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Abstract

This paper introduces a new incentive compatible mechanism which
for general preference environments implements Lindahl allocations
as Nash equilibria. The mechanism does not increase in structural
complexity as consumers are added to the economy, the minimum
dimension of data needed to compute payo¤s is smaller than other
mechanisms with comparable properties; �nally, for quasi-linear envi-
ronments and appropriate choices of the mechanism parameters, the
mechanism induces a supermodular game whose best reply mapping
is a contraction. Thus, this new Lindahl mechanism provides a con-
nection between the desirable welfare properties of Lindahl allocations
and the desirable theoretical/ convergence properties of supermodular
games.

1 Introduction

The reliance on unregulated markets for the provision of public goods presents
well known challenges to e¢ciency. For economists, the existence of this prob-
lem continues to motivate the search for alternative institutions which may
yield Pareto optimal outcomes. One problem with this approach is that some
Pareto outcomes may not be desirable for everyone involved. Some people

�University of Arizona, Department of Economics, mvanesse@email.arizona.edu. I am
especially grateful to Mark Walker, John Wooders, Martin Dufwenberg, PJ Healy and
Rabah Amir for their helpful suggestions and comments throughout this project.
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could end up being worse o¤ than they were with their original endowment,
a common critique, for example, of the Groves-Ledyard (G-L) mechanism.
G-L is an institution that overcomes the free riding problem � the incentive
to enjoy the public good�s bene�ts while not sharing in its cost � but the
mechanism may leave some participants worse o¤ than before they partic-
ipated. In contrast, Lindahl allocations, while also Pareto optimal, make
no one worse o¤ than he was to begin with (i.e., are individually rational).
Lindahl allocations are therefore attractive outcomes when there are public
goods.
In addition to being Pareto optimal and individually rational, Lindahl

allocations share another important property of Walrasian (�competitive�)
allocations of private goods: every individual�s payment is for each unit of the
public good is equal to its marginal value to him. In the Walrasian setting
consumers all face the same price and they demand potentially di¤erent
quantities of a good; in the Lindahl setting they face distinct �personalized�
prices and, in equilibrium, each consumer demands the same quantity of the
public good. Actually implementing a Lindahl scheme, however is somewhat
problematic, since it is not exactly clear how the personalized prices are to be
determined. Perhaps one could use surveys, but there may then be incentives
for participants in the surveys to misrepresent their preferences in order to
pay a lower price. This has led to the development of incentive compatible
public goods mechanisms.
The purpose of this paper is to introduce a new incentive compatible

mechanism which attains Lindahl allocations as Nash equilibria. This is true
for economies with an arbitrary number of consumers and general prefer-
ence environments. In addition to this Nash �implementation� result, the
mechanism has several other attractive properties that have been motivated
by experimental research: it retains its structural simplicity as the number
of consumers increases; the minimum dimension of data needed to compute
payo¤s is smaller than other mechanisms with comparable properties; the
components of the mechanism have a clear economic interpretation; and for
quasi-linear preference environments the unique equilibrium is stable under
a wide variety of learning algorithms.
The mechanism introduced here is not the �rst to implement Lindahl al-

locations. Hurwicz (1979) and Walker (1981) were the �rst to present such
mechanisms, but Kim (1987) has shown that both mechanisms are quite
unstable. While some sort of dynamic stability is desired, there is no agree-
ment in the literature about how people�s behavior adjusts when out of equi-
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librium. In mechanism-design experiments, however, a common empirical
�nding is that in mechanisms with theoretically robust dynamic stability
properties, subjects� behavior tends to converge. Supermodular mechanisms
have been particularly successful.1 This empirical regularity was presaged by
the theoretical stability results established by Milgrom and Roberts (1990a)
for supermodular games.
Chen�s (2002) theoretical contribution is of particular interest. She pre-

sented the �rst Lindahl mechanism that is supermodular in quasi-linear en-
vironments for some values of the mechanism parameters. Thus she ties
the observation that supermodular mechanisms tend to perform better in
the laboratory to the welfare properties of Lindahl equilibria. The Chen
mechanism has also had some initial success in a laboratory environment.
Van Essen, Lazzati, and Walker (2007) experimentally tested three Lindahl
mechanisms, including the Chen mechanism, �nding that it converged quite
close to its equilibrium messages. However, there are several reasons to be
dissatis�ed with this initial success. The Chen mechanism does not main-
tain its structure as the number of consumers are added to the economy; the
amount of information consumers need to compute their payo¤s increases
in the number of participants. The experimental evidence suggests that the
mechanism generates large amounts of tax waste when not in equilibrium,
and participants frequently did worse than their initial endowment when out
of equilibrium. Finally, it should be noted that there remain some practical
concerns with how to satisfy the Milgrom and Robert�s stability conditions
when you apply the Chen mechanism (or any similar mechanism). In par-
ticular, there are several issues related to the unboundedness of the strategy
space which is critical in the implementation part of the proof. The Lin-
dahl mechanism presented in this paper builds upon Chen�s contribution by:
�rst, addressing the above concerns in the design stage; and second, by ex-
ploring an alternative direction than Chen in ensuring the dynamic stability
of equilibrium.
The remainder of the paper will proceed as follows: Section 2 provides

a simple de�nition of a supermodular game and summarizes some of the
important properties these games exhibit; Section 3 outlines the basic public
goods problem and mechanism environments; Section 4 contains the bulk of
the paper�s theoretical results concerning implementation; �nally, Section 5

1For example see Chen and Tang (1998), Chen and Gazzale (2004), Healy (2004), and
Van Essen, Lazzati, and Walker (2007).
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compares the new Lindahl mechanism with several existing ones in order to
clarify the paper�s contribution.

2 Preliminaries

Supermodularity plays a signi�cant role in several of the results to follow.
In this section we review some de�nitions, framed in terms of the strategy
spaces and payo¤ functions used in this paper. The strategy spaces are
subsets of Euclidean spaces and the payo¤ functions are twice continuously
di¤erentiable (or C2). More general de�nitions of a supermodular game can
be found in Topkis (1998) or Milgrom and Roberts (1990a).
A normal form game is de�ned by a set of players, a strategy set for

each player, and a payo¤ function for each player. Denote the set of players
I, where I = f1; :::; Ng. Functions belonging to players are indexed by a
superscript while arguments are indexed by a subscript. Let Mi � R

2 be
player i�s strategy space with an arbitrary element mi = (mi1;mi2), where
M = �Ni=1Mi is the collection of all players� strategy spaces. Last, for each
player i let ui : M ! R be a payo¤ function which maps strategy pro�les
into a numerical payo¤.
A supermodular game is one in which the strategy spaces satisfy the above

mentioned criteria and the payo¤ functions satisfy the following two criteria.
The �rst criterion is that a player�s marginal utility for increasing an action
is increasing in his own actions. This is known as the supermodularity
property:

De�nition 1 A C2 payo¤ function ui is supermodular if a player�s own
actions are strategic compliments�i.e. for each i

@ui (m)

@mi1@mi2

� 0:

The second criterion requires that the marginal utility of each player for
increasing an action is increasing in all of their rivals� actions. This is known
as the increasing di¤erence property:
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De�nition 2 A C2 payo¤ function ui has increasing di¤erences if a player�s
own actions are strategic compliments with the actions of all other players�
i.e. for each i

@ui (m)

@min@mjl

� 0

for n = 1; 2 and l = 1; 2.

A game is supermodular if the payo¤s for all players satisfy both proper-
ties:

De�nition 3 A game is supermodular if for each player i: Mi is a non-
empty subset of R2 , and ui has the supermodularity and increasing di¤erence
properties.

Supermodular games have nice properties which make them interesting
for mechanism design. If the strategy space is compact and the payo¤ func-
tion is C2, then Milgrom and Roberts (1990a) show that:

1. The set of serially undominated strategy pro�les has a maximum and
a minimum element, and these elements are Nash equilibria;

2. Under a wide class of dynamic adjustment processes the predicted
behavior eventually ends up between the two extreme Nash equilib-
ria. These dynamic processes include best-response dynamics, �ctitious
play, Bayesian learning, and others.

When the Nash equilibrium is unique, the predictive power of these results
is increased: the �rst property implies that the game is dominance solvable
and the second property says that the unique Nash equilibrium is �stable�
under a wide range of adaptive behavior.
In the next section, I explain the public good environment, which can be

thought of as a simpli�ed general equilibrium problem.
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3 The Public Good Economy

For simplicity, I restrict attention to economies which have N � 2 consumers,
one private good, one public good, and a constant returns to scale production
technology. The quantity of the public good will be denoted by x, and the
private good for consumer i by yi, where consumers are indexed by subscript
i. Each consumer is characterized by a convex consumption set Ci = R

2
+, an

initial endowment of the private good !i > 0, and no initial endowment of the
public good. The public good is produced, using the private good as an input
(quantity denoted z), with a constant returns to scale production technology
f(z) = z

�
� i.e., each unit of the public good x requires � units (� > 0) of the

private good. Thus � is the constant (real) marginal cost of production. An
allocation in this simple economy is an N + 1- tuple (x; y1; :::; yN) 2 R

N+1
+ .

3.1 The Mechanism

A mechanism takes consumers� strategies (or messages), and maps them into
an outcome (or allocation). Here I consider a mechanism in which consumers
report messages to a �planner� who uses this information to determine an
amount of the public good to produce and a tax for each consumer. The
message space of consumer i is Mi = R

2 with generic element mi = (ri; si) :
Let m = (m1; :::;mN) denote the pro�le of all players� messages. Consumer
i�s action ri should be interpreted as a request from the consumer to the
planner for ri units of the public good. Notice that negative requests are
allowed. Consumer i�s other action, si, is interpreted as his statement about
the amount of the public good that will be produced. Rather than write
(r1; s1; r2; s2; :::) for a strategy pro�le, I write (r1; r2; :::; rN ; s1; :::; sN) = (r; s).
These messages are collected by the planner and used to determine an amount
of the public good and a tax for each player i according to outcome functions
�(r; s) and � i(r; s) respectively. For any positive real numbers �, , and �,

let '�;;�(r; s) =
�
�(r; s); (!i � � i(r; s))

N

i=1

�
be a mechanism with outcome

functions de�ned as follows:

�(r; s) =
1

N

NX

i=1

ri

� i(r; s) = P i(r; s) � �(r; s) +


2
(si � �(r; s))

2 +
�

2
(si+1 � �(r; s))

2
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where

P i(r; s) =
�

N
� �

 
X

j 6=i

rj

N � 1
� si+1

!

where �,  > 0 and � � 0 are positive parameters. Furthermore, interpret
sN+1 = s1.

2 P i(r; s) can be thought of as i�s personalized price for the public
good and the remaining two terms as statement penalties i must pay.
In words, the mechanism works as follows: the planner collects each con-

sumer�s request and produces an amount of the public good equal to the
average request. In addition, the requests and statements are used to deter-
mine each consumer�s tax, which is the sum of the two penalty terms and
the term involving the personalized price. The �rst statement penalty for
consumer i is increasing in the amount by which his own statement di¤ers
from the actual amount of the public good produced, and the other statement
penalty is increasing in the amount by which his neighbor�s (consumer i+1)
statement, si+1, di¤ers from the actual public good production. Since �(r; s)
is independent of s and since preferences are increasing in yi, it is clear in a
Nash equilibrium every consumer�s statement will be correct. Consequently,
in equilibrium both penalty terms will be zero for every consumer, and that
the consumer will therefore simply pay the price P i(r; s) for each unit of the
public good. Note that P i (r; s)is independent of both ri and si.
The personalized price function, P i (r; s), has an intuitive economic in-

terpretation. The price is higher for a consumer who is perceived by their
neighbor (consumer i+ 1) to demand more of the good than others and the
price is lower if he is perceived to request less than others. The term

P
j 6=i

rj
N�1

corresponds to the amount of the public good if consumer i did not partici-
pate in the mechanism. The term si+1 represents consumer i+1�s statement
about the level or quantity of the public good. Thus if

P
j 6=i

rj
N�1

> si+1, it
means that consumer i+ 1 believes that consumer i�s request will lower the
level of the public good produced. As a consequence, i�s personalized price is
less than an equal share of the marginal cost. If

P
j 6=i

rj
N�1

< si+1, then the
reverse is true and consumer i�s personalized prize is greater than an equal
share of the marginal cost. If

P
j 6=i

rj
N�1

= si+1, the personalized price is the

2For some non-equilibrium messages the payo¤s are not completely well de�ned. That
is they will take consumers outside of their consumption set Ci. This same weakness is
shared by the Groves-Ledyard, Hurwicz, Walker, Kim, and Chen mechanisms. However it
should be noted that each interior equilibrium there is a neighborhood on which feasibility
is assured.
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equal share of the marginal cost. Note that the �rst term in P i (r; s) is �

N
,

the per-capita cost of the public good.

3.2 Preference and Wealth Assumptions

The coupling of the mechanism '�;;� (r; s) and a preference environment
de�nes a game. I am interested in two types of preference environments:
�rst, a �regular� environment where preferences satisfy a set of consistency
conditions; second, a sub-case of the regular environment that satis�es some
additional properties. The de�nitions of these environments are given below.

De�nition 4 A regular preference environment is one in which for each
player has a complete and transitive preference relation �i that satis�es the
following properties:

1. (Continuity): For every (�x; �yi) 2 Ci, the sets f(x; yi)j(x; yi) �i (�x; �yi)g
and f(x; yi)j(�x; �yi) �i (x; yi)g are closed in Ci.

2. (Convexity): If (x; yi) �i (�x; �yi), then (�x+(1��)�x; �yi+(1��)�yi) �i
(�x; �yi) for any � 2 [0; 1].

3. (Strictly Increasing in yi): If �yi > yi, then for any x, (x; �yi) �i (x; yi).

De�nition 5 EQ denotes the set of standard C2 quasi-linear environments�
i.e. those in which, for each i, there is a real valued function vi such that
ui(x; yi) = yi + v

i(x), vi is C2, concave and its second derivative is bounded

from below by some real number Ki such that �1 < Ki �
@2vi(x)
@x2

< 0 . Note
that EQ � E.

Finally, I assume that in equilibrium no consumer can be at his minimum
wealth. I formally de�ne this condition below, but in words, this condition
states that in equilibrium, it must be possible to �nd a cheaper, feasible
consumption bundle. This assumption is needed to rule out boundary equi-
librium.3

3See Groves and Ledyard (1977) or Groves and Ledyard (1980) for a discussion of this
assumption.
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De�nition 6 (The �No Minimum Wealth Condition�): If (r; s) is a Nash
equilibrium, there exists yi and (ri; si) such that (yi; �(ri;�r�i; si;�s�i)) 2 Ci
and yi + �

i(ri;�r�i; si;�s�i) < !
i.

4 Implementation

The �rst result of the paper shows that the game induced by the mechanism
'�;;� (r; s) implements Lindahl allocations as Nash equilibrium outcomes.
Implementation is an exact correspondence between Lindahl and Nash out-
comes. In other words, any Lindahl allocation can be achieved as the allo-
cation of a Nash equilibrium; and at any Nash equilibrium the equilibrium
allocation is Lindahl.

Theorem 1 The mechanism '�;;� implements the Lindahl allocations for
any e 2 E.

Proof. See Appendix.

The Lindahl equilibria are also associated with the two fundamental wel-
fare theorems of the public good economy. First, like Walrasian equilibria,
Lindahl allocations are Pareto optimal. Second, any Pareto optimal allo-
cation can be supported as a Lindahl equilibrium through appropriate re-
distribution of the initial endowment !. The exact conditions needed for
the existence of Lindahl equilibria can be found in Milleron (1972) or Fo-
ley (1970). Notice that Theorem 1 does not impose any restrictions on the
positive parameters �, , and �. These are free parameters which will be
manipulated later in the paper to create a family of supermodular Lindahl
mechanisms.
In order to illustrate the dual nature of this theorem the next example

may be useful.
Consider a two-consumer economy, where each consumer is endowed with

! = 20 units of the private good. Suppose it takes 4 units of the private good
y to produce each unit of the public good x (i.e., � = 4) and that Consumer
1�s and Consumer 2�s preferences can be represented by the utility functions
u1(x; y1) = y1 �

1
2
(6� x)2 and u2(x; y2) = y2 �

1
2
(8� x)2 respectively. The

mechanism '1;1;1(m) implements the Lindahl allocations of this economy.
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Implementation of Lindahl allocations requires �rst that any Lindahl al-
location can be achieved as a Nash equilibrium of the mechanism, and at any
Nash equilibrium, the equilibrium allocation is Lindahl. For this example, I
start with the �rst requirement.
From the utility functions we solve for both Player 1�s and Player 2�s

demand for the public good (or their marginal rate of substitution) which
are MRS1 = 6 � x and MRS2 = 8 � x respectively. Using the Samuelson
marginal condition (i.e., that at a Pareto optimal quantity of the public good
MRS1 +MRS2 = 4), the Pareto optimal level of the public good for these
two consumers is xPO = 5. Inserting this quantity into each consumer�s
demand for the public good, we �nd that the corresponding Lindahl prices
for Consumer 1 and 2 are �P 1 = 1 and �P 2 = 3 respectively. Therefore this
example has a unique Lindahl allocation.
Suppose (�r1; �r2; �s1; �s2) is a Nash equilibrium of the game induced by mech-

anism '1;1;1(m). If the Lindahl allocation is to be achieved as a Nash equi-
librium, then two equations must hold: �rst, the average request must equal
the Pareto optimal amount, i.e.,

� (r; s) =
�r1 + �r2
2

= 5;

second, Player 1�s personalized price function must equal his Lindahl price
�P 1 = 1, i.e.,

P 1 (r; s) =
�

2
� �r2 + �s2 = 1.

Any equilibrium that achieves this allocation requires Consumer 2�s state-
ment to be correct (i.e., �s2 = 5), it follows from the second equation that
�r2 = 6. Thus, the strategy pro�le [(�r1; �s1); (�r2; �s2)] = [(4; 5); (6; 5)] is the only
pro�le which could achieve the Lindahl outcome as an equilibrium. I now
show that this pro�le is a Nash equilibrium by checking that Consumer 1 is
best responding to Consumer 2�s strategy and vice versa.
Consumer 1�s best response problem is to maximize his utility subject to

a feasible set de�ned by Consumer 2�s strategy and the mechanism. Since
in a best response Consumer 1�s strategy satis�es s1 =

1
2
r1 +

1
2
�r2 (i.e., s1 =

�(r1; �r2; s1; �s2)), Consumer 1�s best response problem simpli�es to

max
s1
u1(s1; 20� s1 �

1

2
(5� s1)

2).

The �rst order condition yields �s1 = 5, which implies �r1 = 4 and veri�es that
Consumer 1 strategy (4; 5) is his best response to Consumer 2�s strategy.
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A graphical depiction of Consumer 1�s best response problem is illustrated
below.
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A similar argument can be used to show that Consumer 2�s best response
to (�r1; �s1) = (4; 5) is (�r2; �s2) = (6; 5). Notice that Consumer 1�s actions de�ne
a personalized price equal to the Lindahl price �P2 = 3 for Consumer 2. The
graphical depiction of Consumer 2�s best response problem is given below.
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Since both players are best responding to each others actions, the unique
Lindahl allocation of this example is achieved as a Nash equilibrium.
The second implication of Theorem 1 says that it is also possible to go

in the other direction. Namely, if (�r1; �r2; �s1; �s2) is a Nash equilibrium of the
mechanism, the equilibrium allocation is Lindahl. To demonstrate this in
our example suppose (�r1; �r2; �s1; �s2) is a Nash equilibrium. Then the �rst
order condition (with respect to statement si) yields �si =

�r1+�r2
2

for each
i. Inserting this expression into each consumer�s �rst order condition (with
respect to their request) we have

6�
�r1 + �r2
2

= 2� �r2 + �s2

and

8�
�r1 + �r2
2

= 2� �r1 + �s1.

for Consumer 1 and Consumer 2 respectively. The unique solution of this
pair of equations is �r1 = 4, �r2 = 6, which yields the Lindahl equilibrium �P 1

= 1, �P 2 = 3, and x = 5. Thus, the Nash allocation is Lindahl, completing
the example.

4.1 Implementation in Quasi-Linear Environments

In this section, I show that the new Lindahl mechanism induces a super-
modular game in quasi-linear EQ environments for certain values of the
mechanism�s parameters. Furthermore, I identify su¢cient conditions for
uniqueness and the stability of equilibrium in this environment. This aligns
the desirable welfare properties of Lindahl equilibrium with a set of desirable
behavioral properties one would like in practice. I begin however with the
following useful corollary of Theorem 1.
The corollary exploits the strict concavity assumption on the valuation

functions to demonstrate a unique Lindahl equilibrium in these environments
and as a consequence of Theorem 1 a unique Nash equilibrium.

Corollary 1 For any e 2 EQ, the mechanism '�;;� has a unique Nash equi-
librium.

Proof. See Appendix.
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For N players in the EQ environment and with an appropriate choice of
mechanism parameters, the new mechanism induces a supermodular game.
Recall from De�nition 5 that @2vi

@x2
is bounded from below by Ki for all

x � 0. Theorem 2 therefore gives a su¢cient condition for the game to be
globally supermodular.

Theorem 2 For any e 2 EQ, the mechanism '�;;� induces a supermodular
game if

 �
�

N � 1
+ min

i2I
Ki

� 2

�
(N � 1)

N

�
 + � �min

i
Ki

�
; �

�

Proof. See Appendix.

Theorem 2 provides conditions under which the mechanism induces a
supermodular game. If the strategy set for each player is a compact rectangle
in R2, then the game induced by the mechanism satisfy the Milgrom and
Roberts conditions mentioned previously. However, simply compactifying
the strategy set has a number of troubling consequences. Perhaps the most
obvious of these is that the uniqueness result in Corollary 1 no longer applies
since we exploited an unbounded strategy space in the proof. There may
now exist boundary equilibria which are not Lindahl equilibria.4 In the next
section, I discuss a solution to this problem.

4.1.1 Stability

One of the stated goals of this paper is to �nd preference environments for
which the new mechanism induces a game with a unique and stable equi-
librium. Thus far it has been shown that, in quasi-linear environments, the
mechanism ' has a unique Nash equilibrium and has the increasing di¤er-
ence and supermodular properties. These two properties are typically not
enough to guarantee stability of equilibrium. In fact, it is relatively straight-
forward to cook up mechanisms (with an unbounded strategy space) that

4This is an issue since Milgrom and Roberts only show that adaptive behavior converges
to the bounds of the outermost Nash equilibria. If there are equilibria on the boundary
there may be no predictive power.
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are supermodular with a unique, unstable equilibrium.5 While the existence
of such mechanisms would seem to contradict the Milgrom and Robert�s
stability theorem, it turns out that the unbounded strategy spaces do not
meet the criteria of their theorem. Speci�cally, the strategy space needs to
be a complete lattice. If the strategy space is compacti�ed for these prob-
lematic mechanisms, there would be boundary equilibria, and the Milgrom
and Roberts stability result (which now applies) loses all of its predictive
power. We can rule this sort of thing out by creating conditions that ensure
compacting the strategy space would not create new equilibria. The most
natural method is to look for conditions that make the best reply mapping
a contraction.

De�nition 7 Let X be any complete metric space. A best reply map � on X
is said to be a contraction if there exists a real number 0 < k < 1 such that

d(�(x); �(y)) � k � d(x; y)

for all x , y 2 X.

Speci�cally, contraction mappings are useful, in this context, due to Ba-
nach�s �xed point theorem. For completeness, I include the following state-
ment of his theorem.

Theorem 3 (Banach�s Fixed Point Theorem) Let X be a non-empty
complete metric space, � : X ! X a function. Suppose � is a contraction.

5As an example, consider the following 2 player, 2 dimensional, tweak of the Walker
mechanism

�(r; s) = r1 � r2

�1(r; s) = (
�

N
� r2 � s2) � �(r; s) +

1

2
(s1 � r2)

2 +
1

2
(s2 � r1)

2

�2(r; s) = (
�

N
+ r1 + s1) � �(r; s) +

1

2
(s1 � r2)

2 +
1

2
(s2 � r1)

2

This mechanism will Nash implement the Lindahl allocations of a general environment
and in quasi-linear environments induces a supermodular game with a unique equilibrium,
but the unique equilibrium is unstable.
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Then there exists a unique point x� 2 X such that �(x�) = x�. Furthermore
if x0 is any point of X and x1 = �(x0), x2 = �(x1), x3 = �(x2), etc., then

lim
n!1

xn = x
�.

Two parts of this theorem are of particular interest. First, if the best
reply mapping is a contraction the equilibrium will be unique whether the
strategy set is R2N or the compact rectangle in R2N . This observation makes
the theorem immediately relevant to the problems observed in the previous
section. Second, Banach�s theorem provides an algorithm for �nding the
unique �xed point of the game. I will elaborate on the application of this
part of the theorem in Corollary 2.
Clearly, a contraction mapping is a powerful tool. In this section, I pro-

vide the somewhat surprising result that if the new mechanism induces a
supermodular game, then the best reply map is always a contraction. Then,
taking advantage of Banach�s �xed point theorem, I show that the su¢cient
conditions for uniqueness and stability of the Nash equilibrium are satis�ed
even if the strategy space is compacti�ed.6 While I will later argue there
is no need to compactify the stategy space, the discussion is useful since it
highlights several issues in this literature.
The following theorem reports the contraction result.

Theorem 4 If �, , and � satisfy the supermodularity restrictions of Theo-
rem 2, then the best reply mapping is a contraction.

Proof. See Appendix.

Theorem 2 guarantees uniqueness of equilibrium so long as the strategy
space is a complete metric space. Throughout the paper the complete metric
space R2N has been used. Consequently, Theorem 2 provides an alternative
proof to the uniqueness result in Corollary 1. Since the best reply mapping
is a contraction and since the compact rectangle in R2N is still a complete
metric space, we can compact its strategy space and remain con�dent that
our Nash equilibrium is unique (and �nite). Therefore, if one were inclined

6I am grateful to PJ Healy for pointing out a problem in this proof in an earlier draft
as well as for additional comments that have greatly improved this section of the paper.
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to compactify the strategy space the mechanism ' will induce a game with
a unique equilibrium that also satis�es the Milgrom and Roberts� dynamic
stability properties. Thus, at the cost of shrinking the set of applicable
preference environments to quasi-linear environments, I gain the property
that only rationalizable strategies coincide with the Nash strategies and that
the unique equilibrium is stable under �adaptive� learning dynamics such as
�ctitious play, k-period average best response, and Bayesian learning.
Unfortunately, compactifying the strategy set in this manner is an unac-

ceptable way of guaranteeing stability for this class of mechanisms. Despite
the fact that we will always have a unique equilibrium, we cannot be sure
that the equilibrium corresponds to the Lindahl outcome unless the strategy
sets are compacted in such a way to keep the original equilibrium strategies
in the strategy space. A planner would, in general, not have enough infor-
mation to guarantee that equilibrium messages would be in the interior of
the compacted message space. Thus, by arbitrarily compacting the message
space, we could actually eliminate the nice equilibrium outcome and prevent
rational players from learning to achieve the Lindahl allocation. Fortunately,
using the result from Theorem 3, stability of equilibrium can be ensured
under some learning dynamics without resorting to compacting the strategy
space. We formalize this statement in the following corollary.

Corollary 2 If �, , and � satisfy the supermodularity restrictions of The-
orem 2, then the unique equilibrium of the induced game is stable under the
myopic best reply learning algorithm.

Proof. From Theorem 3, we know that if �, , and � satisfy the supermod-
ularity restrictions, then the best reply mapping is a contraction. The best
reply mapping is a continuous function. Therefore, from Banach�s �xed point
theorem, we have that the equilibrium of the induced game exists and will
be unique. Furthermore, the theorem also states that we can �nd the equi-
librium by starting at any initial point and iterating the best reply mapping.
However, this is just the well known Cournot process, or myopic best reply
learning algorithm.

Thus, in quasi-linear environments, without resorting to compacting pro-
cedures, supermodularity of the game induced by the new mechanism actu-
ally ensures existence, uniqueness, and global stability of equilibrium.
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5 Comparison, Informational Complexity, and

Discussion

I now compare the new Lindahl mechanism with the Lindahl mechanisms
due to Kim (1993) and Chen (2002).7 These two mechanisms share a similar
game structure with the new mechanism, which makes for a straightforward
comparison. I �rst brie�y explain the outcome functions for these mecha-
nisms using the notation we have already developed. Afterwards, I compare
them with the new mechanism. I do not go into the proofs of why these mech-
anisms work. For details I refer the interested reader to the aforementioned
articles.
Just as in the new Lindahl mechanism, the other two mechanisms use a

message space of R2, where a generic message for consumer i will take the
form of mi = (ri; si), where ri serves as i�s request and si as his statement
about x. The level of the public good is determined by the outcome function
� (r; s), and the individual consumer�s tax function will again be denoted
� i (r; s).
In the Chen/Kim Mechanism, each consumer i chooses a request and a

statement. The request helps determine the level of the public good, and
both choices act to determine the level of the tax. The outcome functions of
Chen�s mechanism '

�;�
C are as follows:

� (r; s) =

NX

i=1

ri

� i (r; s) = P i (r; s) � � (r; s) +
1

2
(si � � (r; s))

2 +
�

2

X

j 6=i

(sj � � (r; s))
2

where

P i (r; s) =
�

N
� �

X

j 6=i

rj +
�

N

X

j 6=i

sj

can be thought of as i0s personalized price for the public good and � > 0,
� � 0 are constant parameters.

7de Trenquale (1989) and Kim (1996) also present stable Lindahl mechanisms, but
these mechanisms are not supermodular. Since this paper�s focus is on supermodularity
I restrict my comparison to the Chen mechanism which includes Kim (1993) as a special
case. That said, this paper�s debt to all of these previous mechanisms will, hopefully, be
obvious to the reader.
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The Kim mechanism is simply the Chen mechanism with � = 1 and � = 0.
Chen recognized that adding additional statement penalty terms to Kim�s
mechanism created the complimentarities required to make the mechanism
supermodular.
There are several key di¤erences between the new mechanism and Chen�s

mechanism which are worth distinguishing. All the important di¤erences are
derived from the choice of the personalized price function.

5.1 Di¤erences in Penalty Structure

For consumer i, the personalized price function of the new mechanism only
depends on the statement of consumer i + 1. The personalized price of
Chen�s mechanism depends on the statements o¤ all the other players. This
seemingly innocuous choice of personalized price function actually suggests
several issues. The �rst is a potential welfare issue related to the statement
penalties.
In order to get the right complementarity between actions in quasi-linear

environments, this choice of personalized price requires Chen to include a
separate squared di¤erence penalty for each consumer in the economy. In
other words, a term �

2
(sj � � (r; s))

2 is added to the Chen tax function for
each consumer j 6= i in the economy. While in equilibrium each of these
terms will be equal to zero and drop out of the tax function, when out
of equilibrium, even small incorrect statements by each player can quickly
increase the taxes each consumer has to pay (the magnitude of the penalties
depends on the speci�c parameterization of the mechanism). This welfare
issue was documented by Van Essen, Lazzati, and Walker (2008), where, in
an experiment, subjects� incorrect statements often create large losses for all
consumers, as well as generated large revenue swings to the government, and
overall losses in e¢ciency.
Since consumers in the new mechanism have only one penalty term con-

nected to the statement of their neighbor, statement penalties for each con-
sumer in a similar (parametric) situation to the situation mentioned above
will also be signi�cantly smaller. Additionally, from a welfare perspective,
individuals are shielded from large incorrect guesses by everyone other than
their partner. In an experiment, it is easy to imagine that one player in a
group may be a little slow to correct his statement. In the Chen mechanism,
every individual pays for this slowness, while in the new mechanism only one
other person is a¤ected. Lastly, since for any economy size N , the new mech-
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anism�s personalized price for consumer i depends only on the statement of
his neighbor i+ 1, it maintains this bilateral structure as N increases.
This observation also indirectly highlights another important di¤erence,

described in the following subsection.

5.2 Di¤erences in Information Requirements

Despite the theoretical assumption of complete information, the majority of
public good experiments have been conducted under incomplete information
protocols � i.e., subjects were only aware of their own payo¤ function. This
type of experiment seems more consistent with a real world setting where
it is unlikely that subjects would have knowledge of one another�s payo¤
functions. The interpretation of Nash equilibrium then becomes one of a
steady state of some dynamic learning process (think Cournot best reply)
rather than a common knowledge/ introspection argument.
Consider the following thought experiment. Suppose I design an experi-

ment to test the Chen mechanism or the new mechanism in the laboratory
under an incomplete information protocol. What is the minimum amount of
information a subject would need to compute his own payo¤?8 9

Information Requirement for Consumer i (New Mechanism):

1. The total request of all other players

X

j 6=i

rj:

2. The statement of their �neighbor� player i+ 1

si+1.

8This is not an uncommon question asked by experimenters. For instance, imagine
a typical Cournot experiment with N �rms. Each �rm (played by a subject) does not
need to know the quantity decisions of each individual �rm to compute his payo¤. This
would entail providing each �rm with N � 1 pieces of information. The minimum amount
of information needed by each �rm about rivals� choices in a Cournot experiment is just
aggregate quantity produced by all other �rms, or one piece of information.

9This is not the same as saying: What is the minimum amount of information a subject
would need to compute a best response? The other question seems more natural for an
experimental setting.
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Information Requirement for Consumer i (Chen mechanism):

1. The total request of all other players

X

j 6=i

rj:

2. The individual statements of all of the other players. Player 1, for
example, would need s2; s3; :::; sN .

It is clear that for N > 2, these two mechanisms have a di¤erent informa-
tion requirement. Furthermore this di¤erence grows larger as N grows larger.
Speci�cally, as the economy gets larger, participants in the Chen mechanism
require N independent pieces of data to be able to compute their payo¤s.10

The information requirement for the new mechanism always stays constant
at 2. This di¤erence is illustrated in the graph below.

2 3 4 5 6
0

2

4

6

N

Dim. of Data

Chen

New Mechanism

If I de�ne information complexity as the minimum dimension of data
needed to compute one�s payo¤, the Chen mechanism becomes more compli-
cated as N increases, and the new mechanism does not.

10It is possible to reduce this number to three if one does some algebra. Unfortunately
this does not simplify the Chen mechanism. For instance, unlike the published version, it
is no longer obvious that statements should try and match the level of the public good.
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6 Conclusion

This paper introduces a new incentive compatible mechanism capable of im-
plementing Lindahl allocations as Nash equilibria. While a simpli�ed econ-
omy with two goods was used for the exposition, it is straightforward to gen-
eralize the mechanism to accommodate economies with an arbitrary number
of private and public goods. Second, motivated by experimental observations
and Chen�s 2002 mechanism, I have shown conditions under which this new
mechanism satis�es the increasing di¤erence and supermodularity properties.
I then use these observations to identify a set of preference environments
which will be robustly stable and implement a unique Nash equilibrium. Fi-
nally, unlike the Chen mechanism, this new mechanism does not increase
in complexity as the number of consumers grows large. The importance of
this property is an empirical question and is well posed to be answered by
additional experimentation in the laboratory.
Finally, there are several interesting areas for future research. For in-

stance, it is known that stable Lindahl mechanisms can be found in quasi-
linear preference environments. And while the stability results in quasi-linear
environments are important, it is unknown what is the maximum preference
domain for stable environments. A natural extension of the quasi-linear
environments could be those de�ned by generalized Bergstrom-Cornes pref-
erences. It would also be nice to know if it is possible to �nd a Lindahl
mechanism that is stable for some environments and always in budget bal-
ance; or a stable, one-choice-variable, Lindahl mechanism. Some answers to
this later question have been shown in Healy and Mathevet (2009). They pro-
vide an impossibility result for the existence of one dimensional Lindahl and
Walrasian contractive mechanisms, but show, in general, it is possible to con-
struct two dimensional contractive mechanisms. Furthermore, they show, in
a similar manner to Milgrom and Robert�s learning results for supermodular
games, that contractive mechanisms induce games for which a wide variety of
learning rules converge to the equilibrium bounds in this framework. Finally,
there needs to be more experiments on implementation theory. Experiments
on mechanisms with various properties will give us a better handle on what
mechanism characteristics work or do not work behaviorally when they look
to develop new theory.
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7 Appendix

The strategy for the proof of Theorem 1 will be as follows: �rst, I demonstrate
that a Nash allocation is Pareto optimal via an argument similar to the one
used by Groves and Ledyard (1979); second, using the fact that the Nash
allocation is Pareto optimal, I use an "unbiasedness" proof similar to Foley
(1970) p. 68-69 and Chen (2002) to establish that the outcome is Lindahl;
�nally, I show that any Lindahl allocation is achieved as a Nash allocation of
the mechanism using a technique I believe was �rst used by Walker (1981).

Lemma 1 Suppose the strategy pro�le (�r;�s) is a Nash equilibrium of '�;;�

for e 2 E , where (�x; �yi) is consumer i�s Nash allocation, then the following
statements are true:

1. For any bundle (x; yi) 2 Ci, there is a pair (ri; si) such that x =
�(ri;�r�i; si;�s�i).

2. The private good consumed by consumer i in equilibrium is �yi � !
i �

� i (�r;�s) :

3. Consumer i�s statement and tax are �si =
1
N

PN

i=1 �ri and �
i (�r;�s) =

P i (�r;�s) � � (�r;�s) for all i:

4. If a feasible allocation (x; yi) 2 Ci is weakly preferred to the Nash al-
location (�x; �yi), then the preferred bundle is at least as expensive as
consumer i�s initial wealth (i.e, yi + �

i(ri;�r�i; si;�s�i) � !
i).

5. If a feasible allocation (x; yi) 2 Ci is strictly preferred to the Nash
allocation (�x; �yi), then the preferred bundle is more expensive than con-
sumer i�s initial wealth (i.e., yi + �

i(ri;�r�i; si;�s�i) > !
i).

Proof.

L1.1 Since � only depends on the requests of individuals, set x = 1
N
(ri +P

j 6=i

�rj) or ri = Nx�
P

j 6=i

�rj:

L1.2 Consider the following two bundles (� (�r;�s) ; �yi) and (� (�r;�s) ; ŷi) 2 Ci;
where 0 � ŷi < !

i�� i (�r;�s) : Since preferences are complete, transitive,
and strictly increasing in yi, I have (� (�r;�s) ; �yi) �i (� (�r;�s) ; ŷi) for all
ŷi.
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L1.3 Since (r; s) is a Nash equilibrium, then for each consumer i

(�(�r;�s); !i � � i(�r;�s)) �i (�(�r; s�i; si); !
i � � i(�r; s�i; si)) for all si.

From the functional form of the tax function and since preferences
are complete, transitive, and strictly increasing in yi, for each i, �si =
1
N

PN

i=1 �ri. It follows directly that �
i(�r;�s) = P i(�r;�s) � �(�r;�s).

L1.4 Suppose not. Then yi+�
i(�r�i;�s�i; ri; si) < �yi+�

i (�r;�s) = !i. Since � i is
continuos and using the fact that preferences are continuos, convex, and
strictly increasing in yi, there exists (�yi; �ri; �si) such that (�(�ri;�r�i; �si;�s�i) ; �yi) 2
Ci, �yi + �

i(�ri;�r�i; �si;�s�i) � !i, and (�(�ri;�r�i; �si;�s�i) ; �yi) �i (�x; �yi).
However, this means that there is an individually feasible bundle which
is strictly preferred to the Nash allocation. This contradicts the as-
sumption that (�r;�s) is a Nash equilibrium.

L1.5 Suppose not. Then (�ri; �si) is not a best response which contradicts the
assumption that (�r;�s) is a Nash equilibrium.

Lemma 2 Suppose consumer i could purchase units of the public good at a
price of ti, where ti is de�ned as consumer i�s equilibrium marginal tax rate
(i.e., ti � P

i(�r;�s)), then the following statements are true:

1. If a feasible allocation (x; yi) 2 Ci is weakly preferred to the Nash allo-
cation (�x; �yi) was then the preferred bundle is at least as expensive as
the Nash allocation (i.e., yi + ti � x � �yi + ti � �x).

2. If an allocation achieved in the mechanism is less expensive than the
Nash allocation (i.e., yi + �

i(ri;�r�i; si;�s�i) < �yi + �
i (�r;�s)) , then the

same allocation is less expensive if the public good could be purchased
at a price of ti (i.e., yi + ti � x < �yi + ti � �x).

3. If a feasible allocation (x; yi) 2 Ci is strictly preferred to the Nash
allocation (�x; �yi) was then the preferred bundle is more expensive than
the Nash allocation (i.e., yi + ti � x > �yi + ti � �x).
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Proof.

L2.1 By de�nition, ti = P i(�r;�s). By assumption, preference are convex so
certainly the set of bundles that are weakly preferred to (�x; �yi) is convex
and (�x; �yi) is on the boundary of the set. Let the set of a¤ordable
bundles be denoted Bi =

�
(x; yi) 2 Cijyi + �̂

i(x;�r�i;�s�i) � !
i
	
, where

�̂ i(x; �r�i; s) = P
i(r; s)� x+ 

2
(si� x)

2 + �
2
(�si+1� x)

2. B is convex since

�̂ i is a convex function of x. By part (2) of Lemma 1, (�x; �yi) is on the
boundary of set Bi. From part (5) of Lemma 1, we have the intersection
of the set of weakly preferred bundles to (�x; �yi) (denote WPi) and the
budget set Bi is empty. From the Separating Hyperplane Theorem,
there exists a hyperplane through (�x; �yi) that separates WPi and Bi.
The vector (ti; 1) de�nes this hyperplane. Also from the Separating
Hyperplane Theorem, I have that yi+ ti �x � c and �yi+ ti � �x = c, where
c 6= 0. It follows that yi + ti � x � �yi + ti � �x.

L2.2 If yi + �
i(ri;�r�i; si;�s�i) < �yi + �

i(�r;�s) = !i, I can expand each of
these expressions to yi+P

i(ri;�r�i; si;�s�i)��(ri;�r�i; si;�s�i) +


2
(si � x)

2

+ �
2
(�si+1 � x)

2
< �yi+P

i(�r;�s) ��(�r;�s). Let x = �(ri;�r�i; si;�s�i) and �x =
�(�r;�s). By construction, the personalized price function P i(ri;�r�i; si;�s�i) =
P i(�r;�s) = ti. I can subtract the two squared terms on the LHS to get
yi + ti � x < �yi + ti � �x.

L2.3 Suppose not. By part (1) of Lemma 2, I have yi + ti � x = �yi + ti � �x.
Since preferences are continuous there exists a neighborhood of (x; yi) ;
denoted N (x; yi) such that for all (x̂; ŷi) 2 N (x; yi) \ Ci, (x̂; ŷi) �i
(�x; �y). The "no minimum wealth assumption," part 1 of Lemma 1 and
part 2 of Lemma 2 imply that there exists a bundle (�x; �yi) 2 Ci such
that �yi + ti � �x < �yi + ti � �x = yi + ti � x = !

i. Let

G � f(x̂; ŷi) 2 Cij (x̂; ŷi) = (��x+ (1� �) x; ��yi + (1� �) yi) for all � 2 (0; 1)g .

All points in this line between (�x; �yi) and (x; yi) have a value smaller
than (�x; �yi). However since the consumption set is convex it follows that
there exists a � which is small enough such that N(x; yi)\G �i.e. there
exists a bundle (x̂; ŷi) such that (x̂; ŷi) �i (�x; �y) and ŷi+ti � x̂ < �yi+ti � �x
which leads to a contradiction of part (1) of Lemma 2.
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The next lemma and its proof are almost identical to those in the First
Fundamental Welfare Theorem for private good economies (see Debreu 1959).

Lemma 3 Suppose (�r;�s) is a Nash equilibrium of '�;;� for e 2 E , then the
Nash allocation

�
� (�r;�s) ; (! � � i(�r;�s))Ni=1

�
is Pareto optimal.

Proof. Suppose
�
�x; (�yi)

N
i=1

�
is not a Pareto optimal allocation and that�

x; (yi)
N
i=1

�
is a feasible, Pareto superior allocation. From part 3 of Lemma

2, I have that
yi + ti � x > �yi + ti � �x for all i.

Summing across all consumers, I have

NX

i=1

yi +
NX

i=1

ti � x >
NX

i=1

�yi +
NX

i=1

ti � �x.

By construction,
PN

i=1 ti =
PN

i=1 P
i(�r;�s) = �. Re-writing the above strict

inequality, I have

NX

i=1

yi + � � x >

NX

i=1

�yi + � � �x =

NX

i=1

!i.

Thus, the Pareto superior bundle is not feasible.

Lemma 4 The a¤ordable feasible set, denoted F , is a convex set, where

F =

(
(x1; :::; xN ; y1; :::; yN) j (xi; yi) 2 Ci

where xi = xj = x for all j 6= i and x �
PN
i=1(!i�yi)

�

)

.

Furthermore, the point (�x1; :::; �xN ; �y1; :::; �yN), associated with the Nash equi-
librium, is on the boundary of F .

Proof. To show that F is convex choose two arbitrary pro�les

(x1; :::; xN ; y1; :::; yN) ; (�x1; :::; �xN ; �y1; :::; �yN) 2 F:

For � 2 [0; 1], the convex combination of these two vectors is

(�x1 + (1� �)�x1; :::; �xN + (1� �)�xN ; �y1 + (1� �)�y1; :::; �yN + (1� �)�yN) .
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First, since Ci is convex, (�xi + (1� �)�xi; �yi + (1� �)�yi) 2 Ci for all i.
Second, because both xi = xj = x and �xi = �xj = �x for all j 6= i, then

�xi+(1��)�xi = �xj+(1��)�xj = �x+(1��)�x. Finally, �x �
PN

i=1 (!
i � yi)

implies ��x � �
PN

i=1 (!
i � yi). Similarly, ��x �

PN

i=1 (!
i � �yi) implies

(1� �) ��x � (1� �)
PN

i=1 (!
i � �yi). Adding these two conditions together,

I have the following inequality,

�x+ (1� �) �x �

PN

i=1 (!
i � (�yi + (1� �) �yi))

�
.

verifying that the set F is convex.
To see that (�x1; :::; �xN ; �y1; :::; �yN) is in the boundary of the set. Recall from

the Lemma 3 that the Nash allocation is Pareto optimal�i.e.
PN

i=1 �yi+� � �x =
PN

i=1 !
i. Re-arranging this expression, I have �x =

PN
i=1(!i��yi)

�
; which is

clearly on the boundary of F .

Proof of Theorem 1. The proof for Theorem 1 is done in two parts. In the
�rst half of the proof I show that if (�r;�s) is a Nash equilibrium of '�;;�, the

corresponding allocation
h
�(�r;�s); (!i � � i(�r;�s))

N

i=1

i
is a Lindahl equilibrium

and for each i, P i(�r;�s) is the corresponding Lindahl price. It is �rst shown
that the personalized price associated with the Nash equilibrium per unit
tax P i(�r;�s) de�nes a separating hyperplane between the feasible allocation
set F and the preferred set D; second, I show that the Nash allocation is
the allocation that maximizes a consumer�s preferences subject to a budget
constraint when facing the personalized price P i(�r;�s); �nally, I show that the
tax revenue equals the cost of producing the public good.
In the second half of the proof, I show that if

�
�P 1; :::; �PN

�
is the pro�le

of Lindahl prices and
�
�x;
�
!i � �P i � �x

�N
i=1

�
is the corresponding Lindahl al-

location, then it must correspond to a Nash equilibrium of the mechanism. I
do this by �rst showing that the messages that could achieve this allocation
in the mechanism are unique. Subsequently that this pro�le of strategies is
a Nash equilibrium of the game induced by the mechanism.
(Part 1): Consider the point (�x1; :::; �xN ; �y1; :::; �yN) associated with the

Nash allocation for each consumer. From Lemma 4, I have that the feasible
set F is convex and that the point (�x1; :::; �xN ; �y1; :::; �yN) is on its bound-
ary. Similarly from Lemma 5, I have that the set D is convex and point
(�x1; :::; �xN ; �y1; :::; �yN) is on the boundary. Notice that the intersection of the
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interiors of F and D have no points in common. To see this suppose that
these sets do have points in the interior that are common. Then there is
a strictly cheaper feasible point that is weakly preferred by all consumers.
However, this contradicts the fact that (�x1; :::; �xN ; �y1; :::; �yN) is Pareto op-
timal (Lemma 3). Therefore by the Separating Hyperplane Theorem, there
exists a vector (px1 ; � � � ; p

x
N ; p

y
1; � � � ; p

y
N) 6= 0 and c 2 R such that for all points

in the weakly preferred set D,

(
XN

i=1
pxi ) � x+

XN

i=1
p
y
i � yi � c:

In addition, since the vector (�x1; :::; �xN ; �y1; :::; �yN) is in the boundary of both
F and G,

(
XN

i=1
pxi ) � �x+

XN

i=1
p
y
i � �yi = c:

Since (�r;�s) is a Nash equilibrium, the hyperplane that crosses through (�x; �yi)
is de�ned by the vector of (pxi ; p

y
i ) = (ti; 1) for each i where p

x
i = ti = P

i (�r;�s)
(Lemmas 1 and 2). This should be thought of as consumer i�s personalized
price.
Next, I show that the bundle (�x; �yi) maximizes the preferences of con-

sumer i subject to i�s budget constraint when facing P i (�r;�s) as his person-
alized price.
Suppose (xi; yi) �i (�x; �yi) while xj = �x and yj = �yj for all j 6= i. This

point is in set D. From the separating hyperplane de�ned above I have,

 
NX

i=1

P i (�r; �s)

!

� x+
NX

i=1

yi �

 
NX

i=1

P i (�r; �s)

!

� �x+
NX

i=1

�yi.

All terms in this expression are the same except those belonging to
consumer i. Thus the expression can be simpli�ed to yi + P

i (�r; �s) � x �
�yi + P

i (�r; �s) � �x. From part 3 of Lemma 2, since the bundle (xi; yi) �i (�x; �yi)
equality cannot hold so

P i (�r; �s) � x+ yi > P
i (�r; �s) � �x+ �yi:

The personalized price for consumer i is independent �{�s actions�i.e.,
P i (�r; �s) = P i (ri; �r�i; si; �s�i) for all ri and si. Using this fact I am going
to rewrite the above expression to be

P i (ri; �r�i; si; �s�i) � x+ yi > P
i (�r; �s) � �x+ �yi.
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Now adding two appropriately chosen positive terms on the LHS, I have

P i (ri; �r�i; si; �s�i) � x+ yi +


2
(si � x)

2 +
�

2
(�si+1 � x)

2
> P i (�r; �s) � �x+ �yi.

However, this is equivalent to yi + �
i (ri; �r�i; si; �s�i) > �yi + �

i(�r; �s) = !i,
where x = 1

N
(ri+

P
j 6=i �rj) and �x =

1
N
(�ri+

P
j 6=i �rj). Thus, any bundle that is

strictly preferred to the Nash bundle is not a¤ordable by the consumer�i.e.,
the Nash allocation maximizes consumer i�s preferences subject to a budget
constraint.
The last part of the argument requires tax revenue to equal the total cost

of production.
If I add up the tax revenue, I have that

NX

i=1

� i(�r; �s) =
NX

i=1

P i(�r; �s) � �(�r; �s)

=

NX

i=1

 
�

N
� �

X

j 6=i

�rj
N � 1

+ ��si+1

!

� �(�r; �s)

=

 

� � �

NX

i=1

X

j 6=i

�rj
N � 1

+ �

NX

i=1

�si+1

!

� �(�r; �s)

= (� � �N�(�r; �s) + �N�(�r; �s)) � �(�r; �s)

= � � �(�r; �s).

Thus the allocation is feasible and this is a Lindahl allocation, where
�
�P 1; :::; �PN

�

will be the pro�le of Lindahl prices.
(Part 2): For all i, let �si = �x. Consider the following system of N linear

equations and N variables (r1; :::; rN)

r1 + r2 + � � �+ rN = N � �x

�
X

j 6=i

rj =

�
1

�

�
�P i �

�

N

�
� �si+1

�
(N � 1) for i = 1; :::; N � 1

It is straightforward to verify that the N � N coe¢cient matrix of this
system of equations is non-singular with a rank of N . Thus, the system has
a unique solution which I will call (�r; �s). It remains to show that (�r;�s) is a
Nash equilibrium.
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Since the allocation (�x; (!i � �P i � �x)Ni=1) is Lindahl, (�x; !
i � �P i � �x) �i

(x; !i � �P i � x) for all x. Let x = 1
N
(ri +

P
j 6=i �rj) = �(ri;�r�i;�s), then

(�x; !i � �P i � �x) �i

 
1

N
(ri +

X

j 6=i

�rj); !
i � �P i �

1

N
(ri +

X

j 6=i

�rj)

!

for all ri.
Similarly, since preferences are strictly increasing in yi, it is also true that

(�x; !i � �P i � �x)

� i

 
1

N
(ri +

X

j 6=i

�rj); !
i � �P i �

1

N
(ri +

X

j 6=i

�rj)�


2
(si �

1

N

NX

i=1

�ri)
2

�


2
(si+1 �

1

N
ri �

1

N

X

j 6=i

�rj)
2

!

for all ri, si.
By construction, the public good

�x =
�r1 + � � �+ �rN

N
= �(�r;�s)

consumer i�s Lindahl price was

�P i = P i(�r;�s)

and �si =
1
N

NP

k=1

�rk for all i.

Plugging in these expressions into the above inequality, we have

(�(�r;�s); !i � � i(�r;�s))

� i(�(ri;�r�i; si; �s�i); !
i � � i(ri;�r�i; si;�s�i))

for all ri, si.Therefore (�r;�s) is a Nash equilibrium of the mechanism:

Proof of Corollary 1. Let 
 be the sum of each individuals initial
endowment�i.e., 
 =

P
!i. For any e 2 EQ, Pareto optimal levels of the

public good will be solutions to the following maximization problem

max
0�x�


�

NX

i=1

vi(x)� �x
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Since each vi(x) is a strictly concave function, there is a unique solution
�x to the problem. Note that for some production to be optimal we need

that
NP

i=1

vi(0) > �. Since the Pareto optimal amount of the public good is

unique and vi(x) is a strictly concave function, there are unique Lindahl prices
�P i = dvi(�x)

dx
, for each i so long as this price is a¤ordable�i.e., !i� �P i � �x > 0.

I have a feasible and unique Lindahl equilibrium
h
�x;
�
!i � �P i�x

�N
i=1

i
. From

Theorem 1, I know that there is a unique Nash equilibrium that corresponds
to this allocation.
Proof of Theorem 2. SinceMi = R

2, it is a sublattice of R2. By de�nition
of being in the EQ environment ui is C2 and therefore trivially satis�es the
continuity requirement. To see that ui has the supermodularity property, I
appeal to the fact that the utility function is C2. I therefore need to check
the following cross-partial derivative

@2ui

@ri@si
� 0

Checking this, I see that

@2ui

@ri@si
=


N
� 0

for each consumer i. The increasing di¤erence property requires checking
the following �ve conditions:

(1)
@2ui

@ri@rj
� 0 for all j 6= i

(2)
@2ui

@ri@sj
� 0 for all j 6= i and j 6= i+ 1

(3)
@2ui

@ri@si+1
� 0

(4)
@2ui

@si@rj
� 0 for all j 6= i

(5)
@2ui

@si@si+1
� 0

Checking each of these in turn I have

@2ui

@ri@rj
= �

1

N(N � 1)
�


N2
�

�

N2
+
1

N2

@2vi

@x2
:
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In order for the above expression to be positive I need

� �
N � 1

N

�
 + � �

@2vi

@x2

�
for all j 6= i:

A more compact way of writing this is

� �
N � 1

N

�
 + � �min

i2I

@2vi

@x2

�
:

Condition 2 is trivially satis�ed since

@2ui

@ri@sj
= 0 for all j 6= i and j 6= i+ 1:

Checking Condition 3 I have

@2ui

@ri@si+1
= �

�

N
+
�

N
:

This expression is positive for all i if and only if

� � �:

Condition 4 and 5 are always satis�ed since

@2ui

@si@rj
=


N
> 0 and

@2ui

@si@si+1
= 0

Therefore, for the mechanism to be supermodular the following is su¢-
cient.

� 2

�
N � 1

N

�
 + � �min

i2I
Ki

�
; �

�

Finally, this interval is non-empty if and only if  � �
N�1

+ mini2I Ki is
true.
Proof of Theorem 3. First, we characterize the best replies. Applying
the mechanism to each consumer�s utility we arrive at the augmented utility
function

vi(
1

N

NX

k=1

rk)�

 
�

N
�

�

N � 1

X

j 6=i

rj + �si+1

!
1

N

NX

k=1

rk

�


2
(si �

1

N

NX

k=1

rk)
2 �

�

2
(si+1 �

1

N

X
rk)

2.
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Best responding requires consumers choices to satisfy �rst order conditions
� i.e.�

ri :
vi1
N
�

 
�

N
�

�

N � 1

X

j 6=i

rj + �si+1

!
1

N
+


N
(si �

1

N

NX

k=1

rk) +
�

N
(si+1 �

1

N

X
rk) = 0

si : �(si �
1

N

NX

k=1

rk) = 0

If we let r�i (r�i; s�i) and s
�
i (r�i; s�i) be the solutions to these �rst order

conditions. Clearly, s�i (r�i; s�i) =
1
N
r�i (r�i; s�i) +

1
N

PN

k=1 rk, if we plug s
�
i

into the ri condition. The new ri condition is

vi1(�)

N
�

 
�

N
�

�

N � 1

X

j 6=i

rj + �si+1

!
1

N
+
�

N
(si+1�

1

N
r�i (r�i; s�i))�

1

N

X
rk) = 0

We can think of each decision being chosen by a seperate agent: 1 agent
for r�i (r�i; s�i) and one agent for the s

�
i (r�i; s�i). Since we have already

accounted for the interaction between own decisions in the determination
of the best replies, we can think of the game as one with 2N independent
players choosing according to the speci�ed reaction functions. The problem
of showing a contraction reduces to the one of Vives.11 Therefore a su¢cient
condition for the best reply map to yield a contraction is that, for each i, the
absolute total change in r�i (r�i; s�i) and s

�
i (r�i; s�i) (evaluated at any point

(r�i; s�i)) is bounded by 1. In other words, we require

X

j 6=i

����
@r�i (r�i; s�i)

@rj

����+
X

j 6=i

����
@r�i (r�i; s�i)

@sj

���� < 1

X

j 6=i

����
@s�i (r�i; s�i)

@rj

����+
����
@s�i (r�i; s�i)

@si+1

���� < 1

11See, for example, p. 47.
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We compute these slopes directly. Di¤erentiating the new ri �rst order
condition with respect to rj.

vi11
N2
(1 +

@r�i (r�i; s�i)

@rj
) +

�

N(N � 1)
�

�

N2

@r�i (r�i; s�i)

@rj
�

�

N2
= 0

vi11(1 +
@r�i (r�i; s�i)

@rj
) +

N�

(N � 1)
� �

@r�i (r�i; s�i)

@rj
� � = 0

vi11 +
N�

(N � 1)
� � = (� � vi11)

@r�i (r�i; s�i)

@rj

@r�i (r�i; s�i)

@rj
=

vi11 +
N�

(N�1)
� �

� � vi11

Di¤erentiating with respect to si+1

vi11
N2

@r�i (r�i; s�i)

@si+1
�
�

N
+
�

N
�

�

N2

@r�i (r�i; s�i)

@si+1
= 0

�N� +N� = �
@r�i (r�i; s�i)

@si+1
� vi11

@r�i (r�i; s�i)

@si+1
@r�i (r�i; s�i)

@si+1
=

�N� +N�

� � vi11

A su¢cient condition for r�(r�i; s�i) to be a contraction is that

X

j 6=i

�����
vi11 +

N�

(N�1)
� �

� � vi11

�����
+

����
�N� +N�

� � vi11

���� < 1.

Suppose , �, and � satisfy the supermodularity conditions from Theorem 1,
then the slopes are all positive leaving

(N � 1)vi11 +N� � (N � 1)� �N� +N� < � � vi11
0 < �Nvi11.

This condition is always satis�ed since vi11 < 0.
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Now consider s�i (r�i; s�i) =
1
N
r�i (r�i; s�i) +

1
N

PN

k=1 rk.

@s�i (r�i; s�i)

@rj
=

1

N

@r�i
@rj

+
1

N

=
1

N

 
vi11 +

N�

(N�1)
� �

� � vi11

!

+
1

N

=
1

N
(
�(� � vi11) +

N�

(N�1)

� � vi11
+ 1)

= (
�

(N � 1)(� � vi11)
)

@s�i (r�i; s�i)

@si+1
=

1

N

@r�i
@si+1

=
1

N

�
�N� +N�

� � vi11

�

=
�� + �

� � vi11

Adding up across each player and checking the su¢cient condition.

X

j 6=i

����
@s�i (r�i; s�i)

@rj

����+
����
@s�i (r�i; s�i)

@si+1

���� < 1

Supermodularity ensures the slopes are all positive. Therefore,

�

� � vi11
+
�� + �

� � vi11
< 1

� < � � vi11
v11 < 0

and since we have vi11 < 0 by assumption, the second condition is satis�ed.
Since this is true for each i, the best reply map is a contraction.
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