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Abstract

In statistical data analysis it is often important to compare, classify, and
cluster di¤erent time series. For these purposes various methods have been
proposed in the literature, but they usually assume time series with the same
sample size. In this paper, we propose a spectral domain method for han-
dling time series of unequal length. The method make the spectral estimates
comparable by producing statistics at the same frequency. The procedure is
compared with other methods proposed in the literature by a Monte Carlo
simulation study. As an illustrative example, the proposed spectral method is
applied to cluster industrial production series of some developed countries.
Keywords: Autocorrelation function; Cluster analysis; Interpolated peri-

odogram; Reduced periodogram; Spectral analysis; Time series; Zero-padding.

1 Introduction

The classi�cation and clustering of time series has useful applications in several �elds.
In population studies, one may be interested in identifying similarities among several
series of birth and death rates. In �nance, one may be interested in classifying
and grouping stocks for portfolio design purposes. In international economics, one
may be interested in comparing and clustering countries by looking at their main
macroeconomic time series indicators.
Methods for comparing time series have been studied by using autocorrelation

and spectral analysis and by model �tting methods. Building upon early work of

�E-mail contact: jcaiado@iseg.utl.pt.
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Coates and Diggle (1986), Diggle and Fisher (1991), Dargahi-Noubary (1992), and
others, Maharaj (2002), Quinn (2006), and Caiado, Crato and Peña (2006) proposed
frequency-domain methods for time series discrimination and clustering. As the last
of these paper shows, spectral methods can work very well for these purposes.
A problem that often arises in real applications is dealing with time series of

unequal length. For instance, in the business cycle study of some industrialized
countries, Camacho, Pérez-Quiróz and Saiz (2006) deal with time series of unequal
length by truncating the series to the length of the shortest one. They do it in order
to use spectral estimates to compute distances across countries. In this paper, we
propose to deal with this problem by adjusting the number of used periodogram
ordinates. We construct an interpolated periodogram for the longer series at the
frequencies de�ned by the shorter series. This method seems to work particularly
well for comparison purposes.
The remainder of the paper is organized as follows. In Section 2, we present a

well-known procedure that have been proposed in the literature for handling series
of unequal length in the spectral domain; we discuss a natural extension of the usual
periodogram, and propose our interpolation method. In Section 3, we present the
results of a Monte Carlo simulation study where our method is compared to the other
procedures. In Section 4, we apply the interpolation-periodogram based discrepancy
statistic to analyze industrial time series of developed economies. In Section 5, we
summarize the main results obtained in this paper.

2 Periodogram-based discrepancy statistics

Periodograms provide useful statistics for studying and comparing time series. Var-
ious authors have used pairwise comparison of periodogram ordinates from di¤erent
series at the corresponding frequencies. This can be done directly when the series
have the same number of data points. A problem arises when the data sets have
di¤erent lengths and the Fourier frequencies at which the periodogram ordinates are
usually computed are not the same.
Let fxt; t = 1; :::; nxg and fyt; t = 1; :::; nyg be two stationary processes with di¤er-

ent sample sizes. Without loss of generality, assume that nx > ny. The periodogram
of series xt is given by

Px(!j) =
1

nx

�����

nxX

t=1

xte
�it!j

�����

2

, (1)

where !j = 2�j=nx, for j = 1; :::;mx, with mx = [nx=2], the largest integer less or
equal to nx=2. The periodogram of series yt, Py(!p), is given by a similar expression
with !p = 2�p=ny, for p = 1; :::;my, with my = [ny=2]. When mx 6= my, !j and !p
do not coincide. Then, if we want to compare these two time series, a direct distance
between the same periodograms ordinates cannot be computed.
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A �rst solution to this problem common in the pattern recognition and signal
processing literature (e.g., Wang and Blostein, 2004) consists in extending the shorter
series yt, by adding zeros and getting a new series y

0

t with the same length as the longer
one. One obtains

y0t =

�
yt; t = 1; :::; ny
0; t = ny + 1; :::; nx,

and then computes the periodogram of series y0t, Py0(!j).This approach, called "zero-
padding", matches the frequencies of both series.
A zero-padding periodogram discrepancy statistic for handling series of unequal

length can then be de�ned by

dZP (x; y) =

vuut 1

mx

mxX

j=1

[Px(!j)� Py0(!j)]
2. (2)

A second solution to the unequal length problem consists in calculating both
periodograms at a common frequency. Although this is a simple and natural way of
dealing with unequal sample sizes data, it has not been discussed in the time series
classi�cation literature. The procedure can be applied in various ways, but it seems
natural to compute the periodogram of the longer series xt at the of the shorter series
yt frequencies , that is

PRPx (!p) =
1

nx

�����

nxX

t=1

xte
�it!p

�����

2

, (3)

where !p = 2�p=ny, for p = 1; :::;my < mx. We will call it the "reduced peri-
odogram".
A reduced periodogram discrepancy statistic can be de�ned by

dRP (x; y) =

vuut 1

my

myX

p=1

[PRPx (!p)� Py(!p)]
2. (4)

The solution we propose is to interpolate the periodogram ordinates of the series
with longer length at the frequencies de�ned by the series with the shorter length.
Without loss of generality, let r = [pmx

my
] be the largest integer less or equal to pmx

my

for p = 1; :::;my, and my < mx. The periodogram ordinates of xt can be estimated
as

P IPx (!p) = Px(!r) + (Px(!r+1)� Px(!r))�
!p;y � !r;x
!r+1;x � !r;x

= Px(!r)

�
1�

!p;y � !r;x
!r+1;x � !r;x

�
+ Px(!r+1)

�
!p;y � !r;x
!r+1;x � !r;x

�
. (5)
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This procedure will yield an interpolated periodogram with the same Fourier frequen-
cies of the shorter periodogram Py(!p).
The interpolated periodogram discrepancy statistic we propose is then given by

dIP (x; y) =

vuut 1

my

myX

p=1

[P IPx (!p)� Py(!p)]
2. (6)

In practical terms, if we are only interested in the dependence structure and not
in the process scale, we can normalize the periodograms dividing the ordinates by the
data sample variances: NP IPx (!p) = P

IP
x (!p)=b�2x and NPy(!p) = Py(!p)=b�2y. Addi-

tionally, it is useful for the statistical analysis and testing to attain homoscedasticity
in the periodogram. Since the variance of the periodogram ordinates is proportional
to the spectrum at the corresponding Fourier frequencies, we may take logarithms of
the ordinates. The interpolated log-normalized periodogram discrepancy statistic can
then be de�ned as

dILNP (x; y) =

vuut 1

my

myX

p=1

[logNP IP (!p)� logNPy(!p)]
2. (7)

For reference, we also consider a well-known nonparametric discrepancy statistic
based on the estimated autocorrelations (Galeano and Peña, 2000, Caiado, Crato and
Peña, 2006). Let b�x;l and b�y;l be the sample autocorrelation functions of the longer
series xt and shorter series yt, respectively.
The autocorrelation discrepancy statistic is given by,

dACF (x; y) =

vuut
LyX

l=1

�
b�x;l � b�y;l

�2
, (8)

where the number of autocorrelation lags used, Ly, would depend on the number of
data points at hand. Here, Ly will be the largest integer less or equal to ny=10, as
recommended by Caiado, Crato and Peña (2006).
It is straightforward to show that the statistics (6), (7) and (8) ful�ll some

properties of a distance: (i) d(x; y) = 0 if Px(!j) = Py0(!j), P
IP
x (!p) = Py(!p);

NP IP (!p) = NPy(!p), or b�x;l = b�y;l; (ii) d(x; y) � 0 as all the quantities are non-
negative; and (iii) d(x; y) = d(y; x), as all transformations are independent of the
ordering. However, nothing guarantees the triangle inequality, which is the remain-
ing de�ning property of a distance. For this reason we use the word "discrepancy"
instead of "metric" as a convenient quali�er for the statistics under consideration.
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3 Monte Carlo simulations

To illustrate the performance of the autocorrelation and periodogram-based statistics
(zero-padding, reduced and interpolated), we performed a set of Monte Carlo simu-
lations. For each of the considered processes, we simulated pairs of series of di¤erent
sample sizes, (n1; n2) = f(50; 100), (200; 100), (500; 250), (1000; 500)g. For each case,
we performed 1000 replications. We performed the following comparisons:
(a) AR(1), � = 0:9 versus AR(1), � = 0:5;
(b) AR(1), � = 0:9 versus ARIMA(0,1,0);
(c) AR(2), �1 = 0:6, �2 = �0:3 versus MA(2), �1 = �0:6, �2 = 0:3;
(d) ARFIMA(0,0.45,0) versus white noise;
(e) ARFIMA(0,0.45,0) versus AR(1), � = 0:95;
(f) ARFIMA(0,0.45,0) versus IMA(1,1), � = 0:4;
(g) ARMA(1,1), � = 0:95, � = 0:74 versus IMA(1,1), � = 0:8;
(h) Deterministic trend, xt = 1 + 0:02t + "t versus stochastic trend, xt = 0:02 +

xt�1 + (1� 0:9B)"t.
In case (a), we compare low-order models of similar type and similar autocor-

relation functions. In case (b), we compare a nonstationary process with a near
nonstationary AR process. In case (c), we compare selected second-order ARMA
processes in order to deal with peak spectra. In case (d), we compare stationary
processes with very di¤erent characteristics of persistence. In case (e), we compare
a near-nonstationary long-memory process with a short-memory one. In case (f), we
compare a long-memory process with a nonstationary one. In case (g), we compare
a near-nonstationary process with a nonstationary one. The models chosen are those
discussed in Whichern (1974). In case (h), we compare a trend-stationary process
and di¤erence-stationary one. The models chosen are based on a suggestion of Enders
(1995, p. 252), but incorporate a near unit root in the MA component of the sto-
chastic formulation in order to made them more di¢cult to distinguish. The rational
for these choices was to generate processes with similar sample characteristics. Case
(d) is an apparent exception to this rule. In this case, we were simply interested in
knowing whether our methods could succeed in distinguishing long memory from no
memory models.
The fractional noise was simulated using the �nite Fourier method of Davies and

Harte (1987). The other processes were generated with the well-tested recursive
method available in Matlab. In all cases, the series were generated with a zero mean
and unit variance white noise. In case (h), the series were �rst detrended by �tting
a simple linear regression before computing the periodograms and the autocorrela-
tion functions. As it is well known, long cyclical periods will not be eliminated by
detrending.
For each case, the four generated series were grouped into two clusters by the

complete linkage method. This method (also known as the farthest-neighbor method)
de�nes the distance between two clusters by considering all possible pairs of objects
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(series), one from each cluster. The distance between two clusters is the maximum
possible distance calculated for all these pairs of objects. It proceeds recursively. It
starts with as many clusters as the number of series. At each step, it groups the
existing clusters into fewer clusters by aggregating the two most similar ones. The
procedure continues until it groups all objects. In our case, it stops with two clusters.
For details, see, for instance, Johnson and Wichern (2007).
Table 1 provides the percentages of comparison successes in cases (a) to (f). Each

comparison is de�ned as a success when the two time series of di¤erent length but
generated by the same process are classi�ed in the same group. The �rst rows of each
cell show the results for the autocorrelations approach. The second rows of each cell
show the results for the zero-padding periodogram approach. The third rows of each
cell show the results for the reduced periodogram approach. The fourth rows of each
cell show the results for the interpolated log normalized periodogram approach. For
instance, the value 67.8 in the upper-left cell means that 67.8% of the times the two
AR(1), � = 0:9; n1 = 50 and n2 = 100 processes were grouped into one cluster and
the two AR(1), � = 0:5; n1 = 50 and n2 = 100 processes were grouped into another
cluster using the autocorrelations method.
The interpolated-periodogram discrepancy statistic shows a remarkable good per-

formance on the comparisons among stationary processes with ARMA and ARFIMA
formulations, and shows a performance that increases signi�cantly with the sample
size on the comparison between ARMA and ARIMA processes and between ARIMA
and ARFIMA processes.
The zero padding method works well for classifying longer series of similar length.

However, it is not able to separate well near-nonstationary processes with large sam-
ples from nonstationary processes with short samples, and, more importantly, it does
not perform well on the comparison between longer stationary and shorter near-
nonstationary ARMA processes. In fact, when sample sizes are very unbalanced, the
shorter series periodogram is distorted by the zero-padding method. Zero padding
is equivalent to add new ordinate values that are linear combinations of the peri-
odogram ordinates of the original series. Naturally, the resulting statistics and tests
su¤er from this problem.
The reduced periodogram and the ACF methods are always dominated by the

other methods. In particularly, the reduced periodogram method displays a very poor
performance for distinguishing similar processes with small samples and the ACF
method is not able to distinguish near-nonstationary processes with large samples
from nonstationary processes with short samples.
In order to better assess the methods, we have performed additional simulations

for other and more dissimilar models. Results were much alike the ones here presented
and pointed to the same hierarchy of discrepancy statistics. We have also explored
other hierarchical and non-hierarchical clustering procedures. Results were again
similar and provided the same recommendations for the discrepancy statistics choice.
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Figure 1: Log normalized interpolated periodograms of 30 European and some devel-
oped countries

4 Application

As an illustration of the possibilities of these techniques, we compared the indus-
trial time series of a set of developed countries. We used monthly data of seasonally
adjusted industrial production indices for a large set of European and other industri-
alized economies. Available data are summarized on Table 2 (source data: Camacho,
Pérez-Quiróz and Saiz, 2006). For such large data set, it is unavoidable that sample
periods do not coincide. In order to use all available data, it is necessary to apply
techniques such as the ones we have described.
In our application, we started by computing the interpolated log normalized pe-

riodograms for each of the k = 30 production series. The corresponding graphs are
shown on Figure 1. We then computed all the corresponding k(k � 1)=2 pairwise
distances, by using the ILNP discrepancy statistic given in (7). In order to be able
to interpret resulting data, we used two well-known techniques: the multidimensional
scaling and the hierarchical clustering tree, or dendrogram (see sections 12.6 and 12.3,
respectively, of Johnson and Wichern, 2007, for example).
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Firstly, we used the multidimensional scaling technique, also often referred to as
principal coordinates analysis, which creates a con�guration of k points in a lower
dimensional map (usually two or three). LetD be the observed k�k dissimilarity ma-
trix, applying the multidimensional scaling to the matrixD gives a k�s con�guration
matrix T , where the rows of T are the coordinates values of k points in s-dimensional
representation of the observed dissimilarities for some s < k. The determination of
the dimensionality of the spatial con�guration is given by the v eigenvectors of T �T 0

corresponding to the largest v eigenvalues.
Table 3 shows the eigenvalues resulting from distances between countries and the

eigenvectors associated with the �rst two eigenvalues. The �rst eigenvalue is equal
to 93.76% of the sum of all the eigenvalues. The sum of the �rst two eigenvalues
is equal to 94.66% of the sum of all the eigenvalues. Figure 2 shows a scaling map
of the derived �rst two coordinate values. The �rst dimension seems to be almost
directly related to the countries� development. The second dimension is not easy to
interpret. However, looking at the 2-dimensional plot and comparing the relative
positions with the periodograms plots, we can make sense of some of the results.
Looking at the opposite positions of Cyprus and Ireland, for instance, we realize
that this distance comes from very di¤erent spectral peaks at di¤erent frequencies�
the interpolated LNP of Ireland series reaches the minimum value at frequencies
!29 = 2�(29)=85 = 2:14367 and !38 = 2�(38)=85 = 2:80895, whereas the interpolated
LNP of Cyprus series is dominated by large peaks at the same frequencies. It can
also be seen that the old European Union (EU) countries (except Ireland) and the
USA, Canada, Japan and Norway are close to each other and far from the new EU
countries and from the then candidate countries (Estonia, Turkey, Slovak Republic,
Romania, Lithuania, Slovenia, Czech Republic and Latvia). More developed Poland
and Hungary are in an intermediate position.
Secondly, we consider the method of clustering the series by a hierarchical clus-

tering tree, or dendrogram. This graphical tool shows how the clusters are combined
at each stage of the procedure. We begin with each time series being considered as a
separate cluster (k clusters). In the second stage, the closest two groups are linked to
form k � 1 clusters. This process continues until the last stage in which all the time
series are in the same cluster.
Figure 3 shows the dendrogram for the industrial production indices series by

complete linkage method, from which the clusters of countries can be identi�ed. It can
be seen at the tree that the interpolated log normalized periodogram based method
can group the series into three very reasonable clusters: Cluster 1 = {CN, US, NL,
IT, ES, FR, SD, BG, BD, LX, UK, DK, OE, FN, GR, IR, PT, JP, NW}, Cluster 2
= {CY, CZ, SL, LI} and Cluster 3 = {ET, SK, RO, TK, HN, PO, LA}. Cluster 1
includes all the old EU countries and the USA, Canada, Japan and Norway. Cluster
2 grouped four new EU countries (Cyprus, Czech Republic, Slovenia and Lithuania).
Cluster 3 includes the other new EU countries (Estonia, Slovak Republic, Hungary,
Poland, Latvia) and the then candidate countries (Romania and Turkey).
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pean and some developed countries
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These results seem to be very reasonable. Not surprisingly, they group together
the more developed countries. They essentially con�rm the conclusions of Camacho,
Pérez-Quiróz and Saiz (2006), adding some interesting information.
These authors also used hierarchical clustering and multidimensional scaling tech-

niques to identify cyclical linkages among countries. From cluster analysis, they found
four clusters. The �rst includes most of the old EU countries, the new EU countries
Poland, Slovenia and Hungary, and the industrialized country Japan; the second in-
cludes the industrialized countries US, Canada, United Kingdom, and Finland; the
third includes the other new EU countries (Latvia, Estonia, Czech Republic, Lithua-
nia and Slovak Republic), the candidate countries (Romania and Turkey), and the
industrialized country Norway; and the fourth includes the old European Union coun-
tries Portugal and Greece, and Cyprus. From the multidimensional scaling map, they
found that most old EU member countries are close to each other and far from the
new EU member countries (except Cyprus and Slovenia); and that the very indus-
trialized countries US, Canada and United Kingdom, and new EU member countries
Hungary and Finland are close to each other in a distinct location.
By using older information, our analysis is able to distinguish better the old from

the new EU countries. It is also able to show US, Canada, and Japan close to the EU
industrialized countries. Camacho, Pérez-Quiróz and Saiz (2006) have only used data
from 1992 onwards, while we could use data from 1962 onwards. We thus con�rmed
some of previous results, but our method allows complementing them with more
extensive data.

5 Concluding remarks

In this paper, we presented and discussed two spectral-discrepancy statistics for com-
parison, classi�cation, and clustering analysis of time series with unequal length. We
proposed a novel third statistic based on the interpolated periodogram for the same
purposes. We then evaluated this latter statistic against the others. For reference,
we also used an autocorrelation-based discrepancy statistic.
A simulation study indicated that the proposed method, the interpolated log nor-

malized periodogram approach, performs very well for a wide type of comparisons: (i)
di¤erent stationary processes with similar sample properties, (ii) nonstationary versus
near nonstationary processes, and (iii) short-memory versus long-memory processes.
Moreover, in the comparison of time series of very di¤erent sample sizes, the pro-
posed method is preferred to the autocorrelation, the zero-padding periodogram and
the reduced periodogram based methods. One application to industrial production
series also demonstrates the merits of the method.
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Table 1: Percentages of success on the comparison of pairs of simulated time series
models: Autocorrelation function (ACF), Zero-padding (ZP), Reduced periodogram
(RP) and Interpolated log normalized periodogram (ILNP)

(a) AR(1),0.9 vs. AR(1),0.5 (b) AR(1),0.9 vs. ARIMA(0,1,0)

n1; n2 Discrep. 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ACF 67.8 69.5 67.8 70.5 19.5 47.4 72.1 74.2

ZP 63.4 74.0 78.1 80.3 20.8 45.6 88.4 97.6

RP 50.1 52.0 54.2 51.9 12.5 31.2 74.2 92.7

ILNP 61.2 73.4 98.4 100.0 16.4 42.4 88.0 99.7

200,100 ACF 89.2 81.3 82.3 78.1 14.5 39.8 80.1 88.7

ZP 87.6 91.4 92.4 93.5 25.6 52.0 88.4 97.2

RP 71.3 76.9 81.4 82.9 11.0 31.0 67.6 89.2

ILNP 84.8 87.9 95.4 99.9 22.8 36.0 76.6 96.4

500,250 ACF 98.2 97.4 90.2 90.8 11.8 40.5 78.3 95.6

ZP 97.6 99.2 99.1 99.3 31.6 61.6 88.4 96.4

RP 83.6 93.3 97.2 98.7 11.9 25.4 68.7 88.7

ILNP 99.1 98.6 99.2 99.9 82.4 58.2 74.8 92.0

1000,500 ACF 98.6 99.7 98.0 94.6 12.7 42.8 78.7 89.3

ZP 98.8 99.6 100.0 100.0 36.4 60.0 84.0 96.8

RP 91.0 97.4 99.8 99.9 11.1 24.8 67.6 86.7

ILNP 100.0 100.0 99.9 100.0 99.8 96.4 79.4 89.0

(c) AR(2),0.6,-0.3 vs. MA(2),-0.6,0.3 (d) ARFIMA(0,0.45,0) vs. W.Noise

n1; n2 Discrep. 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ACF 32.8 41.7 44.5 49.9 68.2 69.1 65.5 64.3

ZP 32.5 44.6 62.8 71.0 39.2 41.6 49.6 57.2

RP 28.7 31.7 42.4 41.7 28.5 31.7 32.8 34.6

ILNP 34.9 49.5 94.7 100.0 45.5 54.6 95.3 100.0

200,100 ACF 45.6 42.3 50.7 48.8 83.7 75.4 73.5 70.6

ZP 40.9 47.8 71.2 83.3 54.8 60.1 70.4 79.3

RP 30.8 39.9 48.9 54.3 34.8 41.9 51.3 49.6

ILNP 55.2 58.8 80.7 98.7 63.8 66.7 82.8 99.4

500,250 ACF 48.6 55.2 56.8 57.7 97.7 90.8 74.9 73.8

ZP 53.0 67.5 77.6 92.3 82.4 89.2 90.1 94.4

RP 33.2 47.4 63.6 73.6 43.7 57.1 77.0 83.7

ILNP 93.4 81.3 88.4 91.3 95.5 87.0 93.7 95.9

1000,500 ACF 50.8 51.6 65.9 69.7 99.7 97.8 87.0 76.3

ZP 57.9 76.1 91.2 95.7 90.8 96.4 98.8 99.1

RP 32.2 46.3 69.3 84.9 49.1 63.5 88.2 94.1

ILNP 100.0 98.5 93.3 98.8 100.0 99.1 98.2 99.5
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Table 1: (Continued)
(e) ARFIMA(0,0.45,0) vs. AR(1) (f) ARFIMA(0,0.45,0) vs. IMA(1,1)

n1; n2 Discrep. 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ACF 51.0 76.1 88.4 89.8 43.2 75.3 94.1 96.0

ZP 72.4 91.5 99.2 99.5 53.3 77.5 92.9 98.2

RP 53.2 80.7 94.6 97.8 30.2 58.7 83.0 94.7

ILNP 63.5 86.3 99.5 100.0 35.6 66.1 94.6 99.9

200,100 ACF 45.3 59.6 83.1 89.6 37.9 58.4 92.1 97.4

ZP 74.1 89.8 99.5 99.8 54.4 73.8 93.9 98.2

RP 54.8 82.4 97.0 98.9 25.9 52.9 81.9 92.9

ILNP 74.9 85.2 98.7 100.0 49.5 63.9 85.9 97.8

500,250 ACF 39.5 49.6 56.8 71.5 31.6 54.8 78.1 94.7

ZP 75.6 90.4 98.8 99.9 54.9 73.7 91.1 96.9

RP 53.4 80.7 97.5 99.6 25.5 52.7 83.1 92.4

ILNP 98.7 93.4 98.6 100.0 94.6 83.7 83.3 93.6

1000,500 ACF 36.8 44.6 55.6 53.3 28.8 50.7 73.7 82.4

ZP 71.3 90.7 99.1 100.0 55.3 68.6 87.3 96.7

RP 51.6 79.9 97.2 99.8 25.9 52.7 79.9 91.9

ILNP 100.0 100.0 99.4 97.8 100.0 99.5 92.0 93.7

(g) ARMA(1,1) vs. IMA(1,1) (h) Determ. trend vs. stoc. trend

n1; n2 Discrep. 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ACF 9.2 19.4 56.0 77.3 9.9 21.7 48.6 69.0

ZP 5.9 13.1 46.5 71.8 9.1 18.6 58.5 81.7

RP 12.0 14.4 28.8 50.9 10.9 12.8 15.7 16.9

ILNP 14.5 28.9 82.4 99.8 17.4 29.7 86.9 100.0

200,100 ACF 9.5 13.3 47.4 76.9 10.2 19.1 48.6 63.1

ZP 10.0 7.0 25.2 56.2 7.4 9.2 38.9 70.6

RP 11.3 10.2 31.9 48.2 12.3 11.3 18.1 21.3

ILNP 26.7 22.2 48.1 88.8 26.9 23.3 46.5 93.4

500,250 ACF 18.1 13.4 45.2 75.1 8.3 15.9 41.8 55.1

ZP 37.1 12.6 11.6 36.4 16.3 11.6 20.7 52.2

RP 12.4 13.8 26.5 49.0 13.9 16.2 20.1 28.3

ILNP 86.9 42.6 42.0 63.2 86.3 48.2 39.7 63.8

1000,500 ACF 25.3 14.3 43.8 70.7 8.2 14.8 35.7 46.3

ZP 53.1 21.5 9,5 30.3 32.7 18.6 23.1 41.2

RP 13.8 13.3 25.5 51.1 11.2 13.6 21.1 36.2

ILNP 100.0 93.1 54.6 57.4 100.0 94.8 56.3 66.5
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Table 2: Industrial production indices series (countries and data avaibility)
Country Code Sample n Country Code Sample n

Austria OE 62:01-02:12 492 Canada CN 62:01-03:01 493

Belgium BG 62:01-03:01 493 Norway NW 62:01-03:01 493

Germany BD 62:01-03:01 493 Japan JP 62:01-03:01 493

Greece GR 62:01-03:01 493 USA US 62:01-03:01 493

Finland FN 62:01-03:01 493 Cyprus CY 90:01-03:01 142

France FR 62:01-03:01 493 Czech Republic CZ 90:01-03:01 142

Italy IT 62:01-03:01 493 Estonia ET 95:01-03:01 97

Ireland IR 75:07-03:01 331 Hungary HN 90:01-03:01 142

Luxembourg LX 62:01-03:01 493 Latvia LA 90:01-03:01 142

Netherlands NL 62:01-03:01 493 Lithuania LI 96:01-03:01 85

Portugal PT 62:01-03:01 493 Poland PO 90:01-03:01 142

Spain ES 65:01-03:01 457 Slovak Republic SK 93:01-03:01 121

Denmark DK 74:01-03:01 349 Slovenia SL 90:01-03:01 142

Sweden SD 62:01-03:01 493 Romania RO 90:01-03:01 142

United Kingdom UK 62:01-03:01 493 Turkey TK 90:01-03:01 142

Table 3: Eigenvalues and �rst two eigenvectors for interpolated LNP distances be-
tween 30 European and some developed countries

Eigenvectors Eigenvectors

Eigenvalues Country 1 2 Country 1 2

2925.1 4.6 Austria -8.45 -0.40 Canada -7.20 0.02

28.3 3.2 Belgium -2.90 0.78 Norway -11.39 1.53

21.0 2.3 Germany -4.09 0.21 Japan -11.43 0.44

19.5 2.1 Greece -10.77 -1.86 USA -7.19 0.20

18.2 1.8 Finland -9.18 -0.12 Cyprus 21.10 1.70

13.6 1.7 France -4.87 0.91 Czech Republic 17.22 -0.55

12.7 1.4 Italy -6.70 0.11 Estonia 10.50 0.31

11.0 1.2 Ireland -7.80 -3.25 Hungary 2.34 -0.05

9.8 1.0 Luxembourg -3.48 0.21 Latvia 3.63 -1.40

9.2 0.9 Netherlands -6.58 0.15 Lithuania 16.91 -0.45

7.3 0.7 Portugal -10.51 1.41 Poland 3.28 -0.18

7.0 0.3 Spain -6.62 -0.11 Slovak Republic 11.86 -0.49

6.1 0.2 Denmark -1.18 0.23 Slovenia 16.77 -0.43

5.0 0.1 Sweden -5.13 -0.17 Romania 12.36 -0.33

4.6 0.0 United Kingdom -2.69 1.36 Turkey 12.19 0.19
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