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Direct and iterated multistep AR methods for difference

stationary processes

Abstract

The paper focuses on the comparison of the direct and iterated AR predictors for difference

stationary processes. In particular, it provides new methods for comparing the efficiency of the

two predictors and for extracting the trend from macroeconomic time series using the two

methods. The methods are based on an encompassing representation for the two predictors

which enables to derive their properties quite easily under a maintained model. The paper

provides an analytic expression for the mean square forecast error of the two predictors and

derives useful recursive formulae for computing the direct and iterated coefficients. From the

empirical standpoint, we propose estimators of the AR coefficients based on the tapered Yule-

Walker estimates; we also provide a test of equal forecast accuracy which is very simple to

implement and whose critical values are obtained with the bootstrap method.
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1 Introduction

The direct and iterated autoregressive predictors play an important role in macroeconomic fore-

casting. This paper is concerned with the case when they are used to forecast the future levels

of a difference stationary process, i.e. a process which is stationary in first differences. Typical

occurrences are the level of the inflation rate and the level of gross domestic product.

In general, let us denote by Xt, t = 1, 2, . . . , n, an integrated stochastic process, so that ∆Xt =
Xt − Xt−1 is a stationary process. Without generality loss we assume that the mean is zero. Our

interest lies in predicting h-steps ahead the levels (rather than the differences) of the series. The

direct (labelled by D henceforth) and iterated predictors (labelled by I), arise from the following

linear projection:

Xt+h = Xt +

p
∑

j=1

φ
(i)
jh∆Xt−j+1 + ǫ

(i)
t+h|t, i = D, I, (1)

where ǫ
(i)
t+h|t denotes the h-steps ahead prediction error.

It should be noticed that the two predictors use the same information set, represented by the

vector ∆X
′
t = [∆Xt, ∆Xt−1, . . . , ∆Xt−p+1], but differ in the definition of the coefficients φ

(i)
jh .

In particular, the direct predictor of Xt+h arises from the projection of ∆hXt+h = Xt+h − Xt on

∆Xt; it can be expressed as X
(D)
t+h|t = Xt+∆hX

(D)
t+h|t, where ∆hX

(D)
t+h|t =

∑p

j=1 φ
(D)
jh ∆Xt−j+1, and

the coefficients minimize the h-step ahead mean square forecast error, MSFED(h, p) = E[(Xt+h−

X
(D)
t+h|t)

2]. Notice that this is different from the direct predictor of the changes ∆Xt+h, which arises

from projecting ∆Xt+h onto ∆X
′
t.

The indirect (or plug-in, iterated) predictor is obtained from the AR(p) model by iterating via

the chain rule the one-step-ahead predictor, so as to obtain forecasts of all the intermediate future

changes ∆Xt+k, for k = 1, . . . , h, which are combined to yield: X
(I)
t+h|t = Xt +

∑h

k=1 ∆X
(I)
t+k|t,

where ∆X
(I)
t+k|t =

∑p

j=1 φ
(I)
j1 ∆X

(I)
t+k−j|t (with ∆X

(I)
t+k−j|t = ∆Xt+k−j , if j ≥ k), and the co-

efficients φ
(I)
j1 , j = 1, . . . , p, minimize MSFED(1, p) = E[(Xt+1 − X

(I)
t+1|t)

2] = E[(∆Xt+1 −

∆X
(I)
t+1|t)

2]. Obviously, φ
(I)
j1 = φ

(D)
j1 . From the application of the chain rule we can express the

indirect predictor as X
(I)
t+h|t = Xt +

∑p

j=1 φ
(I)
jh ∆Xt+j−1, where φ

(I)
jh are the iterated AR multistep

coefficients (which will be defined more properly in a later section).

The efficiency of the two methods is judged by comparing MSFED(h, p) with MSFEI(h, p) =

E[(Xt+h−X
(I)
t+h|t)

2]; if we are given a finite realisation of Xt, the comparison will be based on their

sample counterparts. There is a vast and well established literature comparing the performance of

the two predictors for the purpose of forecasting more than one step ahead, not exclusively in

the AR case. We refer to Chevillon (2007) for an up to date and comprehensive survey of the

literature. Actually, the seminal paper by Cox (1961) concerned multistep estimation of a first

order integrated moving average model, yielding exponential smoothing forecasts. Other essential

references are Findley (1983), Weiss (1991), Tiao and Xu (1993), Tiao and Tsay (1994), Clements

and Hendry (1996), and Ing (2003, 2004). In a recent paper, Marcellino, Stock and Watson (2008)

carry out an extensive real time multistep forecasting exercise comparing the performance of the
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direct and the iterated predictors for a set of U.S. macroeconomic time series. Their main finding

is that, despite the theoretical superiority of the direct forecasts, the iterated predictor emerges as

the winner.

In this paper we focus on the comparison of the direct and iterated AR predictors when Xt

is a difference stationary process. In particular, we aim at comparing the efficiency of the di-

rect approach for out-of-sample forecasting at different horizons and we discuss its role for trend

extraction from macroeconomic time series. For this purpose we derive an encompassing repre-

sentation for the two predictors (see section 2), according to which they result from the application

of stable AR filters to the stationary changes of the series. This sets up a common ground for the

comparison of their theoretical properties, which are easily obtained under a maintained model.

The paper provides an analytic expression for the mean square forecast error of the two predictors

and derives useful recursive formulae for the direct and iterated coefficients.

Section 3 illustrates these results when the true model is ARIMA(1, 1, 1); an important finding

is that the comparative efficiency gains of the direct predictor over the iterated one are larger when

the AR model is grossly misspecified, in which case the predictive performance of the direct AR

predictor is poor anyway, in comparison with the minimum MSFE predictor. It would be preferable

in these occurrences to move away from the AR representation and to look for an alternative

specification, but large improvements can be obtained by combining the direct predictor with a

multistep exponential smoothing predictor.

In section 4 we discuss several empirical issues. For consistency with the theoretical frame-

work, we propose estimators of the coefficients φ
(i)
jh based on the solution of tapered Yule-Walker

systems. We also provide a test of equal forecast accuracy which is very simple to implement and

whose critical values can be obtained with the bootstrap method.

Section 5 illustrate the proposed methods using representative sample of U.S. macroeconomic

time series. In section 6 we summarize the contribution of the paper and draw our conclusions.

2 A convenient representation

In this section we establish a simple and fundamental result which derives the two competitor

predictors, direct and iterated, as arising from the application of a stable AR filter to the station-

ary changes of the series. Let us denote the h-step ahead prediction error associated to the i-th

predictor, X
(i)
t+h|t, i = D, I, by ǫ

(i)
t+h|t = Xt+h − X

(i)
t+h|t. Since both predictors take the form

X
(i)
t+h|t = Xt +

∑p

j=1 φ
(i)
jh∆Xt+j−1, the prediction error is rewritten as

ǫ
(i)
t+h|t = Xt+h − Xt −

p
∑

j=1

φ
(i)
jh∆Xt+j−1.

The linear combination of past and lagged values of the process on the right hand side can be

expressed in terms of the first differences ∆ = 1 − L, where L is the lag operator, LjXt = Xt−j:

ǫ
(i)
t+h|t = [Sh−1(L) + Lh−1φ

(i)
h (L)]∆Xt+h. (2)
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Here we have denoted Sm(L) = 1 + L + L2 + · · · + Lm−1, ∆h = 1 − Lh = ∆Sh(L), and

φ
(i)
h (L) = 1 − φ

(i)
1hL − · · · − φ

(i)
phLp.

The corresponding MSFE is obtained as the variance of the filtered first differences of the

process. Writing the multistep prediction filter as νi(L) = Sh−1(L) + Lh−1φ
(i)
h (L), it is immediate

to show that

MSFEi(h, p) = γ(0)
∑

j

ν2
ij + 2

∑

k

γ(k)
∑

j

νijνi,j+k, i = D, I, (3)

where γ(k) = E(∆Xt∆Xt−k) is the autocovariance function of ∆Xt and νij is the coefficient of

the polynomial νi(L) associated with the j-th power of the lag operator.

Expression (3) is useful since it allows to express the MSFE of the direct and indirect predictors

as a function of true underlying process, via its autocovariance function. It is the AR counterpart

of the result obtained for the exponential smoothing predictor by Tiao and Xu (1993, formula 2.3).

In the frequency domain, the equivalent expression is

MSFEi(h, p) =
1

2π

∫ π

−π

|νi(e
−ıω)|2g(ω)dω,

with |νi(e
−ıω)|2 = νi(e

−ıω)νi(e
ıω), the squared gain of the filter νi(L), and g(ω) represents the

spectral generating function of ∆Xt+h.

In the light of (3), the differences in the two predictors lie in the AR coefficients φ
(i)
jh . For

the direct predictor, i = D, the coefficients φ
(D)
h = [φ

(D)
1h , . . . , φ

(D)
ph ]′ are obtained by minimizing

MSFE(h, p)(D) with respect to φD
h . The optimization problem leads to the following linear system

of equations:

Γφ
(D)
h = γh, (4)

with

Γ =











γ(0) γ(1) · · · γ(p − 1)

γ(1) γ(0)
. . . γ(p − 2)

...
. . .

. . .
...

γ(p − 1) γ(p − 2) · · · γ(0)











,γh =











γ(1) + · · · + γ(h)
γ(2) + · · · + γ(h + 1)
...

γ(p) + · · · + γ(h + p − 1)











.

Notice that, from

γh = γh−1 + γ(h),γ(h) =











γ(h)
γ(h + 1)
...

γ(h + p − 1)











, h = 2, . . . , γ1 = γ(1),

it follows

φ
(D)
h = φ

(D)
h−1 + φ(h), φ(h) = Γ

−1γ(h). (5)

4



Bondon (2001) and Brockwell and Dahlhaus (2004) provide generalized Levinson–Durbin recur-

sions for computing the coefficients φ(h), which operate both on p and h.

The coefficients of the iterated predictor φ
(I)
jh , j = 1, . . . , p, in (2) are obtained recursively from

the one-step-ahead coefficients. The latter are computed from the linear system φ
(I)
1 = φ

(D)
1 =

Γ
−1γ1:

φ
(I)′

h = e
′
1(I − T

h)(I − T)−1
T = e

′
1

h
∑

j=1

T
j,

where

T =

















φ
(I)
1 φ

(I)
2 · · · φ

(I)
p−1 φ

(I)
p

1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...

0 0 · · · 1 0

















.

The iterated AR coefficients satisfy the following first order recursion:

φ
(I)
h = φ

(I)
h−1 + T

h′
e1, (6)

with starting value φ
(I)
1 = T

′
e1 = Γ

−1γ1.

It is important to remark that the indirect predictor can also be obtained by replacing in the

expression for the direct predictor the autocovariances γ(p + k), k ≥ 1 with the values implied by

the AR(p) model:

γ̃(p + k) =

p
∑

j=1

φ1j γ̃(p + k − j)

where γ̃(p + k − j) = γ(p + k − j) for k ≤ j.

In matrix notation, setting

T
∗ =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

φ
(I)
p φ

(I)
p−1 φ

(I)
p−2 · · · φ

(I)
1















,

we have

γ̃(h) = T
∗γ̃(h−1),

An obvious (the coefficient of the AR direct predictor are chosen so as to minimize the MSFE

at horizon h) but important result is that, if Γ is positive definite, MSFEI(h, p) ≥ MSFED(h, p).
This fact can be proven using e.g. the results in Ing (2003), who proves a more general theorem,

referring to the case when Xt is stationary, and taking into account the estimation uncertainty.
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3 Comparison for an ARIMA(1,1,1) process

In this section we illustrate the use of expression (3) for characterising the comparative forecast-

ing performances of the direct and iterated predictors. We assume that Xt is generated by the

ARIMA(1,1,1) process ∆Xt = φ∆Xt−1 + ξt + θξt−1, with |φ| < 1 and |θ| ≤ 1, so that γ(k) in (3)

is the autocovariance function of the stationary ARMA(1,1) process for ∆Xt. The true generating

process is simple, but at the same time sufficiently rich to illustrate a few important facts.

Figure 1 refers to the case h = 4 and p = 2 and displays in the first panel the efficiency ratio

ERID(4, 2) = 100 × MSFEI(4, 2)/MSFED(4, 2), as a function of the values of the AR and MA

parameters φ and θ. Obviously, the ratio cannot be smaller than 100. An important evidence is

that the superiority of the direct predictor is not overwhelming, as the scale of the vertical axis

suggests, e.g. around 5% when φ = 0.95 and θ = −0.65. The greatest efficiency gains arise when

θ is close to -1 and φ is close to 1, and no cancelation of roots occurs.

The second figure (top right) serves to assess how good are the direct forecasts as compared to

the true model forecasts, by displaying the efficiency ratio ERDT (4, 2) = 100×MSFED(4, 2)/MSFE(4),
where the denominator is the true MSFE of the ARIMA(1,1,1) optimal forecasts, MSFE(h) =
E{[Xt+h − E(Xt+h|F t)]

2}, where F t is the information set at time t, which is the minimum value

that can be attained by any predictor. The interesting fact is that for the parameters combinations

of interest (φ and −θ are close to 1) the performance of the direct predictor is poor anyway, as the

efficiency loss with respect to the minimum MSFE predictor can reach up to 40%.

It is worth the while to compare the predictive accuracy of the direct AR predictor with an

important competitor simple predictor that has been proposed by Cox (1963), Tiao and Xu (1993)

and Haywood and Tunnicliffe-Wilson (1997), namely the multistep exponential smoothing (ES)

predictor,

X
(ES)
t+h|t =

∞
∑

j=0

wjXt−j, wj = (1 − λh)λ
j
h,

where the weights sum to one and depend on a single smoothing constant, λh, taking values be-

tween 0 and 1, which is chosen so as to minimise MSFE at forecast horizon h. The prediction error

can be expressed in terms of the stationary changes of Xt as follows:

ǫ
(ES)
t+h|t = Xt+h − X

(ES)
t+h|t

= Xt +
∑h

k=1 ∆Xt+k −
∑∞

j=0 wjXt−j

=
[

Sh−1 + Lh−1φ(ES)(L)
]

∆Xt+h.

(7)

The lag polynomial φ(ES)(L) is of infinite order and its coefficients satisfy the first order difference

equation φ
(ES)
j = φ

(ES)
j−1 + wj , with starting value φ

(ES)
1 = w0 − 1. Representation (7) follows

directly from the fact that
∑∞

j=0 wj = 1.

The ES predictor uses all the available observations, but since it depends on a single parameter,

it has less flexibility with respect to the direct predictor, which changes also with the lag order p.

The plot of the MSFE ratio 100 × MSFED(4, 2)/MSFEES(4) shows (see the bottom left panel of

figure 1), the ES predictor outperforms the direct AR one when θ is close to -1 and greater that
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−φ. The reverse holds for φ > −θ. This finding opens the way to combining the forecasts. The

MSFE of the combined predictor,

XC
t+h|t = τXD

t+h|t + (1 − τ)XES
t+h|t,

is compared to the minimum MSFE of the optimal forecasts in the right bottom panel of figure

1. The weight τ ∈ (0, 1) is the first element of the of the vector (i′Σ−1
h i)−1

Σ
−1
h i, where Σh is

the variance covariance matrix of the vector [ǫ
(D)
t+h|t, ǫ

(ES)
t+h|t]

′. The combined predictor outperforms

uniformly the direct AR predictor as it emerges from the comparison of the left panels of figure 1.

For higher values of h the predictive gains are more substantial; for instance, for h = 12
and p = 2, the direct forecast are 20% more accurate than the iterated ones, when φ = 0.95
and θ = −0.65. This is visible from figure 2, whose top left panel shows the values ERID(12, 2),
corresponding to different values of (φ, θ). The right panel illustrates that once again that for values

of θ close to -1 and φ close to 1 the performance of the direct predictor improves considerably over

the iterated one. Finally, by increasing the order of the AR approximation, for h fixed, the gap

between the two predictors narrows (see the bottom left panel) and the direct predictor outperforms

the iterated one θ is close to -1, which is also the case when the direct predictor displays the poorer

performance compared to the true predictor (see the bottom right panel).

The conclusions that we may draw from this simple example are the following.

• The comparative gains of the direct over the iterated predictor may not be very large, espe-

cially for small h and large p.

• Choosing a large p exposes the analysis to the dangers of overfitting. See Granger and Jeon

(2006) for the consequences on the estimated AR polynomials.

• Very large predictive accuracy gains are obtainable when the AR model is grossly misspec-

ified, in which case the predictive performance of the direct AR predictor is poor in com-

parison with the minimum MSFE predictor. It would be preferable in these occurrences

to move away from the AR representation and look for an alternative specification, or the

combination with alternative forecasts.

• The previous observations suggests that one may use the difference in the two predictors

as evidence for model misspecification and use the direct forecast only in the absence of a

better representation of the series.

• The commonest source of misspecification is due to the presence of an MA component close

to the non-invertibility region. The combination of the direct forecasts with exponential

smoothing forecasts yields a predictor which is almost as efficient as the optimal predictor.

4 Estimation issues and a bootstrap test of predictive ability

Given a realization of the stochastic process Xt, denoted xt, t = 1, . . . , n, there are several alter-

native estimators of the direct and indirect coefficients, φ
(i)
h , i = I,D. The most common esti-

mation method is ordinary least squares (LS), by which the vector φ̂
(D)

h minimizes
∑

t(∆hxt+h −
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φ̂
(D)′

∆xt)
2, where ∆xt = [∆xt, ∆xt−1, . . . , ∆xt−p+1]

′. The properties of the corresponding pre-

dictor have been discussed by Ing (2004) in the stationary case; Marcellino, Stock and Watson

(2006) provide an empirical comparison of the direct and plug in least squares predictors in terms

of their capability of forecasting a large set of macroeconomic time series, both stationary and non

stationary.

The problems with the least square estimates are twofold. First, the AR estimated parameters

may be nonstationary. Secondly, for given horizon and AR order the empirical MSEF of the it-

erated predictor can be smaller than that of the direct predictor. On the contrary, the Yule-Walker

estimates, which are obtained by replacing the theoretical autocovariances in (5) by their sam-

ple counterparts γ̂(k) = n−1
∑n−k

t=1 ∆xt∆xt+k, are guaranteed to correspond to a stationary AR

process and they enforce the condition ̂MSFEI(h, p) ≥ ̂MSFED(h, p).
On the other hand, it is well known that the Yule-Walker estimators suffer from larger bias than

the least squares estimates for short time series and when the root of the AR polynomial is close to

one (Priestley, p. 351, Tjostheim and Paulsen, 1983, Kang, 1987, Shaman and Stine, 1988). These

drawbacks are alleviated by tapering. A taper is a data window taking the form of a sequence of

positive weights ht, t = 1, . . . , n that leaves unaltered the series in the middle of the sample and

downweights the observations at the extremes. In other words, tapering amounts to smoothing the

observed sample transition from zero to the observed values when estimating convolutions of data

sequences such as the autocovariances and the periodogram.

4.1 Tapered Yule-Walker estimates

The tapered Yule-Walker estimates of the AR coefficients are obtained by replacing the theoretical

autocovariances with those computed on the sequence ht∆xt, by the estimator:

γ̂(k) =
n

(
∑n

t=1 h2
t )

2

n−k
∑

t=1

ht∆xtht+k∆xt+k.

In our applications we consider the Tukey-Hanning data taper (see e.g. Bloomfield, 1985, p. 84,

and Dahlhaus, 1988), such that, defining u = (t − 0.5)/n,

ht =







0.5 [1 − cos(2πu/̺)] , u ≤ 0.5̺,
1, 0.5̺ ≤ u ≤ 1 − 0.5̺,
0.5 [1 − cos(2π(1 − u)/̺)] , u ≥ 1 − 0.5̺,

The ̺ parameter, regulating the fraction of the initial and final stretch of data that are tapered,

is set equal to 0.1 (see Hurvich, 1988, for a method to estimate the optimal degree of tapering).

Notice that the standard biased estimator of the autocovariances arise when the boxcar taper, with

ht = 1, 1 ≤ t ≤ n and 0 otherwise, is adopted.

The tapered Yule-Walker estimates have improved small sample properties with respect to the

non-tapered counterparts. In particular they can reduce substantially the bias affecting the Yule

Walker estimates of the AR parameters, see e.g. Dahlhaus (1988). Zhou and Roy (2006) document
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the reduction of the bias and the corresponding improvement in forecast accuracy in the vector AR

case. Tapering was originally proposed as a device for removing leakage in spectrum estimation

using the periodogram (see Percival and Walden, 1983). Velasco and Robinson (2000) discuss

its merits for the estimation of the long-memory parameter by pseudo maximum likelihood in the

frequency domain. The reduction of the bias is achieved at the expenses of an increase in the

variance of the estimates. An interesting strategy to avoid it is to use multitapered estimates (see

Walden, 2000).

4.2 Order Selection

The choice of the AR order p is done by information criteria. The selection of p for stationary

time series has been considered by Shibata (1980) and Bhansali (1996), who advocate the use of

the Akaike Information Criterion, where the estimated one-step innovation variance is replaced by

the estimated h-step prediction error variance. Hurvich and Tsai (1997) introduced a multistep

generalization of the corrected AIC, given by

AICC(h, p) = n[log ̂MSFED(h, p) + 1] + 2(p + 1)
n

n − p − 2
. (8)

4.3 A Bootstrap Test of Predictive Efficiency

We can take advantage of the properties of the tapered Yule-Walker estimates to build up a test of

the significance of the improved predictive performance of the direct predictor. In fact, the statistic

representing the difference between the mean square forecast error ̂MSFEI(h, p) − ̂MSFED(h, p)
is always nonnegative and can be written as a linear combination of the first p autocovariances.

However, the weights of the combination depend on the estimated coefficients νij , which in turn

depend on the autocovariance function of ∆Xt.

To judge the significance of the reduction of the MSFE arising from using the direct predictor

at horizon h we propose the following F -type test statistic, defined in terms of the Granger and

Newbold (1986, p. 310) measure of forecastability at horizon h:

F (h, p) =
(R2

D − R2
I)/p

(1 − R2
D)/(n − p)

(9)

where

R2
i (h, p) = 1 −

̂MSFEi(h, p)

γ̂(0)
, i = I,D.

is the forecastability index. The statistic (9) is the standard test for the p restrictions φ
(D)
h = φ

(I)
h ,

but it has not the usual F distribution in finite samples.

In the light of (3),

R2
i (h, p) = 1 −

[

∑

j

ν̂2
ij + 2

∑

k

ρ̂(k)
∑

j

ν̂ij ν̂i,j+k,

]

, i = D, I,
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with ρ̂(k) = γ̂(k)/γ̂(0) and ν̂i(L) = Sh−1(L) + Lh−1φ̂
(i)
h (L). It follows form the positive-

definiteness of the tapered autocovariance sequence that R2
i (h, p) ≥ 0 and R2

D(h, p) ≥ R2
I(h, p),

so that F (h, p) ≥ 0. The null of equal forecast accuracy will thus be rejected for ”large” values of

the test statistic.

The p-values of the finite sample distribution of the statistic (9) are obtained by the bootstrap

method, using the sieve bootstrap to obtain replicates of the observed time series (see Bühlmann,

1997, 2002, and the references therein). The test procedure takes the following steps.

1. For a given pair (h, p) compute the direct and iterated predictors and the statistic F̂ (h, p) in

(9).

2. Determine the AR order p∗ of the one-step-ahead model (h = 1) by selecting the value in (1,

[n/10]) that minimizes the Hurvich and Tsai (1989) corrected AIC given above in (8).

3. Estimate the AR coefficients model by the Yule-Walker method, solving Γ̂φ̂ = γ̂1, where

Γ̂, γ̂1 contain either the standard or the tapered sample autocovariances.

4. Generate B bootstrap replicates of the series by sampling with replacement the centered

innovations et − ē, et = ∆xt −
∑p∗

j=1 φ̂j∆xt−j, t = p∗ + 1, . . . , n, ē = (n − p∗)−1
∑

et,

and computing recursively for t = p∗ + 1, . . . , n, x
(b)
t = x

(r)
t−1 +

∑p∗

j=1 φ̂j∆x
(b)
t−j + eb

t , using

the starting values xp∗ , ∆xj, j = 2, 3, . . . , p∗, where eb
t , b = 1, . . . , B, is a draw from the

empirical distribution of et − ē.

5. For each bootstrap replication compute the statistic F (b)(h, p). The distribution function

of F (b)(h, p), b = 1, . . . , B, is used to approximate the unknown distribution of the F-test

statistic (9). Bootstrap p-values are obtained as the proportion of the bootstrap statistics

F (b)(h, p), that are more extreme than the actual statistic F̂ (h, p) computed at the first step.

5 Illustrations

This section illustrates the techniques proposed in the previous sections with reference to a small

but representative subset of U.S. macroeconomic time series, available in the FREDr(Federal Re-

serve Economic Data) database. The series are listed in table 1. They are seasonally adjusted and

analyzed in logarithms. All are considered difference stationary except for the price and earnings

series, AHETPI, CPIAUCSL, GDPCTPI, GPDICTPI, PCECTPI, which are considered as inte-

grated of order two. We assume that for these series we are interested in predicting their growth

rate (e.g. in the case of CPIAUCSL xt is the monthly inflation rate).

Tables 2 and 3 display, for different forecast horizons, the AR orders p∗ that minimize the

corrected AIC given in equation (8), along with the p-value of the bootstrap test of equal predictive

accuracy (see section 4.3). The maximum p is 12 for monthly data, and 8 for quarterly data. All

the computations have been carried out in Ox 4.00 by Doornik (2006). For solving the system

Γ̂φ̂
(D)

h = γ̂h, we use the functions for Toeplitz systems built in the package, which make use of

the Levinson-Durbin algorithm.
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Series ID Title Frequency Sample

AHETPI Average Hourly Earnings: Total Private Industries M 1964:1-2008:12

AWHMAN Average Weekly Hours: Manufacturing M 1960:1-2008:12

CE16OV Civilian Employment M 1960:1-2008:12

CPIAUCSL Consumer Price Index For All Urban Consumers: All Items M 1960:1-2008:12

DSPIC96 Real Disposable Personal Income M 1960:1-2008:12

HOUST Housing Starts: Total: New Privately Owned Housing Units Started M 1960:1-2008:12

INDPRO Industrial Production Index M 1960:1-2008:12

RSXFS Retail Sales: Total (Excluding Food Services) M 1992:1-2008:12

UNRATE Civilian Unemployment Rate M 1960:1-2008:12

DPIC96 Real Disposable Personal Income Q 1947:1-2008:4

FPIC96 Real Private Fixed Investment, 3 Decimal Q 1947:1-2008:4

GDPC96 Real Gross Domestic Product Q 1947:1-2008:4

GDPCTPI Gross Domestic Product: Chain-type Price Index Q 1947:1-2008:4

GPDICTPI Gross Private Domestic Investment: Chain-type Price Index Q 1947:1-2008:4

PCECC96 Real Personal Consumption Expenditures Q 1947:1-2008:4

PCECTPI Personal Consumption Expenditures: Chain-type Price Index Q 1947:1-2008:4

Table 1: Lists the time series used in the empirical analysis. Source: FREDr(Federal Reserve

Economic Data) database.

The result confirm the findings of Marcellino, Stock and Watson (2008): in particular, there

are no significant gains in predictive accuracy arising from the direct methods when time series

dealing with the level of economic time series in real terms, such as GDP (GDPC96), industrial

production (INDPRO), employment (CE16OV), the unemployment rate (UNRATE), hours worked

(AWHMAN), real private fixed investment (FPIC96), real disposable income (DPIC96). An ex-

ception is provided by HOUST, for which the iterated forecasts are outperformed by the direct

ones for short and long horizons.

On the contrary, for the inflation rate series, ∆ AHETPI, ∆ CPIAUCSL, ∆ GDPCTPI ∆
GPDICTPI, ∆ PCECTPI, the direct method is more successful. Also, very large values of p are

selected for the iterated predictor. This evidence is not surprising if we think that the U.S. monthly

inflation series are often modelled by an IMA(1,1) model, as in Stock and Watson (2007) and the

references therein, with a negative MA coefficient. Under these circumstances, we expect that the

AR representation is misspecified; thus the order p minimizing the corrected AIC is typically very

large and long autoregressions are required is consistent with the presence of a MA component

close to the non invertibility region.

Figure 3 displays the percent gain in forecast accuracy arising from the direct method:

G(h, p) = 100 ×

(

1 −
̂MSFED(h, p)

̂MSFEI(h, p)

)

for 4 times series. In the first two cases the gains are small and not significantly different from

zero. For HOUST and ∆GDPCTPI the gains are significant.
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h 1 2 6 12 24 36 48

∆ AHETPI

p∗ 11 10 11 12 8 10 7

p-value - 0.92 0.99 0.95 0.79 0.76 0.87

AWHMAN

p∗ 2 2 1 12 12 12 12

p-value - 0.95 0.55 0.13 0.06 0.09 0.08

CE16OV

p∗ 4 7 7 4 3 1 1

p-value - 0.90 0.45 0.21 0.74 0.64 0.99

∆ CPIAUCSL

p∗ 12 11 5 8 8 12 12

p-value 0.68 0.99 0.00 0.02 0.00 0.00

DSPIC96

p∗ 3 2 1 1 1 1 1

p-value - 0.57 0.74 0.90 0.79 0.97 0.98

HOUST

p∗ 12 11 8 1 1 12 12

p-value - 0.00 0.13 0.61 0.45 0.08 0.02

INDPRO

p∗ 5 3 3 3 1 1 1

p-value - 0.34 0.64 0.53 0.62 0.83 0.90

RSXFS

p∗ 12 12 6 6 1 1 1

p-value - 1.00 0.00 0.06 0.55 0.90 0.32

UNRATE

p∗ 12 5 12 4 12 12 12

p-value - 0.23 0.43 0.52 0.20 0.11 0.12

Table 2: U.S. monthly time series: comparison of direct and iterated predictors. AR orders selected

by AIC and bootstrap p-values of the predictive accuracy test statistic.
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h 1 2 3 4 8 12 16

DPIC96

p∗ 2.00 4.00 1.00 1.00 1.00 1.00 1.00

p-value - 0.23 0.19 0.67 0.76 0.82 0.93

FPIC96

p∗ 1.00 3.00 3.00 5.00 8.00 8.00 8.00

p-value - 0.64 0.77 0.10 0.11 0.07 0.09

GDPC96

p∗ 3.00 4.00 3.00 3.00 1.00 5.00 3.00

p-value - 0.47 0.62 0.71 0.60 0.28 0.35

∆ GDPCTPI

p∗ 2.00 8.00 7.00 8.00 8.00 8.00 8.00

p-value - 0.97 0.01 0.01 0.01 0.01 0.02

∆ GPDICTPI

p∗ 7.00 8.00 7.00 8.00 8.00 8.00 8.00

p-value - 0.97 0.01 0.04 0.05 0.03 0.07

PCECC96

p∗ 4.00 4.00 4.00 4.00 1.00 1.00 1.00

p-value - 0.43 0.26 0.45 0.82 0.92 0.61

∆ PCECTPI

p∗ 2.00 8.00 8.00 8.00 8.00 8.00 8.00

p-value - 0.98 1.00 0.00 0.00 0.00 0.00

Table 3: U.S. quarterly time series: comparison of direct and iterated predictors. AR orders se-

lected by AIC and bootstrap p-values of the predictive accuracy test statistic.
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6 Conclusive remarks

We think that the paper can contribute to the already substantive literature on multistep estimation,

and on the comparison of direct and iterated AR predictors, in the following ways.

• By providing an encompassing representation for the direct and iterated predictors that en-

ables the derivation of the analytic mean square forecast error and recursive formulae for the

AR coefficients.

• By proposing inferences (parameter estimates, bootstrap tests of equal predictive accuracy)

based on the tapered autocovariance function. The estimation methodology has several ad-

vantages over ordinary least squares.

There are several issues that we would like to address in our future research. As far as the

estimation methodology is concerned, we can improve the sampling properties of the Yule-Walker

estimates by multitapering, see Walden (2000); moreover, the class of Burg estimators (see Hurvich

and Tsai, 1997, and Brockwell, Dahlhaus and Trinidade, 2005) deserves further investigation. The

extensions to a multivariate system of time series is also interesting.
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Figure 1: ARIMA(1,1,1) process. Comparison of the efficiency of the iterated and the direct AR predictors for horizon h = 4
and order p = 2.
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