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Abstract: In this paper we apply the Monte Carlo method to find the eigenvalues and the eigenvectors of a
k-symmetric matrix 4. At first we add to the main diagonal of 4 a real number large enough to obtain a
covariance matrix B and we take into account that the minimum sum of the squares in the principal components
regression (PCR) is given by the corresponding eigenvector of the minimum eigenvalue of B.
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1. Introduction
Let be n points in R”: XV, X™. The orthogonal linear variety of the dimension &
(0<k<p) is that linear variety with the minimum sum of the squares of Euclidean distances.
We know (see [9]) that this linear variety is generated by the eigenvectors of the sample
covariance matrix corresponding to the first maximum k£ eigenvalues, and contains the gravity
center of the given n points. These eigenvectors are called principal components, and for that
the orthogonal regression is called also principal components regression (PCR). The principal
components analysis is used in [10] to simplify the computations in the discriminant analysis
by using the Kolmogoroff distance. There are many algebric problems solved by using the
Monte Carlo method instead of numerical methods, many of them using stochastic models.
Stochastic models for solving some problems were used among others by Ermakov (see [5])
and Vaduva (see [11]).
Let A=(4;;) be a k-matrix and x=(x;), f/=(f;) be k-vectors. For solving the linear system
x=A-x+f (1)
Ermakov uses an ergodic Markov chain with £ states, where £ is the dimension of the system.
The transition probabilities of this Markov chain are 0 for the null elements of 4 and non-zero
values in the contrary case. We consider also an arbitrary vector /# and an initial distribution

p= (pi)i:h—k with non-zero values at the same positions. Using a trajectory of this ergodic

Markov chain Ermakov estimates the scalar product <h,)_c>, where x is the solution of the
system (1).

Viaduva (see [11]) uses, oposite Ermakov, an absorbing Markov chain with k+1 states
instead of an ergodic Markov chain with k states. The values P; for 1<1,j<k are built in the
same way as in Ermakov, but the sums of the transition probabilities from a state i= I,_k to

one of these states become less then /. The differences to / are the probabilities to move to
the state k+/ (absorbtion). Using N independent trajectories with the initial transient state i
Vaduva estimates x, .
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In fact between the ergodic Markov chains and the absorbing Markov chains there exists
a connection (see [7]).

In [2] we use a Jackson queueing network (see [6]) to solve some linear systems of
equations. A Jackson queueing network is an open network with & nodes such that the
interarrival time in the node i from outside the network is exp(2;), the service time at the node
i is exp(l;), and after he finishes his service at the node 7, a customer goes to the node j with
the probability P; or lives the network with the probability Pj. The arrivals from outside
network are set according to the right sides, and the transition probabilities are set according
to the system matrix 4 (see [2]). In [3] we have solved by the Monte Carlo method the
nonlinear equation in ¢

A'(w(l-0))=0, )
where A is the moments generating function of the interarrival times density function a (i.e.
its Laplace transformation):

A()= Z’e% i)t . 2)

We generate (see [3]) a G/M/1 queueing system (see [8]) with the interarrival times
density function a and the service times exp(y). We divide the simulation period ¢ into m
periods when we have no arrival and no service finalization. We estimate the average number
of customers in the system, and, using this estimation, we estimate a solution of the nonlinear
equation (2) if we know an analytical formula for A", In the contrary case, we solve an
integral equation in the same way (see [3]).

2. Finding the eigenvalues and the eigenvectors

Because the orthogonal regression hyperplane is perpendicullar to the principal
component we can obtain the eigenvalues and the eigenvectors of a k-symmetric matrix 4 as
follows: first we add to the main diagonal a real number large enough to obtain a strong
diagonal dominant matrix B. We can choose

x=max(Z|Aij|—AiiJ+l. 3)
i=1,k \ j#i

The obtained matrix B is positive defined with the same eigenvectors, but its eigenvalues are
greather then those of 4 by x from (3). We generate 71000 vectors distributed N(0,B) using
the following algorithm (see [11]) that generates a normal vector N(u,2), denoting by I the
k-unit matrix.
Algorithm normal

Compute L left-diagonal by the Cholesky factorization ¥ =L -L".
Generate the vector Z~N(0,1) (k numbers N(0,1)).
X=p+L-Z
return X
end.
We generate also /000 vectors uniform on the k-sphere. For this we can use the following

algorithm (see [11]) that generates a uniform vector on the domain D < R* by the rejection
method:
Algorithm uniform
Consider the carthesian product 7 of the intervals [a;,b;] such that D — I.
repeat
Generate a k-vector v uniform on /.
until ve D
return v
end.

158



We generate first the vectors in the interior of the k-disc, and we find the normalized
vectors.
Another algorithm to generate the uniform vectors on the sphere is to use the spherical

T

coordinates: we generate the first k-2 spherical coordinates uniform in [7?%} , and the last

one uniform in [0,2-z]. Consider the normal vectors X® = (Xf‘),...,X{j)) and the uniform

vectors v = (vfi),...,vfj) )T with i =1,1000. For each v=v"") we compute the sum

1000 & . 2
> (zvj ~Xj.’)j )
i=1 \ =1

and the corresponding eigenvector of the minimum eigenvalue is the vector v for that the
above sum is minimum. The corresponding eigenvalue is this minimum sum divided by 7000
(if we change the axes by the principal components and the origin by the gravity center, the
sum becomes the minimum variance multiplied by the number of points). If we have found
Jj<k-1 eigenvalues of B and the corresponding eigenvectors, we apply first a rotation with a
matrix having the first j columns equal to these eigenvectors. The other columns are obtained
by adding the vectors of the canonic basis {ej,...,ex} and using the Gramm-Schmidt
algorithm. If the computed eigenvalues are 4,...,A; the new covariance matrix is
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where Cis a (k- j)x (k- j) matrix with the eigenvalues equal to the other k-j eigenvalues of B.

We apply the above algorithm to find an eigenvalue of C and the corresponding
eigenvector if we consider for the normal vectors the last k-j components in the new
coordinates system (after the rotation). We do the same with the uniform vectors, but for null
vectors we set the first component to 1, and the other vectors are normalized. After the
computation of an eigenvector of C we set the first j components to 0 and we make the
inverse rotation to obtain a new eigenvector of B.

The last eigenvalue of B is the difference between Trace(B) and the sum of the other
eigenvalues, and the last eigenvector is perpendicullar to the others. The matrix 4 has the
same eigenvectors and its eigenvalues are less then those of B by the added constant used.

-125 033 25

Example 1. Consider the matriXA=[o.33 -0.75 1.67}. If we apply the Jacobi rotation method
25 167 3

-2.5242 0.83937 028154 —0.46497
we obtain the eigenvalues | -1.13954| and the eigenvectors on rows |-0.38262 091362 —0.1375 |.
466374 0.38609 0.29332  0.87458
If we generate the normal random variables using the central limit theorem and the
uniform random vectors using the spheric coordinates we obtain the eigenvalues

—-2.58369 0.80314  0.35492 -0.47854
-1.01904| and the eigenvectors ONn rows | -0.43628 0.89734 —0.06669 |.
4.60273 0.40574  0.26234  0.87553

If we generate the normal random variables using the central limit theorem and the
uniform random vectors using the rejection method we obtain the eigenvalues

-2.36353 ~0.84454 -033855  0.4149
-1.11621| and the eigenvectors on rows | —0.4363 0.88425 —0.16657 |.
4.47974 0.31048 032169  0.89449
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If we generate the normal random variables using the Box-Muler method and the uniform
random vectors using the spheric coordinates we obtain the eigenvalues
-2.59655 ~0.8001 -0.31456  0.51078
[—1.08296] and the eigenvectors on rows [— 0.42169  0.90053 —0.10595} .
467951 042665 030016  0.85316
If we generate the normal random variables using the Box-Muler method and the uniform
random vectors using the rejection method we obtain the eigenvalues
~2.4101 ~0.83582 ~0.28491 0.46929
[1.52726} and the eigenvectors on rows { 0.38895  0.91058 0.1399]
4.93736 0.38746  0.29946 0.87189
If we generate the normal random variables using the first Butcher method and the
uniform random vectors using the spheric coordinates we obtain the eigenvalues
—2.43781 ~0.84056 —0.25578 047753
[— 0.96465] and the eigenvectors on rows [— 037543 0.91054 —0.173121 .
4.40246 0.39053  0.32479  0.86139

If we generate the normal random variables using the first Butcher method and the
uniform random vectors using the rejection method we obtain the eigenvalues
~0.74638  —0.4036 0.52917]

-2.71196
-1.58691 | and the eigenvectors on rows | 0.51564 —0.85339 0.07641
5.29887 042075 03299  0.84507

3. Conclusions

Generally the Monte Carlo method estimates the solution of a problem using some
moments of a generated random variable. In our case we use the variances of some normal
variables: when we change the coordinates {ei,...,ex} by the principal components, the
random normal vectors N(0,B) become normal with their components independent with the
average 0. In fact the estimators of these variances are S, which are biased. If we notice on
running the program that the estimated eigenvalues are generally smaller then those obtained
by the numerical methods we can change them by s (unbiased).
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