ωψt−1 − ψt−2 + ξt, where 2π/ω

is the cycle period and ξt is a random source, i.e. a white noise process. Kendall (1945) provides an

interesting review of early work on stochastic cycles, and further insight on the impact of this work on

econometrics can be gained from Morgan (1990). Nonlinear extension have been provided by Tong and

Lim (1980), whereas Gray, Zhang, and Woodward (1989) consider a fractionally integrated extension.

An alternative derivation of a stochastic cycle is based on a two-dimensional vector autoregressive

model, describing the path of point on the plane whose position at time t is obtained by rotating coun-

terclockwise by an angle ω its position at time t − 1, and adding a a random perturbation. Damping is

introduced by propagating only a constant proportion of the previous coordinates, so that the skeleton of

the dynamic system eventually spirals down to the origin of the coordinate system. This framework is

adopted by Harvey (1989) and West and Harrison (1989, 1997), and produces a marginal ARMA(2,1)

process with pseudo-cyclical behavior for each of the two coordinates.

The paper proposes two extensions of the circular stochastic model. The first deals with an elliptical

cycle model, which arises from the trajectory of a point on an ellipse. The second extension generalizes

the idea in n > 2 dimensions and obtains the cyclical dynamics from the path of a point on a sphere

or an hyper-sphere. This is achieved via a first order vector autoregressive model with transition matrix

resulting from the product of matrices performing Givens rotations in a n-dimensional space. We show

that the final equations form is ARMA(n, n − 1) and we provide a closed form expression for its spec-

tral density. The relevance of these extensions is discussed using three empirical illustrations, the first

concerning the estimation of the cyclical component in the growth rate of U.S. gross domestic product.

The second deals with the series of rainfall at a location in Brazil. The third applies the elliptical cycle

to model the mink-muskrat interaction.

The paper is organized as follows. Section 2 reviews in details the circular stochastic cycle model.

The elliptical and higher dimensional extensions are developed in sections 3 and 4, respectively. Section

5 presents three main applications. In section 6 we discuss the results.

2 Circular stochastic cycles

A stochastic cycle model can be derived from the recursive representation of a deterministic cycle by a

similar argument to that exploited by Yule (1927), who started from the homogeneous difference equa-
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tion: ψt−2ρ cos ωψt−1+ρ2ψt−2 = 0, where ω ∈ [0, π] is the cycle frequency in radians, and introduced

random disturbances on the right hand side, so as to obtain variation in the phase and the amplitude of

the fluctuations. The approach taken by Hannan (1964) is to define a (seasonal) cycle as follows:

ψt = αt cos ωt + α∗
t sinωt,

where αt and α∗
t are uncorrelated first order autoregressive processes; This process yields the variation

in the phase and the amplitude of the fluctuations sought by Yule as it clear when it is rewritten as

ψt = At cos(ωt + ϑt), where At = (α2
t + α∗2

t )1/2 is the random amplitude, and ϑt = arctan (α∗
t /αt) is

the random phase in radians.

Harvey (1989) and West and Harrison (1989, 1997) use an alternative formulation, which defines ψt

as an element of a bivariate vector autoregressive process:

[

ψt

ψ†
t

]

= ρ

[

cos ω sinω

− sinω cos ω

][

ψt−1

ψ†
t−1

]

+

[

κt

κ†
t

]

, (1)

where κt ∼ NID(0, σ2
κ) and κ†

t ∼ NID(0, σ2
κ) are mutually independent error terms, ψ†

t is an auxiliary

process which appears by construction in order to form ψt, measured in radians, and ρ ∈ [0, 1] is a

damping factor. When ρ = 1, the skeleton describes the counterclockwise motion of a point along a

circle in R
2.

This model has been applied to macroeconomic time series by Harvey (1985) and Harvey and Jaeger

(1993). Various modifications and extensions have been proposed in the literature: see, among others,

Haywood and Tunnicliffe-Wilson (2000), Harvey and Trimbur (2003), Trimbur (2006).

The reduced form of (1) is the ARMA(2,1) process

(1 − 2ρ cos ωL + ρ2L2)ψt = (1 − ρ cos ωL)κt + ρ sinωκ†
t−1 (2)

where L is the lag operator, Lhyt = yt−h. When ρ is strictly less than one the cycle is stationary with

E(ψt) = 0, Var(ψt) = σ2
κ

(1−ρ2)
, Corr (ψt, ψt−h) = ρh cos(hω), that can be easily calculated, as (1) is a

VAR(1) process (Lütkepohl, 2006). The power spectrum is given by

f(λ) =
σ2

κ

2π

1 + ρ2 − 2ρ cos ω cos λ

1 + ρ4 + 4ρ2 cos2 ω − 4ρ(1 + ρ2) cos ω cos λ + 2ρ2 cos(2λ)
. (3)

For ρ that tends to unity, the spectrum reaches its maximum at a frequency λ that tends to the frequency

of the cycle, ω. As long as ρ decreases, the maximum of the spectrum is attained for values of λ < ω, as

stated in the following proposition, proved in Appendix A.

Proposition 1 The maximum of the power spectrum (3) is attained for

λ = arccos

{

1 + ρ2

2ρ cos ω

(

1 − sinω

√

1 −
4ρ2

(1 + ρ2)2
cos2 ω

)}

.
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Henceforth, we shall refer to (1) as a circular stochastic cycle. From a geometrical point of view,

the cycle dynamics are obtained clockwise rotation on a plane, around the origin, of the vector ψt−1 =

[ψt−1 ψ†
t−1]

′ by the angle ω, damped through the factor ρ. The rotation is represented by the Givens

matrix

G(ω) =

[

cos ω sinω

− sinω cos ω

]

. (4)

In fact, G(ω) belongs to the special orthogonal group SO(2), made of all the orthogonal matrices in

R
2 with determinant equal to one, i.e. SO(2) = {G ∈ R

2×2,G−1 = G′, det(G) = 1}. Each time

the vector ψt−1 is rotated, it is contracted through the factor ρ, so to account for the dampening of

the fluctuations, or zero long run persistence. The next two sections will deal with modifications and

multivariate extensions of the circular model.

3 Elliptical stochastic cycles

Our first generalization deals with the shape of the cyclical component. In particular, we define the

cyclical dynamics from the motion of a point along an ellipse in R
2 rather than along a circle. According

to the orientation of the ellipse, the model will be able to account for a faster or slower transition between

positive and negative states. Letting α > 0, β > 0 be two dilation coefficients, the path of a two-

dimensional point that moves counterclockwise along an ellipse is obtained from a deterministic bivariate

difference equation with transition matrix

E(ω) =

[

α 0

0 β

]

G(ω),

where G(ω) is given in (4). The matrix E(ω) performs the elliptical rotation by an angle ω; the dilation

coefficients amplify or reduce the two coordinates.

The elliptical stochastic cycle is then defined as
[

ψt

ψ†
t

]

= E(ω)

[

ψt−1

ψ†
t−1

]

+

[

κt

κ†
t

]

, (5)

with κt ∼ NID(0, σ2
κI). The reduced form of (5) is the ARMA(2,1) process

(1 − (α + β) cos ωL + αβL2)ψt = (1 − β cos ωL)κt + α sinωκ†
t−1.

It is immediately clear that the stochastic cycle is stationary if αβ < 1 and (α+β) cos ω < 2. The power

spectrum is given by

f(λ) =
σ2

k

2π

1 + α2 sin2 ω + β2 cos2 ω − 2β cos ω cos λ

1 + α2β2 + (α + β)2 cos2 ω − 2(α + β)(1 + αβ) cosω cos λ + 2αβ cos(2λ)
. (6)
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When α = β = ρ we find the first order stochastic cycle (1), with spectrum (3). If β = 1
α = 1

cosω−tanω,

then the autoregressive polynomial has unit roots and the cycle is nonstationary. Note that in this case,

α = 1
cosω + tanω and αβ = 1, (α + β) cos ω = 2. For this (α, β) pair, if one switches off the shocks,

i.e κt = κ†
t = 0,∀t, then equation (5) describes the deterministic motion along an ellipse. As a matter

of fact, the cartesian coordinates of a point on an ellipse of equation
ψ2

t

α2 +
ψ†2

t

β2 = 1, and centered at the

origin, are ψt = α cos(ωt) and ψ†
t = β sin(ωt), where ω is the angle between the axis α (β) and the

auxiliary circle of radius equal to α (β), representing the position of a point moving along the ellipse. The

factors α and β account for an asymmetric dampening of the fluctuations and either α or β can assume

value equal to one (or greater). For α, β → 1 the spectral power of the cycle (5) is more concentrated

near the spectral peak than the cycle (1) when ρ → 1.

Proposition 2 The maximum of the power spectrum (6) is attained for

λmax = arccos

{

1 + R2

2β cos ω

(

1 − sinω

√

1 −
G

(1 + R2)2
cos2 ω

)}

,

where R2 = α2 sin2 ω + β2 cos2 ω and G = 1
sin2 ω

[(1 + R2)(1 + αβ + β
α + β2) − β

α((1 − αβ)2 +

cos2(ω)(α + β)2) − (1 + R2)2].

If α = β = ρ, then (1 + R2) = 1 + ρ2 and G = 4ρ2, hence, we find Proposition 1. Furthermore, as

long as either α or β are different than one, the maximum of the spectrum is closer to ω for β > α than

for β < α.

The elliptical model can also be used as a model for bivariate cycles, in which case we κt ∼

NID(0,Σ). In section 5.3 we will illustrate its use for modeling the predator-prey cycles characteriz-

ing a bivariate population.

4 Multivariate extensions

This section deals with the extension of the circular model to the dynamics of a point along a sphere in

R
3 and an hyper-sphere in R

n.

4.1 Spherical stochastic cycles

Rotations in the three dimensional Euclidean space are completely specified by three angles, known as

Euler angles (Goldstein, 1980, §4-4). In fact, according to Euler theorem, any rotation in R
3 can be

carried out by means of three successive rotations, each one about a specific axis, performed in some

sequence. The Euler angles are then defined as the three successive angles of rotation. Let us denote

the Euler angles by θ, φ and ω. Then, rotations around the x, y, z axes with frequencies θ, φ, ω, are
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represented, respectively, by the rotation matrices Gx(θ),Gy(φ),Gz(ω) ∈ SO(3) defined as

Gx(θ) =







1 0 0

0 cos θ sin θ

0 − sin θ cos θ






,

Gy(φ) =







cos φ 0 sinφ

0 1 0

− sinφ 0 cosφ






,

and

Gz(ω) =







cos ω sinω 0

− sinω cos ω 0

0 0 1






.

The elements of a complete rotation can be therefore obtained by writing the associated matrix as the

triple product of the above three matrices. As an illustration, let us consider the so called x-convention

(see Goldstein, 1980), according to which the first rotation is carried out by an angle ω ∈ [0, 2π] about

the z-axis, the second rotation is by an angle θ ∈ [0, π] about the x-axis, and the third rotation is by an

angle φ ∈ [0, 2π] about the z-axis, i.e. Gzxz(ω, θ, φ) = Gz(ω)Gx(θ)Gz(φ), i.e.

Gzxz(ω, θ, φ) =







cos φ cos ω − cos θ sinω sinφ cos φ sinω + cos θ cos ω sinφ sinφ sin θ

− sinφ cos ω − cos θ sinω cos φ − sinφ sinω + cos θ cos ω cos φ cos φ sin θ

sin θ sinω − sin θ cos ω cos θ






.

In the following, we shall drop the subscripts indicating the axes of rotation and denote a rotation

matrix parametrised by Euler angles as G(ω, θ, φ). The determinant of G(ω, θ, φ) is equal to one, the

inverse coincides with the transpose, and the spectrum is the set {1, eıξ, e−ıξ}, where ı is the imaginary

unit, and

ξ = arccos

{

1

2
(tr (G(ω, θ, φ)) − 1)

}

is the overall rotation angle around the eigenvector associated with the eigenvalue equal to one (Gold-

stein, 1980, pag. 162). By means of some (unitary) similarity transformation, it is always possible to

transform any rotation matrix like G(ω, θ, φ), to a system of coordinates where the z axis lies along the

axis of rotation. Specifically,

Gz(ξ) = ZG(ω, θ, φ)Z′ (7)

where Z = QPH and the columns of Q and P are the eigenvectors of Gz(ξ) and G(ω, θ, φ), respec-

tively; the superscript H stands for hermitian transposition. That P and Q are unitary matrices follows

by the fact that Gz(ξ) and G(ω, θ, φ) are normal (see Meyer, 2000, § 7.5); the product matrix Z is

orthogonal, i.e. Z−1 = Z′ = PQH , and its elements are denoted by zij , i, j = 1, 2, 3.
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Against this background, we specify a three-dimensional first order stochastic cycle as follows:







ψt

ψ†
t

ψ‡
t






= ρG(ω, θ, φ)







ψt−1

ψ†
t−1

ψ‡
t−1






+







κt

κ†
t

κ‡
t






, (8)

or, in matrix form, ψt = ρG(ω, θ, φ)ψt−1 +κt, where κt is a zero mean process with covariance matrix

Σκ and ρ ∈ [0, 1). The latter condition ensures that the VAR(1) process (8) is stationary, which follows

by the fact that the eigenvalues of G(ω, θ, φ) are all in modulus equal to one. Hence, for ρ < 1 and

Σκ = σ2
κI, the stationary process (8) has zero mean and covariance matrix Σψ(0) = σ2

κ

(1−ρ2)
I, satisfying

the matrix equation Σψ(0) = ρ2G(ω, θ, φ)Σψ(0) G(ω, θ, φ)′ + Σκ, in the light of the orthogonality

of G(ω, θ, φ) and the fact that Σκ is scalar. Under these assumptions, the reduced form of (8) can be

conveniently derived using the ξ parametrization (7), holding for any choice of Euler angles and axes of

rotation.

Proposition 3 The reduced form of ψt in (8) is the stationary ARMA(3,2) process

(1 − ρL)(1 − 2ρ cos ξL + ρ2L2)ψt = (1 − ρL)(z11(1 − cos ξρL) − z21 sin ξρL)κt+

+(1 − ρL)(z11 sin ξρL + z21(1 − cos ξρL))κ†
t+

+z31(1 − 2ρ cos ξL + ρ2L2)κ‡
t ,

(9)

with spectrum

f(λ) =
σ2

κ

2π

(

(1 + ρ2)z1 + ρ2z2 sin(2ξ) − 2ρ cos λ(z1 cos ξ − z2 sin ξ)

1 + ρ4 + 4ρ2 cos2 ω − 4ρ(1 + ρ2) cos ω cos λ + 2ρ2 cos(2λ)
+

z3

1 − 2ρ cos λ + ρ2

)

,

where we have set z1 = z2
11 + z2

21, z2 = 2z11z21 and z3 = z2
31.

In proving proposition 3 (Appendix C), we show that the transformation represented by Z makes

the cycle defined in (8) observationally equivalent to the bivariate first order stochastic cycle (1). The

reduced form of the first component of Zψt is in fact the ARMA(2,1) process (2).

Note that, whatever the choice of the axes of rotation, if θ = φ = 0, then Z = I, ξ = ω and we

find the reduced form (2) and the spectrum (3) of the first order stochastic cycle (1). Specific choices of

the axes of rotation give rise to different conditions for (8) to become observationally equivalent to (1).

For example, in the x-convention, where rotations are represented by Gzxz(ω, θ, φ), if θ = 0, then Z is

the identity matrix and the reduced form of ψt is equal to that of the first order stochastic cycle (1) with

frequency ξ = ω + φ.

The more general representation provided by (8) gives rise to spectral densities that may be more

concentrated around the maximum (with respect to the circular case) and/or may display two modes with

one mode located at the zero frequency.
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4.2 A general model for n-dimensional cycles

The natural generalization of models (1) and (8) to higher dimensions is obtained by means of Givens

rotations (Givens, 1958), performed by orthogonal matrices of the form:

col i col j

↓ ↓

Gij(ω) =































1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . cos ω . . . sinω . . . 0
...

...
. . .

...
...

0 . . . − sinω . . . cos ω . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1































← row i

← row j

for i, j = 1, 2, . . . , n (see Golub and van Loan, 1996, § 5.1.8 and Meyer, 2000, § 5.6). Premultiplication

of an n-dimensional vector by Gij(ω) corresponds to a rotation of ω radians in the (i, j)-th coordinate

plane. Note that G(ω) and the set Gx(θ), Gy(φ), Gz(ω) are Givens rotations in R
2 and R

3, respectively.

To perform a complete n-dimensional rotation of a given vector,
(

n
2

)

products must be computed, while a

rotation around one specified axis requires n−1 products. For example, let us consider R
4, for which up

to six Givens matrices are defined. A complete rotation is obtained by rotating all the coordinates of the

vector ψt = [ψt,1 ψt,2 ψt,3 ψt,4]
′ through the product of the matrices G12,G13,G14,G23,G24,G34

according to some order (we have omitted the angles for sake of notation). On the other hand, a rotation

around the first coordinate axis, which remains fixed, is obtained by multiplications of G23,G24,G34.

The model for an hyper-spherical n-dimensional stochastic cycle ψt is defined as follows:

ψt = ρG(ω)ψt−1 + κt (10)

provided that ψt−1 and κt are n-dimensional vectors, ρ is scalar and with

G(ω) =
n−1
∏

i=1, j≥i+1

Gij(ωij) (11)

where the matrices entering in the product can be taken in any order and ω = (ω12, ω13, . . . , ωn−1,n) is

the parameter vector, containing up to
(

n
2

)

different angles. We allow some but not all of the ωij to be

equal to zero, i.e. ωij ∈ [0, π) provided that ω 6= 0.

Assuming that ρ ∈ (0, 1) and that the components of κt are uncorrelated error terms with zero mean

and constant variance equal to σ2
κ, equation (10) specifies a general model for a stationary stochastic

cycle that encompasses (1) and (8) as particular cases where results can be obtained in closed form as
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functions of the rotation angles. In fact, (1) is a trivial example of (10) in R
2 while (8) is the most general

case of (10) in R
3, since it enables a full specification of the rotation angles and sequence of rotation axes.

Proposition 4 The reduced form of ψt,1 in (10) is an ARMA(n, n−1) process. Specifically, for n ≥ 2,

n even,

n
2

∏

h=1

(1 − 2ρ cos ζhL + ρ2L2)ψt,1 = −

n
∑

j=1

n
∑

i=1

n
∑

k=1

(−1)n−jsn−jv1i(1 − ρeıζiL)j−1vkiκt,k (12)

and, for n ≥ 3, n odd,

(1− ρL)

n−1

2
∏

h=1

(1− 2ρ cos ζhL + ρ2L2)ψt,1 =
n

∑

j=1

n
∑

i=1

n
∑

k=1

(−1)n−jsn−jv1i(1− ρeıζiL)j−1vkiκt,k, (13)

where sn−j =
∑

1≤i1<i2<...<in−j≤n(1 − ρeıζi1L)(1 − ρeıζi2L) . . . (1 − ρeıζin−j L), vki is the generic

element of V, vki is its complex conjugate and the columns of V are eigenvectors of G(ω) associated

with the eigenvalues {eıζ1 , eıζ2 , . . . , eıζn}, where ζ2h = −ζ2h−1, for h = 1, 2, . . . , n−1
2 , and ζn = 0 if n

is odd. The spectra of (12) and (13) are given, respectively, by

f(λ) =
σ2

κ

2π

∑n
k=1

∣

∣

∣
−

∑n
j=1

∑n
i=1

∑

1≤i1<...<in−j≤n

∏n−j
l=1 (1 − ρeıζil

+λ)v1i(1 − ρeıζi+λ)j−1vki

∣

∣

∣

2

∏

n
2

h=1(1 + ρ4 + 4ρ2 cos2 ζh − 4ρ(1 + ρ2) cos ζh cos λ + 2ρ2 cos(2λ))
(14)

and

f(λ) =
σ2

κ

2π

∑n
k=1

∣

∣

∣

∑n
j=1

∑n
i=1

∑

1≤i1<...<in−j≤n

∏n−j
l=1 (1 − ρeıζil

+λ)v1i(1 − ρeıζi+λ)j−1vki

∣

∣

∣

2

(1 − 2ρ cos λ + ρ2)
∏

n−1

2

h=1(1 + ρ4 + 4ρ2 cos2 ζh − 4ρ(1 + ρ2) cos ζh cos λ + 2ρ2 cos(2λ))
.

(15)

Notice that sn−j is a polynomial of degree n − j in the lag operator L (see the proof in Appendix

D), whereas both the left hand sides of (12) and (13) feature a polynomial of order n in L. Hence, the

reduced form of ψt,1 in (10) is an ARMA(n, n−1) process, whose coefficients depend on the eigenvalues

of G(ω). In terms of the angles of rotations, (12) and (13) are given in (2) and (9) for n = 2 and n = 3,

respectively.

Equation (10) describes a very general model. Due to the variety of combinations of angles and prod-

ucts that generate G(ω), it is practically impossible to formulate equations (12-13) and (14-15) explicitly

as trigonometric functions of the original rotation angles. However, once fixed (or estimated) the angles

and the factors in G(ω), then the eigenvalues of G(ω) can be analytically obtained as functions of the

rotation angles and, consequently, reduced forms and spectra can be obtained in a closed form.
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A special case occurs when the ζh’s are the same in modulus, i.e. is ζh = ±ζ (except for ζn = 0, when

n is odd). In this special case, (12) and (13) collapse to the circular and spherical case, respectively, due

to the presence of common factors in the AR and MA polynomials. A necessary and sufficient condition

for ζh = ±ζ, ∀h (except the last if n is odd) is

G(ω) + G′(ω) = 2 cos ζI (16)

if n is even, or

G(ω) + G′(ω) =

[

2 cos ζI 0

0 2

]

(17)

if n is odd. In fact, if n is even (and in the following we shall consider only this case for brevity) and

ζh = ζ, ∀h, it follows from the spectral decomposition G(ω) = VΞVH that G(ω)+G′(ω) = V(Ξ+

ΞH)VH = 2 cos ζI, as Ξ + ΞH = 2 cos ζI and V is unitary. On the other hand, if G(ω) + G′(ω) =

2 cos ζI, then using again the spectral decomposition and observing that the generic element of Ξ + ΞH

is 2 cos ζh, it follows that 2 cos ζh = 2 cos ζ, ∀h. Hence, cos ζh = cos ζ, i.e, in [0, 2π), ζh = ζ.

In conclusion, the model (10) nests the n = 2 circular model when n is even, and the spherical

model when n is odd. A trivial example is when G(ω) is the the block diagonal matrix G(ω) =

G12(ω)G34(ω) . . .Gn−1,n(ω), depending on the single parameter ω, in which case ζ = ω. When the

transition matrix is specified as (11), a necessary condition for ζh = ±ζ is to choose ωij = ω + jπ. For

instance, for n = 4 and G(ω) = G12(ω)G13(ω+π)G14(ω+2π)G23(ω+3π)G24(ω+4π)G34(ω+5π),

we have cos ζ = − cos3 ω, so that G(ω) − cos ζI is antisymmetric and G(ω) satisfies (16).

Model (10) can also be used as a multivariate cycle model that captures the interactions within a

system of observed time series, in which case we would change specification for the covariance matrix

of the cycle disturbances, by letting κt ∼ N(0,Σ). The spectral analysis of the model properties is

carried out through the multivariate spectrum F(λ), that is the matrix with diagonal elements fii(λ)

equal to the power spectra of the components ψt,i and off-diagonal elements fij(λ) that are the cross-

spectra between the i-th and j-th components at the frequency λ. Using the spectral generating function

of a VAR(1) model, we have that the multivariate spectrum of the process (10) is given by

F(λ) =
1

2π

[

I − ρG(ω)e−ıλ
]−1

Σκ

[

I − ρG′(ω)eıλ
]−1

. (18)

. Using standard algebra and some results contained in the proof of proposition 3, we find that

fij(λ) =

∑n
k=1 ai,k(λ)

∑n
l=1 σklaj,l(λ)

2πd(λ)
, i, j = 1, . . . , n

where ai,k(λ) =
∑n

p=1(−1)n−psn−p
∑n

q=1 viq(1−ρeı(ζq−λ))p−1vkq, viq and sn−p are defined in propo-

sition 3, σij is the generic element of Σκ and d(λ) =
∏

n
2

h=1(1+ρ4+4ρ2 cos2 ζh−4ρ(1+ρ2) cos ζh cos λ+

2ρ2 cos(2λ)) if n is even or d(λ) = (1−2ρ cosλ+ρ2)
∏

n−1

2

h=1(1+ρ4+4ρ2 cos2 ζh−4ρ(1+ρ2) cos ζh cosλ+

2ρ2 cos(2λ)) if n is odd. By construction, fji(λ) is the complex conjugate of fij(λ).
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The coherence spectrum c2(λ) and the phase φ(λ) are

c2(λ) =
fij(λ)fji(λ)

fii(λ)fjj(λ)
and φ(λ) = arctan

{

ℑfij(λ)

ℜfij(λ)

}

for i, j = 1, 2, . . . , n and where ℜ and ℑ denote the real and imaginary part of a complex number.

5 Illustrations

The proposed generalizations will now be used for extracting cycles in three well known time series that

have been analyzed extensively in the literature and that provide a useful testbed for our models.

For statistical treatment, the cycle models parameterize components of a more general state space

model, that can be estimated by maximum likelihood using the support of the Kalman filter. Conditional

on the maximum likelihood parameter estimates, a smoothing algorithm delivers the minimum mean

square estimates of the cycle conditional on the available observations. See Harvey (1989) and Durbin

and Koopman (2001) for a full account of the methodology. Model selection is carried out by an infor-

mation criterion, such as AIC or BIC. All the computations have been carried out in Ox 4.00 by Doornik

(2006).

5.1 US Gross Domestic Product

Our first illustration concerns the quarterly growth rate of real gross domestic product (GDP) for the

U.S., available for the sample period 1947:2-2008:4. The series is plotted in the top left hand panel of

figure 1. We fit the cycle plus irregular model: yt = µ + ψt + ǫt, where µ is a constant, ǫt ∼ WN(0, σ2
ǫ )

and ψt is the generalized n-dimensional cyclical component given in (10)-(11).

Table 1 presents the results of fitting cycle models of different dimension. The first (n = 2) is the cir-

cular model described in (1); for the three-dimensional spherical model (n = 3) we consider the specifi-

cation with G(ω) = G12(ω)G13(ω)G23(ω), i.e. the same rotation angle defines the three Givens matri-

ces, and the specification with three different angles (k = 3), so that G(ω) = G12(ω1)G13(ω2)G23(ω3).

Finally, we present the results for the four dimensional model with only one rotation angle (n = 4, k =

1), with six rotation angles, n = 4, k = 6, that is the model with transition matrix proportional to

G(ω) = G12(ω1)G13(ω2)G14(ω3)G23(ω4)G24(ω5)G34(ω6), along with a more parsimonious speci-

fication with only k = 3 rotation angles, having

G(ω) = G12(ω1)G13(ω2)G14(ω1)G23(ω3)G24(ω2)G34(ω3).

The specifications n = 4, k = 3 and n = 4, k = 6 yield exactly the same performance, and since the

former is more parsimonious, it is preferred by the two information criteria. The model n = 4, k = 3

10



Model ρ̂ ω̂ ∈ (0, π) 107σ̂2

κ
107σ̂2

ǫ
log-likelihood AIC BIC Ljung-Box (8)

n = 2 0.78 0.54 188 472 916.27 -1822.3 -1805.1 2.79

n = 3, k = 1 0.82 0.38 153 492 916.16 -1822.1 -1804.8 4.35

n = 3, k = 3 0.80 0.39;0.39;0.25 171 481 916.31 -1818.2 -1794.2 3.27

n = 4, k = 1 0.84 0.30 138 503 915.82 -1821.4 -1804.2 5.50

n = 4, k = 3 0.94 0.37; 0.19; 0.42 48 561 919.16 -1823.8 -1799.9 3.93

n = 4, k = 6 0.94 0.35; 0.23; 0.35 48 561 919.16 -1817.5 -1783.4 3.93

0.43; 0.13; 0.43

Table 1: U.S. GDP quarterly growth. Estimation results

has the highest likelihood and the smallest AIC, and thus it would be selected according to this criterion.

However, the n = 2 cycle is the best specification according to the BIC.

Figure 1 displays (top right panel) the sample spectrum and the parametric spectra implied by the

n = 2 and n = 4, k = 3 models. The former peaks at a period of about 3 years. The second has

two peaks at the spectral frequencies ζ̂1 = 0.30 and ζ̂2 = 0.69, corresponding to a five-year cycle

and to a short-run cycle with period of about two years. Although the smoothed estimates of the two

cyclical components do not differ dramatically (the n = 4 resulting somewhat smoother), we think that

the interpretation of the bimodal spectrum is interesting. In the light of (12), the four dimensional cycle

results from the sum of two cyclical components, the first, with ζ1 close to 0.1π, describing a five-year

cycle, the second, with frequency corresponding to 2 years, describing a short-run cycle. The bottom

right panel of figure 1, shows that the two-year plays a prominent role in the first part of the series, but

then reduces prominently its amplitude. The five-year cycle plays a more important role at the end of the

sample.

The presence of a two-year cycle has been attested in the literature. For instance, the ARIMA(2,1,2)

estimated by Morley, Nelson and Zivot (2003) for the same series implies a cycle of 2.4 years.

5.2 Rainfall in Fortaleza

The series is the annual record of the number of centimeters of rainfall at Fortaleza, Brazil, for the period

1849-1992 (Source: Koopman et al., 2006). It provides an interesting case study for the detection and

modelling of cycles in rainfall. Harvey and Souza (1987, HS) proposed the model

yt = µ + ψ1t + ψ2t + ǫt,

where ǫt ∼ WN(0, σ2
ǫ ) and ψit, i = 1, 2, are two independent cycles specified as in (1). Maximum

likelihood estimation (for the sample period up to 1979) gave two deterministic cycles with period 13

and 26 years; diagnostic checking and goodness of fit assessment led to conclude that the model provided

a satisfactory representation of the data; moreover, the presence of two deterministic cycles is a fact well

documented in the literature and is consistent with the sample spectrum of the series.
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Figure 1: U.S. quarterly GDP growth rate. Original series, estimated cyclical component, decomposition

into two cycles, sample and estimated spectrum.
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We are now going to fit the model

yt = µ + ψt + ǫt,

where ǫt ∼ WN(0, σ2
ǫ ) and ψt is the generalized n-dimensional cyclical component given in (10)-(11),

with n = 4, and compare the results with the HS specification and the circular cycle with n = 2. Model

selection lead to the cyclical model with k = 2 rotation angles and

G(ω) = G12(ω1)G13(ω1)G14(ω1)G23(ω2)G24(ω2)G34(ω2).

The estimation results, presented in table 2, confirm that also for the extended sample the HS specifi-

cation with two deterministic cycles is preferable, although the BIC would point to the opposite conclu-

sion. The generalized four-dimensional cycle with two frequencies provides the best fit. The estimated

Model ρ̂ ω̂ ∈ (0, π) σ̂2

κ
σ̂2

ǫ
log-likelihood AIC BIC Ljung-Box (8)

n = 2 0.86 0.48 201 1615 -683.62 1377.6 1392.0 6.46

HS 1; 1 0.26; 0.49 0 1884 -677.80 1372.5 1395.3 4.35

n = 4, k = 2 1 0.28; 3.00 0 1895 -679.40 1371.3 1388.6 6.75

Table 2: Rainfall in Fortaleza. Estimation results

cycle and its spectral density (logarithms) is plotted are figure 2. The third panel compares the cycle with

that arising from the HS model.

5.3 Mink-Muskrat Interaction

Our final illustration is an application of the elliptical cycle model to a famous bivariate time series,

relating to the number of skins of minks and muskrats traded annually by the Hudson Bay Company in

Canada from 1848 to 1909. The interest in this series lies in the fact that among the two species there

is a prey-predator relationship, which a sensible multiple time series model should capture. The series

has been extensively investigated and discussed, by Bulmer (1974), Chan and Wallis (1978), Teräsvirta

(1985), Zhang, Yao, Tong and Stenseth (2003), among others.

As in Bulmer (1974) and Chan and Wallis (1978), the series are preliminarily transformed into log-

arithms and detrended by removing a quadratic trend and linear trend respectively from the mink and

muskrat series. The detrended series are plotted in figure 3. Denoting the detrended muskrat and mink

series respectively by y1t, and y2t, and letting yt = [y1t, y2t]
′, Chan and Wallis (CW) fitted the following

vector ARMA(2,1) model with common AR polynomial:

ϕ(L)yt = Θ(L)ǫt, ǫt ∼ N(0,Σ),

where ǫt = [ǫ1t, ǫ2t]
′. The maximum likelihood estimates of the parameters resulted:

ϕ̂(L) = 1 − 1.28L + 0.63L2, Θ̂(L) =

[

1 − 0.27L −0.79L

0.34L 1 − 0.75L

]

, Σ̂ =

[

0.061 0.023

0.023 0.054

]
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Figure 2: Annual rainfall series, Fortaleza (Brazil). Original series, estimated signal and cyclical com-

ponent, and estimated log-spectrum for the model n = 4, k = 2.
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The roots of the AR polynomial are complex and implying a damped oscillation with period 9.93 years.

As a measure of predictability, on an reverse scale, we can consider |Σ̂|, which equals 0.00275.

Since the above model could arise as the final equations form of a vector ARMA model (see Zellner

and Palm, 1974), CW proceed to fit the VAR(1) model

Φ(L)yt = ǫt, ǫt ∼ N(0,Σ),

which is the only VARMA model which can generate the above specification. The estimated coefficients

are

Φ̂(L) =

[

1 − 0.79L 0.68L

−0.29L 1 − 0.51L

]

Σ̂ =

[

0.061 0.022

0.022 0.058

]

such that |Φ̂(L)| = 1−1.30L+0.60L2, which implies an AR(2) and conclude that the VAR(1) specifica-

tion provides a parsimonious and yet essential account of the interactions of the two series. In particular,

the off-diagonal AR coefficients imply that an increase in the muskrat population (prey) is followed by an

increase in the mink population (predator) a year later, and an increase in mink is followed by a decrease

in muskrat a year later. The estimated model implies that the two series display a cycle with a period of

about 10 years, with the muskrat cycle leading the mink cycle by 2.4 years. With respect to the original

specification, the VAR(1) model yields an higher value of the (un)predictability, |Σ̂|, which now equals

0.00305, but has fewer parameters.

In the place of an unrestricted VAR(1) model we fit and compare two bivariate cycle models, the

spherical cycle model (SCM) and the elliptical (ECM), which can be regarded as two constrained version

of the final model fitted by CW. The SCM is specified as follows:

yt = ρG12(ω)yt−1 + ǫt, ǫt ∼ N(0,Σ),

whereas the ECM is

yt = E(ω)yt−1 + ǫt, ǫt ∼ N(0,Σ),

where was given in 5, i.e.

E(ω) =

[

α cos ω α sinω

−β sinω β cos ω

]

.

Therefore, the ECM encompasses the SCM, which arises when α = β(= ρ).

Table 3 displays some estimation results. The estimated values of α and β resulted respectively

1.00 and 0.60, whereas the cycle frequency is estimated equal to 0.63. The hypothesis H0 : α = β is

strongly rejected. The results provide strong support for the elliptical cycle specification. The second

panel of figure 3 suggest that this is the case since the variability of muskrat population is larger than that

characterizing minks, so that the time plot of y2t versus y1t has an elliptical, rather than circular, shape.
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Model ω̂ ∈ (0, π) ϕ̂(L) log-lik AIC BIC |Σ|

SCM 0.45 1 − 1.46L + 0.66L2 -2.59 20.0 38.9 0.00359

ECM 0.69 1 − 1.29L + 0.60L2 3.04 11.0 32.5 0.00301

Table 3: Mink-Muskrat bivariate time series. Estimation results

The estimated autoregressive matrix polynomial and prediction error covariance matrix for the ECM are

very similar to the unrestricted VAR(1) model fitted by CW:

I − E(ω)L =

[

1 − 0.81L 0.59L

−0.36L 1 − 0.49L

]

, Σ̂ =

[

0.061 0.021

0.021 0.056

]

.

The implied final equations form has ϕ̂(L) = |I2 − Ê(ω)L| almost identical to that implied by CW’s

VAR(1) model (see table 3), and the predictability measure is about the same (actually, it is slightly

smaller). Moreover, it has a parameter less and thus ECM would be preferred to the VAR(1) by an

information criterion.

The bottom right hand panel of figure 3 displays the two parametric spectra implied for the two series

by the ECM specification, which have the following expressions. Denoting by σij the generic element

of Σ,

f11(λ) =
1

2π

σ11(1 − 2β cos ω cos λ + β2 cos2 ω) + σ12(2α sinω cos λ − αβ sin 2ω) + σ22(α
2 sin2 ω)

1 + α2β2 + (α + β)2 cos2 ω − 2(α + β)(1 + αβ) cos ω cos λ + 2αβ cos(2λ)
,

f22(λ) =
1

2π

σ11(β
2 sin2 ω) + σ12(αβ sin 2ω − 2β sinω cos λ) + σ22(1 − 2α cos ω cos λ + α2 cos2 ω)

1 + α2β2 + (α + β)2 cos2 ω − 2(α + β)(1 + αβ) cos ω cos λ + 2αβ cos(2λ)
.

The spectral peak is located at a frequency corresponding to a ten year cycle.

The last panel shows the spectral coherence and the phase between the two series, computed respec-

tively as ℜ{f12(λ)}2 + ℑ{f12(λ)}2 and arctan {−ℑ{f12(λ)}/ℜ{f12(λ)}} where ℜ and ℑ are the real

and imaginary parts of the cross-spectrum:

f12(λ) =
1

2π

σ11s11 + σ12s12 + σ22s22

1 + α2β2 + (α + β)2 cos2 ω − 2(α + β)(1 + αβ) cos ω cos λ + 2αβ cos(2λ)
,

where s11 = −β sinωeıλ + β2 sinω cos ω, s12 = 1 − cos ω(αeıλ + βe−ıλ) + αβ cos 2ω, s22 =

α sinωe−ıλ − α2 sinω cos ω.

6 Conclusions

The paper has proposed multivariate and elliptical extensions of the traditional circular cycle model. The

empirical applications have pointed out under what circumstances these extensions can be fruitful. Other

potential applications deal with the parametric estimation of the spectral density of a stationary stochastic

process characterized by multiple peaks.
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Figure 3: Mink-Muskrat bivariate time series. Original series, phase plot, univariate spectra, coherence

and phase diagram implied by the elliptical cycle model.

1860 1880 1900

−1.5

−1.0

−0.5

0.0

0.5

1.0
Series

Muskrat Mink 

−1.6

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

−1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6
Muskrat

M
in

k
Time Plot of Mink vs Muskrat

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3
Sample and parametric spectra implied by ECM

Muskrat 
Mink 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

Coherence and phase

Coherence 
Phase shift 

17



There are some open issues that this paper has left unresolved and that we leave for future research.

The first deals with the relationship between the rotation angles ωij and the spectral peaks ζh. Apart

from very special cases, it is not possible to derive the distribution of the ζh’s from that of the ωij’s.

The second deals with the multivariate extension of the elliptical model, which would be relevant for

modeling the cyclical interactions in multiple time series.
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Appendix

A Proof of Proposition 1

We aim at locating the value of λ for which the power spectrum of the circular stochastic cycle (1),

f(λ) =
σ2

k

2π

1 + ρ2 − 2ρ cos ω cos λ

1 + ρ4 + 4ρ2 cos2 ω − 4ρ(1 + ρ2) cos ω cos λ + 2ρ2 cos(2λ)
,

is maximum. First notice that

lim
ρ→0

f(λ) =
σ2

k

2π
and lim

ρ→1
f(ω) = ∞,

since the (squared) denominator of the above equation is null for

cos λ =
(1 + ρ2) cos ω ∓ sinω

√

−(1 − ρ2)2

2ρ
,

i.e. for ρ = 1 and λ = ω. When ρ ∈ (0, 1), the first order conditions give:

2ρ cos ω sinλ(1 + ρ4 + 4ρ2 cos2 ω − 4ρ(1 + ρ2) cos ω cos λ + 2ρ2 cos(2λ))+

− (4ρ(1 + ρ2) cos ω sinλ − 4ρ2 sin(2λ))(1 + ρ2 − 2ρ cos ω cos λ) = 0.

Equivalently

sinλ
[

2ρ cosω(1 + ρ4 + 4ρ2 cos2 ω) − (2ρ cos ω)4ρ(1 + ρ2) cos ω cos λ+

+ (2ρ cos ω2ρ2 cos(2λ)) − (4ρ(1 + ρ2) cos ω − 4ρ22 cos(λ))(1 + ρ2 − 2ρ cos ω cos λ)
]

= 0,

which is null for λ = 0 (this is a relative minimum). Let us consider the other solutions. By some

algebra, the above equation can be written as the second order equation in cos λ,

4ρ2 cos ω cos2 λ− 2ρ(1 + ρ2)2 cos λ− cos ω(1 + ρ4 + 4ρ2 cos2 ω) + 2ρ2 cos ω + 2(1 + ρ2)2 cos ω = 0.

Noticing that −1 − ρ4 − 6ρ2 = −(1 + ρ2)2 − 4ρ2 and using some algebra and trigonometric identities,

one can obtain the roots of the above equations as

cos λ1,2 =
(1 + ρ2) ∓ sinω

√

(1 + ρ2)2 − 4ρ2 cos2 ω

2ρ cos ω

The quantity under square root is always positive for ρ < 1 and there is only one admissible solution, in

modulus smaller than one, that can be expressed as

cos λmax =
1 + ρ2

2ρ cos ω

(

1 − sinω

√

1 −
4ρ2

(1 + ρ2)2
cos2 ω

)

.

The overall conclusion is that, for ρ that tends to unity, the spectrum reaches its maximum at a

frequency λ that tends to the frequency of the cycle, ω. As long as ρ decreases, the maximum of the

spectrum is attained for values of λ < ω.
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B Proof of Proposition 2

The proof is analogue to the proof of proposition 1, provided that α and β are considered in place of ρ,

so we just summarise the main steps. Differentiating (6) with respect to λ and equating to zero gives

sinλ(8αβ2 cos ω cos2 λ − 2A cos λ − B) = 0,

where A = 4αβ(1 + R2), B = 2β cos ω(1 + α2β2 + (α + β)2 cos2 ω − 2β) − 2(α + β)(1 + αβ)(1 +

R2) cos ω) and R2 = α2 sin2 ω + β2 cos2 ω, from which the relative minimum in λ = 0. Solving the

second order equation in cos λ gives

cos λmax =
1 + R2

2β cos ω

(

1 ∓
√

1 + C cos4 ω − D cos2 ω
)

,

where C = β
α

(α+β)2

(1+R2)2
, D = −

(

β

α
+αβ3−2β2

(1+R2)2
−

1+αβ+ β

α
+β2

1+R2

)

, C,D > 0. Of the two solutions, only the

one with the minus gives a value for the cosine which is smaller than one. Using trigonometric identities

and collecting terms, we rewrite the above equation to have the solution given in proposition 4.

C Proof of Proposition 3

To obtain the reduced form of ψt in (8), we start by writing

ψt = Z′ρGz(ξ)Zψt−1 + κt

which, after some algebra, is equivalent to

ψ̃t =
(I − ρGz(ξ)L)∗

det(I − ρGz(ξ)L)
κt,

where ψ̃t = Zψt and the superscript ∗ denotes the adjoint, or adjugate, of a matrix. The above expression

allows us to conveniently derive the reduced form of the reparameterized process ψ̃t. In fact, for all the

components of ψ̃t, i.e. the processes ψ̃t, ψ̃
†
t and ψ̃‡

t , the autoregressive polynomial is det(I−ρGz(ξ)L) =

(1 − ρL)(1 − 2ρ cos ξL + ρ2L2), whereas the moving average polynomial is the j-th row of (I −

ρGz(ξ)L)∗, for j = 1, 2, 3. The adjoint is here obtained as

(I − ρGz(ξ)L)∗ = p1I + p2(I − ρGz(ξ)L) + p3(I − ρGz(ξ)L)2

where the pj are the coefficients of xj in the characteristic polynomial p(x) = |(I−ρGz(ξ)L)−xI|, i.e.

p1 = 3 + ρ2L2 + 2ρ2 cos ξL2 − 4ρ cos ξL − 2ρL

p2 = 2ρ cos ξL + ρL − 3

p3 = 1,
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which follows by the Cayley-Hamilton theorem (p(I − ρGz(ξ)L) = 0) and by the fact that p0 = −|I−

ρGz(ξ)L| (Lancaster and Tismenetsky, p. 157, Theorem 2, and p. 165, Ex. 8). With some algebra,

(I − ρGz(ξ)L)∗ = I +
[

(1 + 2 cos ξ)(I − Gz(ξ)) + Gz(ξ)
2
]

ρ2L2 − [(1 + 2 cos ξ)I − Gz(ξ)] ρL

whose first row times κt is equal to

e′1(I − ρGz(ξ)L)∗κt = {1 − (1 + cos ξ)ρL + [(1 + 2 cos ξ)(1 − cos ξ) + cos(2ξ)] ρ2L2}κt+

+{ρ sin ξL + [−(1 + 2 cos ξ) sin ξ + sin(2ξ)] ρ2L2}κ†
t ,

where e1 = [1 0 0]′. Hence, the reduced form of ψ̃t is

(1− ρL)(1− 2ρ cos ξL + ρ2L2)ψ̃t = {1− (1 + cos ξ)ρL + cos ξρ2L2}κt + {ρ sin ξL− sin ξρ2L2}κ†
t .

Collecting terms we find

(1 − ρL)(1 − 2ρ cos ξL + ρ2L2)ψ̃t = (1 − ρL)(1 − cos ξρL)κt + (1 − ρL)(ρ sin ξL)κ†
t ,

i.e., ψ̃t is observationally equivalent to the first order stochastic cycle (1).

The reduced form of the auxiliary processes ψ̃†
t and ψ̃‡

t are derived in an analog way and are given by

the ARMA(2,1) process (1 − 2ρ cos ξL + ρ2L2)ψ̃†
t = −(ρ sin ξL)κt + (1 − cos ξρL)κ†

t and the AR(1)

process (1 − ρL)ψ̃‡
t = κ‡

t , respectively.

Finally, ψt = e′1Z
′ψ̃t is the ARMA(3,2) process given in (9). The spectrum is obtained by the Fourier

transform of the spectral generating function for an ARMA process, see Harvey (1989, pag. 59). This

concludes the proof of proposition 2.

D Proof of Proposition 4

Let us write (10) as

ψt =
(I − ρG(ω)L)∗

det(I − ρG(ω)L)
κt.

If n is even, then det(I − ρG(ω)L) =
∏

n
2

h=1(1 − 2ρ cos ζhL + ρ2L2) which follows by the fact that

the spectrum of G(ω) is the set {eıζ1 , eıζ2 , . . . , eıζn}, where ζ2h = −ζ2h−1, for h = 1, 2, . . . , n
2 , and

tr(G(ω)) = 2
∑

n
2

h=1 cos ζh. The adjoint is

(I − ρG(ω)L)∗ = −
n

∑

j=1

(−1)n−jsn−j(I − ρG(ω)L)j−1,

where we have used the Cayley-Hamilton theorem, as in the proof of proposition 3, with pj = (−1)n−jsn−j

and sn−j being the symmetric function of the eigenvalues of I − ρG(ω)L, defined to be the sum of the

product of the eigenvalues taken n − j at a time, i.e.

sn−j =
∑

1≤i1<i2<...<in−j≤n

(1 − ρeıζi1L)(1 − ρeıζi2L) . . . (1 − ρe
ıζin−j L)
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(Meyer, 2000, p. 494). Writing (I−ρG(ω)L)j−1 = V(I−ρΞL)j−1VH , where Ξ = diag (eıζ1 , eıζ2 , . . . , eıζn),

and taking the first row, we obtain (12).

If n is odd, then the spectrum of G(ω) is the set {eıζ1 , eıζ2 , . . . , eıζn−1 , 1}, where ζ2h = −ζ2h−1, for

h = 1, 2, . . . , n−1
2 with tr(G(ω)) = 1+2

∑

n−1

2

h=1 cos ζh, the adjoint is (I−ρG(ω)L)∗ =
∑n

j=1(−1)n−jsn−j(I−

ρG(ω)L)j−1 and, consequently,

(1 − ρL)

n−1

2
∏

h=1

(1 − 2ρ cos ζhL + ρ2L2)ψt,1 =
n

∑

j=1

n
∑

i=1

n
∑

k=1

(−1)n−jsn−jv1i(1 − ρeıζiL)j−1vkiκt,k,

provided that ζn = 0. The spectra are obtained through the spectral generating function for an ARMA

process, see Harvey (1989, pag. 59).
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