
Munich Personal RePEc Archive

On the Emergence of Private Insurance

in Presence of Mutual Agreements

Bourlès, Renaud

Université Toulouse 1 Sciences Sociales, GREQAM

11 May 2009

Online at https://mpra.ub.uni-muenchen.de/15374/

MPRA Paper No. 15374, posted 25 May 2009 09:34 UTC



On the emergence of private insurance in presence of mutual

agreements

Renaud Bourlès∗

Université Toulouse 1 and GREQAM, Centre de la Vieille Charité, 2, rue de la Charité, 13 002 Marseille, France

Abstract

The aim of this paper is to analyze the impact of the existence of mutual firms on the behavior of

an insurance company and more precisely to study in which situations a private insurance firm

may replace mutual agreements. Our approach differs from the existing literature as we integrate

the investment choices of the company and the fact that, because it commits on a fixed contract, it

can become insolvent. In such a situation we are able to characterize the unique optimal choices

of an entrant company and the conditions favoring or preventing its appearance.
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1. Introduction

Historically, mutual agreements have been the first mean used to cope with risk. Starting

from benevolent societies in the ancient Greece or guilds in the Middle-Age, reciprocal help

and mutual assistance have been first used by people to be insured against various risks as fire,

robbery or floods. The emergence of private insurance companies is very posterior. Starting in

medieval Genoa during the 14th century with third-party insurance in shipping industry, private

insurance definitively arises in Great Britain with fire insurance in the 17th century and the use of

external capital. Since, both organizational forms experienced various success and none of them

really dominates insurance markets. For example, as stated in Hansmann (1985), many changes

in organizational forms happened in the United States during the 20st century. First organized as

private organizations, many of the largest insurance companies choose to mutualize in the earlier

part of the century. The share of mutual firms in life insurance even hit 69 percent in 1947.
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However, during the second part of the 20st century and the beginning of the 21st, the reverse

effect arisen and many mutual firms have converted to the stock form. These phenomenons called

mutualization and demutualization waves, rise the issue of the parameters driving the preference

for one form or the other. Similarly, as mutual forms control health insurance in most European

countries and as risk is largely insured with mutual agreements in developing countries it seems

worthwhile to study why insurance companies have very low market shares in some countries or

sectors.

The main objective of this paper is to analyze the influence of the pre-existence of mutual

firms on the choices of an entrant insurance company when optimal behavior consists in decisions

about both offered coverage and capital stock. We analyze more precisely the impact of the

existence of mutual firms as individuals outside option on the optimal profit of an unique entrant

insurance company. We focus on the effects of parameters as the cost of capital, the distribution

of income, the degree of risk aversion and the size of the population. In this way we are able

to analyze how and when an insurance company may attract mutual firms policyholders and to

determine which variables make or not an insurance company enter the market. However in this

paper we do not consider the entry of further insurance companies and are thus unable to study the

impact of openness to competition in a regulated market. Still, by studying when a company can

not rule out mutual agreements our work analyzes when mutual agreements may be sustainable

and why some market remain reserved to such arrangements even without any regulation. Our

analysis also appears to be useful in the determination of the capital stock needed by an insurance

company as it defines the optimal capital required to insure a given risk when insurers are limited

liability companies.

To do so, we build a model that captures the main features distinguishing mutual and stock

insurers, namely : (i) a difference in the ownership structure : while insurance companies are

owned by their shareholders, mutual firms belong to their policyholders, (ii) a difference in the

objective of the organization : whereas insurance companies aim to maximize return on invested

capital, mutual firms theoretically maximize its members satisfaction, and (iii) a difference in

the definition of risk : stock firms have to precisely define at stake risks to contract on a fixed

premia when mutual ones can define risk ex-post as they systematically adjust offered premia a

posteriori. These three differences imply several trade-offs between the two organizational forms.

Firstly, as shareholders are assumed to be risk-neutral, while policyholders are risk adverse, the

insurance company appears to have a comparative advantage in bearing risk. However, raising

capital externally is costly and as shareholders are profit seeker, conflicts may arise between

shareholders and policyholders. As this paper introduces in the discussion the investment choice

of the insurance company, the last difference will have an important role in our setting. Indeed,

although external capital is highly useful when aggregate loss is high, it may become insufficient

to honor the specific contract the firm commits on and the company may become insolvent. Like

most of the papers on this topic we then assume that agents are perfectly rational and thus take

into account the probability of insolvency when making their choices. Therefore an individual

may not ever wish an increase in coverage as it also increases the insolvency probability of the

insurance company.
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Under such considerations, we characterize in this paper the optimal choice of coverage and

capital investment of a single entrant company that faces an incumbent mutual firm, and show

it is unique. In doing so we are able to determine the conditions under which this equilibrium

gives a positive expected profit, that is to state when an insurance firm can enter the market. In

analyzing these conditions, this paper provides interesting comparative statics, either based on

analytical results or simulations. This way we show that a decrease in the cost of capital raises

the optimal capital stock, lowers optimal proposed coverage and thus rises the likelihood for a

stock firm to be set up. We also prove in this paper that when a distribution of aggregate income

dominates another one in the sense of first order stochastic dominance, the optimal offered cover-

age increases. Another result of interest is the fact that a higher individual degree of risk aversion

increases optimal capital reserves, decreases optimal coverage and that those two forces result

in an increase in the optimal profit. Simulations on the influence of the insured population size

then allow to state that, when risks are independent, an increase in the number of policyholders

raises the optimal offered coverage and lowers the possibility for a stock company to emerge.

Lastly, we prove in this paper that the opportunity for an insurance firm to enter the market is

higher when individual risk is high, as an increase in the variance of income increases optimal

capital reserves and decreases optimal coverage. Those two last results are consistent with the

findings of previous empirical works either on demutualization or on the difference between the

two organizational forms.

We briefly discuss the relationship of the paper with the most closely related literature. This

paper fits into the literature on organizational form in insurance that first tries to explain the co-

existence of mutual firms with insurance companies. Focusing mainly on the difference in the

ownership structure, Mayers and Smith (1988) argue that the two organizational forms coexist

because each ownership structure has a comparative advantage in preventing different types of

agency problems (mutual firms prevent for conflict between shareholders and policyholders but

have less incentive to control their managers). Alternatively, Smith and Stutzer (1990) and Do-

herty and Dionne (1993) take into account the additional feature that policyholders of mutual

firms bear the aggregate risk (that is that mutual firms – contrary to stock companies – offer par-

ticipating policies) to explain this coexistence arguing that stock and mutual firms insure different

kind of individuals or different kind of risks 1.

Ours is not the first paper to includes the possibility of insolvency. Focusing on the solvability

regulation, Rees, Gravelle and Wambach (1999) show that, in absence of mutual firms, it is opti-

mal for the insurance companies to hold enough capital to avoid insolvency when total losses are

bounded. However, if it is not always feasible to escape bankruptcy or if the market is not fric-

tionless, this result does not hold. Laux and Muermann (2006) study optimal choices of mutual

1Doherty and Dionne (1993) prove that, if covered risks are decomposable into diversifiable (idiosyncratic) and

non-diversifiable parts, it is optimal, given participating nature of mutual firms policies, to combine insurance firms

(non-participating) coverage with mutual risk sharing arrangements. On the same direction, Smith and Stutzer

(1990) show, using a variant of adverse selection model of Rothschild and Stiglitz (1976), that because of their

participating nature, mutual firms attract low risk individuals who want to signal their type.
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and stock insurers when there are frictions and more precisely when there exist conflicts between

managers and owners. They first show that, without any competition between stock and mutual

firms, it is optimal for policyholders to transfer wealth between solvency and insolvency states.

Making capital choice endogenous, they show that capital stock and premia are both decreasing

with governance problems and increasing with competition. Finally they prove that the incentive

to increase the number of policyholders is higher for mutual firms. They however consider stock

and mutual firms as independent entities that do not compete to attract policyholders.

On the contrary when analyzing the impact of mutual firms on the insurance market, Fagart,

Fombaron and Jeleva (2002) model the interactions between insurance companies and mutual

firms but do not study optimal capital choice. They show that the expected utility of the con-

sumers depends on the size of the organization they belong to and thus that the existence of

mutual firms modifies optimal behavior of insurance companies, when it only consists of offered

premia. In their paper, the network effects lead to multiple equilibria. Moreover as the insurance

company is limited in size because of fixed capital stock, the two organizational forms may co-

exist at the equilibrium. In this paper however, we endogenize the choice of capital and define

the optimal choice of the company in a way that allows for more comparative statics results. We

are then able to better analyze the emergence of private insurance and to characterize the setting

(depending on the risk distribution and the risk aversion among other things) in which each or-

ganizational form dominates. Compared to Fagart, Fombaron and Jeleva (2002) this is done at

the price of considering a unique stock firm. Moreover, with endogenous stock of capital, the

coexistence of both a mutual firm and an insurance company is impossible at the equilibrium.

If it enters the market, an insurance firm finds always profitable to hold enough capital to insur-

ance the whole market. In this way our model explains why some markets are dominated by one

organizational form, and gives a rationale for mutualization and demutualization waves.

Our paper contributes to the literature on insurance forms by studying both the interactions

between the two organizational forms and the investment choices of insurance companies.

The rest of the paper is structured in the following way. We present the model in Section

2 before characterizing the optimum and its implication on firms participation (in Section 3).

Comparative statics either based on analytical results or simulations are provided in Section 4

and compared to previous empirical findings in Section 5. Our conclusion and directions for

future research are outlined in Section 6.
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2. The Model

2.1. General Assumptions and Notations

We consider n identical risk averse individuals with increasing and concave utility function

u(.) that satisfies the Inada conditions. Each agents receive random revenue ω̃i, i = 1, ..., n, the

ω̃is being independent2 and identically distributed. We assume then that aggregate revenue in the

economy called ω̃ ≡
n∑

i=1

ω̃i is distributed according to some cumulative distribution function F (.)

with density f(.). This random variable may be interpreted as total crop or a sum of revenues

adjusted for uncertain health spending for example.

2.2. The Insurance Process

As agents are risk averse, they want to be insured against risks of changes in revenue and we

consider that they face two kinds of organizations to do so.3

• They originally share risk thanks to a mutual agreement. In our static framework, such

an agreement corresponds to a sharing rule of the aggregate revenue and may therefore be

interpreted as a cooperative or a tontine fund. Indeed, whatever the coverage specified,

a mutual firm being collectively owned by its policyholders, they receive any extra profit

at the end of the period, such that the whole revenue is shared. Following Borch (1962),

Eeckhoudt and Gollier (1995) and Fagart, Fombaron and Jeleva (2002) we then have that

the optimal sharing rule is characterized by following proposition.

Proposition 1. When individual risks are independent and identically distributed, a mu-

tual agreement optimally provides equal sharing of resource such that each policyholder

of a mutual firm with n members gets u
(
ω

n

)
whatever the state of the world. Moreover, as

shown in Fagart, Fombaron and Jeleva (2002), the expected utility of mutual policyholders

is increasing with the number of people in such an agreement.

Proof: See Appendix

• They can choose to subscribe to a policy in an entrant insurance company. This firm is

owned by shareholders that invest in the insurance market a capital stock K at the begin-

ning of the process (i.e. before the realization of the ω̃is is known) and gets the profit of the

company Π at the end (that is after having indemnified the policyholders). They however

2The assumption of independence is not necessary for our main results to hold. However, to relax it we need

to model a specific form of correlation. For example, as shown in Henry (1981), our analysis is likely to remain

accurate for a f-modulated stochastic dependence
3We assume that the risk at stake is fully insurable. The addition of a background risk or of catastrophic non-

predictable events would lower the possibility for an insurance company to rule out mutual agreements.
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face a discount factor δ that represents the opportunity cost of capital4. We moreover as-

sume that this company is a limited liability firm and can not borrow in top of this capital

investment.

When insuring a random revenue x̃, the insurer therefore solves the following program that

determines, for a given capital stock, the benefits π(x) it earns in each state x to maximize

its expected profit, under the limited liability and participation constraints:

max
π(x)

{
δ.
∫ +∞

−∞

π(s)f (s) ds−K
}

(1)

s.t.




π(x) ≥ −K ∀x∫ +∞

−∞

[u (s+K − π(s))] f (s) ds ≥
∫ +∞

−∞

u(s)f (s) ds

Letting the Lagrange multipliers be ν(x)f(x) and Γ respectively, the first order condition

writes 1 + ν(x) − Γu′ (x+K − π(x)) = 0. Therefore, when the insurance company

is solvent (i.e. when ν(x) = 0) it optimally offers a fixed coverage to its policyholders

(as then u′ (x+K − π(x)) = 1/Γ is constant). Conversely, when the limited liability

constraint binds, the insurer is forced to expend its capital stock.

In our context this means that a company that insures the entire population goes bankrupt

when ω < n.y −K, where y represents the fixed coverage offered by the company when

it is solvent. Then, the probability of insolvency is equal to F (n.y − K). In cases of

bankruptcy, because of limited liability, the firm has to shares its whole resources (premia

plus capital) among its policyholders. Therefore each policyholder of a company that

insures the n agents gets u
(
ω +K

n

)
(which is less than u(y) when ω < n.y −K) 5. As

we assume that policyholders fully anticipate this probability of insolvency, the expected

utility of an individual insured with all the others in the entrant insurance company is :

U(y,K) ≡ [1 − F (n.y −K)].u(y) +
∫ n.y−K

−∞

u
(
ω +K

n

)
f (ω) dω (2)

Remark 1. The expected utility of an individual insured in the entrant stock firm is in-

creasing in both the offered coverage and the company capital stock.

4If capital has no opportunity cost or if there is no discount factor, the company has an incentive to accumulate

an infinite amount of capital and thereby avoid bankruptcy.
5The main results and properties of our analysis remain unchanged even if policyholders only have priority on

total premia and a portion 0 6 λ 6 1 of the capital stock. In this case it can be shown that it is all the more difficult

for a insurance company to enter the market as λ is low, that is as shareholders have priority on a large part of the

capital stock
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The reader should note that this contract can easily be related to usual insurance contracts

that implies an indemnity and a premium. Considering ω̃i as composed by a certain revenue

R minus a random positive loss l̃i, y can then be defined as y = R− l̃i − π + i
(
l̃i
)
, where

π represents the premium and i (l) the indemnity paid when the loss l occurs. As we focus

here on complete insurance, we also need y to be certain that is i
(
l̃i
)

to be equal to l̃i + c,
where c is a constant. Now, to avoid for usual problems of moral hazard, we also need

policyholders not to have an incentive to declare a loss but when it occurs. We thus need

i
(
l̃i
)

6 l̃i, that is c 6 0. So, y = R− π + c 6 R− π and y is upward bounded by R.

Moreover, in this context, the equal sharing of resources provided by the mutual agreement

corresponds to full mutualization of losses as then
ω̃

n
= R−

∑
i l̃i
n

2.3. The Incentive Constraint and the Profit of the Insurance Company

Let us suppose a two-stage game where

• at t = 1: the insurance company raises capital K and offers a contract (y,K)
• at t = 2: the policyholders has to choose whether to stay in the mutual or to go to the

entrant insurance company .

As it insures the same risk as the pre-existing mutual agreement the entrant firm has to provide its

policyholders with at least as much utility as under the equal-sharing rule among n individuals.

Moreover, if the company finds it profitable to insure one agent, it is in its interest to insure the

entire homogeneous population. Indeed, keeping capital per head constant, risk pooling between

policyholders lowers the probability of bankruptcy. The company thus needs less capital to attract

each additional policyholder. Since the utility in the mutual firm is increasing with its number of

members (see Proposition 1), an insurance company that manages to attract one individual can

insure the entire population (we suppose here that insurance contracts are anonymous and thus

that the company has to offer the same contract to each individual). To enter the market, the in-

surance company then only need to offer a contract (y,K) that provides - when every individuals

sign it (the stock firm then fully take advantage of risk pooling among its policyholders) - at least

as much utility as the mutual firm. The equal-sharing rule among n individuals then defines the

lower bound of what the insurance company needs to provide to its policyholders. To enter the

market it thus has to offer a contract (y,K) satisfying the following incentive constraint:

[1 − F (n.y −K)].u(y) +
∫ n.y−K

−∞

u
(
ω +K

n

)
f (ω) dω ≥ E

(
u
(
ω

n

))
(3)

This constraint implies that, oppositely to Fagart, Fombaron and Jeleva (2002) only one orga-

nizational form exists at the equilibrium even if agents cannot coordinate. Even if this incentive

constraint binds, our model does not bring out coexistence of mutual with stock firms at the

equilibrium, as then

• either every policyholders stay in the mutual firm,

• or one policyholder moves to the stock company making it more attractive to all the others

(because of Proposition 1) and the insurance company is the only form to perform.

7



Therefore, the coexistence of both organization forms at the equilibrium in Fagart, Fombaron

and Jeleva (2002) is fully explained by the assumption of fixed capital stock that limits the size

of the insurance companies.

Interestingly, constraint (3) also fits with the issue of a mutual firm that wants to demutualize.

As the mutual firm is owned by its policyholders, they have to agree on the change in status. With

homogeneous agents this will only be the case if the contract proposed by the company gives all

the policyholders at least as much as what they had in the mutual form. Our model may therefore

be used to analyze the incentive for a mutual insurance to change its organizational form and

become a stock company.

Remark 2. If it does not hold any capital, the insurance company is unable to sell any policy as

agents are then better off in the mutual firm whatever the coverage proposed by the company.

If K = 0, the company can never do better than the mutual firm when it is solvent as then

y < ω
n

. The only way for it to satisfy the constraint is then to always go bankrupt, that is to set

y = R ≡ ω
n

(where ω represent the upper bar of the distribution of ω̃). However, in this case

its behavior exactly amounts to the one of a mutual firm as, when it goes bankrupt, the company

equally shares its whole resource that then only consist in ω̃. So, without capital, an insurance

company can not actually exist as its optimal choice is then to act just like a mutual firm. This

moreover implies that the existence of a mutual firm by itself forces the company to hold capital.

In the absence of a mutual firm, an insurance firm can still make positive profits even if it does

not hold capital. In this case, the outside option is for the individual to be uninsured what can be

overstepped by the insurance company even when it goes bankrupt, thanks to risk pooling effects

between policyholders.

So, in order to attract policyholders, an insurance company that faces an incumbent mutual

agreement has to invest in capital stock before the realization of the risk variable. Its expected

profit can then be written as:

Π(y,K) = δ.
∫ +∞

n.y−K
(ω +K − n.y) f (ω) dω −K (4)

As this expected profit is decreasing in both y and K, the only incentive for the company to

increase y and K is to attract policyholders. The fact that the insolvency probability influence

policyholders’ behavior leads us to study the stock of capital as a choice variable of the insurance

company.

3. Optimal Behavior of a Single Entrant Insurance Company Facing an Incumbent Mutual

Firm

The program of the entrant insurance company consists in the maximization of Π(y,K) under

the constraint that individuals subscribe its policy, that can be rewritten as:

C(y,K) ≡
∫ n.y−K

−∞

[
u
(
ω +K

n

)
− u

(
ω

n

)]
f (ω) dω +

∫ +∞

n.y−K

[
u (y) − u

(
ω

n

)]
f (ω) dω > 0 (5)
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As this constraint is increasing in both y and K (see Remark 1) when profit is decreasing with

those two variables, it is satisfied with equality.

The problem thus become6

max
y,K

{
δ.
∫ +∞

n.y−K
(ω +K − n.y) f (ω) dω −K

}
(6)

s.t.





C(y,K) ≡
∫ n.y−K

−∞

[
u
(
ω +K

n

)
− u

(
ω

n

)]
f (ω) dω

+
∫ +∞

n.y−K

[
u (y) − u

(
ω

n

)]
f (ω) dω = 0

Proposition 2. Suppose that either the support of ω̃ is unbounded or the upper bound of the

support ω satisfies

1 − δ

δ
<

∫ ω

−∞

(
u′
(
ω

n

)
− u′

(
ω

n

))
f(ω)dω

u′
(
ω

n

) (7)

Then there exists a unique optimal solution for program (6) that yields a positive profit, fully

characterized by the two following equations:

Φ(y,K) ≡
∫ n.y−K

−∞




u′
(
ω +K

n

)
− u′ (y)

u′(y)


 f (ω) dω −

1 − δ

δ
= 0 (8)

C(y,K) ≡
∫ n.y−K

−∞

[
u
(
ω +K

n

)
− u

(
ω

n

)]
f (ω) dω

+
∫ +∞

n.y−K

[
u (y) − u

(
ω

n

)]
f (ω) dω = 0 (9)

Proof: See Appendix

Proposition 2 states that, if aggregate wealth can be infinite, an insurance company can always

enter a market controlled by mutual firms. However, when aggregate wealth is bounded, an

insurance company may not be able to profitably enter the market.

It may first seem odd that the condition (7) on the existence of the equilibrium depends on

the upper bound of the aggregate wealth distribution. Let us recall, however, that the insurance

company offers in our setting a complete insurance for a premium corresponding to the entire

revenue. The condition (7) can therefore be interpreted as a condition on the profitability of

insuring the considered risk. The left hand side of the inequality indeed corresponds to the risk-

free interest rate r (as by definition δ = 1
1+r

), that is to the profitability of the outside option

for investment, whereas the right hand side is increasing with the upper bound of the aggregate

6Note here that we assume that the insurance company is not constraint by any capital requirement
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wealth distribution that is with the maximal possible benefits of the insurer. If this distribution is

not bounded, the insurer therefore always find profitable to insure the considered risk. However,

if possible benefits are not high enough relative to the risk-free interest rate, the insurer does not

find profitable to enter the market.

When an insurance company can enter the market, Proposition 2 moreover characterizes its

optimal behavior, that consists of investing capital stock K∗ and proposing a coverage y∗ that

satisfies the first order condition Φ(y,K) = 0 and the constraint C(y,K) = 0. One can also

show that this optimal behavior is unique as the first order condition expresses an increasing

relationship between the offered premium and the stock of capital whereas the constraint defines

a decreasing mapping between those two variables. The direction of those two relationships

characterizing the equilibrium may be intuitively explained. The fact that the profit maximization

gives rise to an increasing relationship between the coverage and the stock of capital may be

explained by the effect of those two variables on the insolvency probability. As an increase in

coverage increases this probability, the company has to also rise the stock of capital to restore

a reasonable insolvency probability. Concerning the interactions with the incumbent mutual

insurer, an increase in y increases the attractiveness of the company. Thus, everything else being

equal, the company can decrease its capital stock without losing any policyholders.

The reader should note that our model can easily be extended to the case of any limited

liability insurance and can be used to define the amount of capital required to insure a given risk

in the absence of incumbent mutual agreements. We have already seen that a limited liability

insurance company optimally offers a fixed coverage when it is solvent and expends its capital

stock in case of bankruptcy. Therefore, a company with capital stock k that insures a random

income x̃ with the fixed coverage ψ, will be insolvent when the realization of the risk is such

that x < ψ− k. The insurer then optimally chooses the capital stock and coverage satisfying the

program

max
ψ,k

{
δ.
∫ +∞

ψ−k
(x+ k − ψ) f (x) dx− k

}
(10)

s.t.

∫ ψ−k

−∞

[u (x+ k) − u (x)] f (x) dx+
∫ +∞

y−k
[u (y) − u (x)] f (x) dx = 0

The first order condition of this program that writes

∫ ψ−k

−∞

[
u′ (x+ k) − u′ (ψ)

u′(ψ)

]
f (x) dx−

1 − δ

δ
= 0 (11)

appears to be analogous to the one of our initial problem. The following results of compara-

tive statics (except naturally the one about n, the number of policyholders in the initial mutual

agreement) can therefore be used to define the capital required by any limited liability insurance

company that wants to insure a risky activity.
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4. Comparative Statics

In this section, we analyze the effect of different variables on the firm’s optimal choices and

profit. By studying how parameters of the model affect the entrant firm’s profit, we are able to

characterize conditions under which formal insurance companies are likely to emerge.

4.1. Analytical results

We first derive three analytical results, relating the insurance company’s choices and profit to

the cost of capital, distribution of aggregate income and degree of risk aversion.

Proposition 3. :

(i) A decrease in the cost of capital (i.e. an increase in the discount factor δ) increases the

optimal capital stock (K∗) and decreases optimal proposed coverage (y∗)
(ii) Let F1(.) and F2(.) be two distributions of aggregate income. Then, if F1(.) stochastically

dominates F2(.), optimal offered coverage (y∗) is higher under F2(.) than under F1(.)
(iii) The profit of an entrant insurance company that wants to rule out a mutual firm is always

increasing with the insured’s degree of risk aversion. Moreover, when δ < 1 and individ-

uals are risk neutral, an insurance firm can not enter a market in which a mutual insurer

performs.

Proof: See Appendix.

In providing comparative statics on δ =
(

1
1+r

)
, Proposition 3 first states the effect of changes

in the (opportunity) cost of capital on the optimal choice of the insurance company: as it increases

the return on invested capital (by decreasing the opportunity cost of capital: r), an increase in δ
increases optimal capital (K∗) and then allows the company to lower y∗ without increasing its

insolvency probability.By equation (7), it follows that, intuitively, it is then easier for an insurance

company to emerge as δ is high, that is as capital is cheap.

The second part of Proposition 3 shows that if a distribution of aggregate income dominates

(in the sense of first order stochastic dominance) another one, the optimal offered coverage in-

creases. The effect of such a change on optimal capital stock is however ambiguous as it results

from two effects:

• as it lowers the probability of low aggregate revenue and thus of bankruptcy, this change

leads to a decrease in optimal invested capital

• but because of the increase in offered premia, the insurance company has to raise K∗ not

to increase its insolvency probability.

One can see from the proof that these effects come from the fact that the change in the

distribution we study here shifts the first order condition to the North-West and the constraint to

the North-Est resulting, as shown in figure 1, in an increase in y∗ and an ambiguous effect on

K∗.

11



Figure 1: The Effect of Changes in the Distribution of Risks

As it impacts individual insurance decision, risk aversion also has an important part in the

determination of the equilibrium and optimal profit. If the effect of the degree of risk aversion on

choice variables is hard to grasp in the general case (see next section), Proposition 3 states that,

as it increases expected profit, an increase in the degree of risk aversion increases the opportunity

for an insurance firm to emerge. Thus, an insurance company seems to be more likely to be set

up when individuals are highly risk averse. This result can be intuitively explained by the fact

that an increase in individual degree of risk aversion increases the attractiveness of the insurance

company that, contrary to a mutual firm, bears aggregate risk when it is solvent. Moreover,

when policyholders are risk neutral, the insurance company losses then comparative advantage

in bearing risk that arises from the risk neutrality of its shareholders, and can not emerge.

4.2. Simulations

If the effects of the variables mentioned in the previous subsection can be analytically an-

alyzed, the effect of other variables requires the use of simulations. For example, the effect of

the size of the population (n) is complex because it affects the distribution of aggregate income(
n∑

i=1

ω̃i

)
and we need to specify completely the relationship between the distribution of individ-

ual and aggregate income to analyze changes in n. In order to study the impact of individual risk

aversion on the choice variables (Proposition 3 only states the effect of risk aversion on optimal

profit) we also need to specify an utility function and a cumulative distribution function. For all

these complex comparative statics, we use simulations with specific utility function and distribu-

tion. This also allows for the study of the impact of changes in risk aversion on the choices of

insurance company.
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4.2.1. The Retained Specification

We focus on individuals facing independent and normally distributed risks. We assume that

ω̃i follows a N(m,σ2) distribution and thus that ω̃ is also distributed according to a normal

distribution: N(n.m, n.σ2) 7. Except in the study of changes in the variance of individual in-

come, we analyze the case of agents’ revenues with zero mean (m = 0) and a variance equal to

one (σ = 1). We suppose that agents have a CARA (Constant Absolute Risk Aversion) utility

function: u(c) = −
1

ρ
. exp(−ρ.c) where ρ represents the coefficient of risk aversion. When nec-

essary, we specify a coefficient of risk aversion, ρ, equal to 0.9 8 As we want to study the effects

of changes in different variables on the optimal behavior of the insurance company, we focus on

cases where it has a high incentive to be set up, that is on situations where the cost of capital is

low. We thus specify here δ = 0.99. Lastly, we have to give a specific value to n when the size

of the population is not the studied variable. In those cases we specify n = 100 9.

4.2.2. The Effect of Changes in the Size of the Population

As we already pointed out, the analysis of the effect of changes in the size of the population

(n) is complex because it implies changes in the distribution of aggregate income. To study the

implications of such variations on the optimal behavior of the insurance company we thus need

to resort to simulations (c.f. Figure 2 drawn on a logarithmic scale).

(δ = 0.99, u(c) = − 1
0.9 . exp(−0.9.c), ω̃ ∼ N(0, n))

Figure 2: The Effect of Changes in the Size of the Population

7The specification of normally distributed individual risks is not necessary for our simulations to be relevant. The

only requirement is the aggregate risk to be distributed though a N(n.m, n.σ2). Given the Central Limit Theorem

this can be achieved with any individual distribution for n high enough
8As recommended in most of recent papers (see for example Chetty (2006) or Bombardini and Trebbi (2005))

we use here a coefficient of risk aversion around one
9It is usually agreed to be enough for the Central Limit Theorem to hold
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According to those simulations it appears that: when risks are independent, an increase in

the number of policyholders increases the optimal coverage offered by the insurance company

and decreases its optimal profit.

The positive effect of an increase in the number of policyholders on the offered coverage and

its negative effect on optimal profit are intuitive as, by increasing risk pooling, an increase in n
improves the performances of the mutual firm. The effect on the optimal stock of capital is then

ambiguous as it is driven by two conflicting forces. First, as the sum of due coverage increases

with n and y, the firm has to raise capital not to increase its insolvency probability. However,

because it increases risk pooling, the increase in n lowers the risk of bankruptcy and the need

for capital. It seems from our simulations that this last effect dominates for high values of n.

Anyway, as an increase in n decreases optimal profit, it seems that it is all the more difficult for an

insurance company to be set up as risk is initially shared among a lot of individuals. Therefore,

as in Fagart, Fombaron and Jeleva (2002) there are important network effects in our setting.

However, since we endogenize the capital stock, the number of policyholders has less impact on

the expected utility in the insurance company. In Fagart, Fombaron and Jeleva (2002), because

of fixed capital funds, an increase in the number of policyholders has an additional negative

effect, through a decrease in capital per head. Moreover, the results of these simulations give

support to one of the main assumptions of Fagart, Fombaron and Jeleva (2002). They assume,

with a fixed capital stock, that there exists a threshold in the number of policyholders n such that

the expected utility in the company decreases with n if n ≤ n and increases with n otherwise.

This is confirmed by our results since the optimal capital stock is increasing in the number of

policyholders when n is low, but decreasing when the company insures enough agents.

4.2.3. The Effect of Changes in Risk Aversion

Proposition 3 states the effect of changes in risk aversion on profit in the general case, but is

silent on its effect on the insurance company’s choice. We simulate the effect of changes in the

degree of risk aversion ρ on optimal capital and coverage.

Figure 3 outlines the outcomes of those simulations.
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(δ = 0.99, ω̃ ∼ N(0, n), n = 100, u(c) = −1
ρ . exp(−ρ.c))

Figure 3: The Effect of Changes in Risk Aversion

Based on those results we learn that: an increase in individual risk aversion increases optimal

capital reserves and decreases optimal coverage.

As already pointed out, because of the increase of their risk aversion, individuals are less

demanding, and the company can propose a lower coverage. However, the result of such an

increase is also to make policyholders even more reluctant to insolvency of the insurance firm

that thus has to increase its capital stock. Still, as the decrease in y also has a negative effect on

K, the first effect dominates. As stated in Proposition 3, the total influence on optimal profit is

then positive. Those simulations confirm that the higher risk aversion, the larger the opportunity

for an insurance firm to enter the market.

4.2.4. The Effect of Changes in the Variance of Individual Income

The last interesting analysis allowed by the specification of a particular cumulative distribu-

tion function concerns the effect of changes in the variance of individual income, σ.

(δ = 0.99, u(c) = − 1
0.9 . exp(−0.9.c), n = 100, ω̃ ∼ N(2.n, n.σ2))

Figure 4: The Effect of Changes in the Variance of Individual Income
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Those simulations give rise to the next finding: an increase in risk (that is in the variance

of each individual income distribution) increases optimal capital reserves, decreases optimal

coverage and increases optimal profit.

These interesting effects can be intuitively explained by the fact that for higher σ, the insur-

ance company becomes more attractive with respect to the mutual firm. As it automatically raises

the variance of aggregate income (ω̃) when income are independent, an increase in the variance

of individual income favors the insurance company that enables policyholders to avoid aggregate

risk when it is solvent. The firm can then lower offered coverage without losing policyholders.

However, the effect this decrease in y has on the capital stock, seems to be offset by the need for

capital induced by the increase in aggregate risk. Still, maybe because of this effect of y∗ on K∗,

optimal profit appears to be positively affected by this increase in risk. So, the likelihood for a

company to be set up and to rule out the mutual firm is higher when risks are high.

5. Evidences from the Empirical Literature

To explain the co-existence of mutual with stock firms, many authors have empirically ana-

lyzed the difference between the two forms and the reasons making an entity changing from one

form to another. In this section, we try to relate our results of comparative statics with the out-

come of this empirical literature. Even if this is not precisely a test of our model (as we analyzed

previously the entry of the first insurance company) this allows us to check if the main effects

highlighted in this paper are accurate. Let us first sum up our main results of comparative statics

in the following table:

optimal optimal optimal

Effect of... coverage capital stock profit

...a decrease in the cost of capital on − + +
...an increase in individual degree of risk aversion on − + +

...an increase in the number of policyholders on + ? −
...an increase in risk (variance of individual income) on − + +

Table 1: Results of comparative statics

To our knowledge, no empirical study have analyzed the effect of our different parameters

neither on capital stock nor on the coverage offered by insurance companies. However, it seems

possible to check our results on optimal profit through the effect it has on the choice of orga-

nizational form. In our paper higher profit also means higher probability for the emergence of

an insurance company. Our model thus predict that insurance companies perform in situation

where capital is cheap, individual are risk adverse, risk is high and when few individual need to

be insured. If information about the cost of capital and the individual degree of risk aversion are

hard to grasp, several empirical papers have analyzed the effect of risk and the size of the insured

population on the composition of insurance market.
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Concerning the number of policyholders, the outline of our simulation seems first to be con-

sistent with finding of Nekby (2004). Focusing on Swedish historical (1902-1910) data on health

insurance, when insurance market was unregulated, this paper establishes that mutual firms were

significantly larger than stock companies. This confirm our result stating that it is all the more

difficult for an insurance company to emerge when risk is initially shared among a lot of policy-

holders. This statement is also compatible with the findings of the empirical literature on recent

demutualization waves (see for example Viswanathan and Cummins, (2003) or Erhemjamtsa and

Leverty (2006)) that asserts that an increase in competition favors demutualization. Higher com-

petition lowering the number of policyholders in mutual firms, it may – consistently with our

findings – give the mutual an incentive change its organizational form.

Our result on the effect of an increase in risk also seems to be supported by empirical re-

searches. Lamm-Tenant and Starks (1993) for example show that, compared to mutual insurers,

insurance company insures higher-risk activities (when underwriting risk is measured by the

variance of loss ratio). This is moreover confirmed by Mayers and Smith (2002) that analyzes

98 conversions of mutual insurers to stock forms in the US between 1920 and 1990. Using alter-

natively means and medians analysis and a probit regression, they assert that the probability to

convert from a mutual to a stock company is higher when risk is high.

Even if those empirical works do not really form a test of a model, they corroborate some of

our theoretical findings namely that insurance companies are more likely to emerge in presence

of mutual agreements when risk is high and initially shared among few individuals.

6. Conclusion

In studying both the interaction between organizational forms in insurance and the investment

choice of the stock firm, this paper highlights the relationship between insurance contracts and

capital stock, through the probability of insolvency. Given this interdependence, we specify the

optimal choice of coverage and capital investment of an entrant insurance company that faces an

incumbent mutual agreement, and show they are unique. This paper moreover establishes that

the possibility for a stock firm to rule out a mutual firm (or mutual risk-sharing arrangements) is

higher as the size of the insured population and the capital cost are low, and as risk and individual

risk aversion are high.

This model explains how and why some risks (or some areas) are exclusively insured through

mutual or stock firms but, as it considers homogeneous agents, does not explain another feature

of insurance market: the coexistence of the two organizational forms. As agents are here homo-

geneous, the insurance company just needs to give the same utility as the mutual firm to insure

the entire population. A possible way to model the coexistence of stock and mutual insurers in

our framework would be to introduce heterogeneity. Insurance companies may then attract some

kinds of individuals the others staying in the mutual company. Because the agents remaining in

the mutual firm are not indifferent to the emergence of an insurance company, such an exten-

sion may allow a welfare analysis that would lead to policy advices concerning the regulation of

insurance markets.
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Our paper also emphasizes situations where a mutual agreement is sustainable, that is when

no stock company can enter the market. It moreover endogenizes the choice of capital of a stock

firm when it can enter the market. However we are not able to analyze, in our setting, the entry of

further companies because of difficulties in aggregating risk distributions. This issue prevents us

to analyze the effect of potential shift of a policyholders from an insurance company to one other,

and thus to define an equilibrium. Such a study would yet be meaningful as it would allow us to

study the impact of openness to insurance companies competition of markets reserved to mutual

firms. This way we would be able to study the impact of deregulations making an insurance

line reserved to mutual insurers (as health insurance in France) contestable. With an exogenous

capital stock, Fagart, Fombaron and Jeleva (2002) already studied a similar situation. However,

with an endogenous choice of capital stock, there results are likely to change mainly because

of the ambiguous effect (highlighted is our paper) the number of policyholders has on optimal

capital stock.

This work also seems to open interesting perspectives concerning the study of capital re-

quirements. It appears for example worthwhile to extend our work to the study of investment

insurance. Our model could then be enriched to determine the optimal amount of risky invest-

ment a company can insure with a given stock of capital. In this way it would establish the

optimal investment-capital ratio, when accounting for limited liability. In the same direction, a

possible extension of this work concerns the management of catastrophic risk. Our model of

choice of capital under limited liability could then be useful to determine the different thresholds

of the reinsurance process.

It lastly seems interesting to take into account the dynamic implications of the possibility of

insolvency. In future work it would indeed be worthwhile to analyze the long term effects of

bankruptcy of insurance companies on their policyholders’ utility. It might be that this expected

utility is no longer strictly increasing with the coverage offered by the company. The long-run

effect of a bankruptcy might then make the negative influence of an increase in coverage on

insolvency probability exceed the positive one it has on monetary gains in case of solvency.

Moreover, the introduction of a dynamic framework might also change the optimal agreement

offered by the mutual firm since, as shown by Génicot and Ray (2003), it is not always optimal

for mutual insurance agreements to provide equal sharing.
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7. Appendix

7.1. Proof of Proposition 1

Let us consider individual revenues ω̃i with the same expectation and a combination α such

that
n∑

i=1

αi = 1. Then, as

n∑

i=1

αi.ω̃i =
1

n
.
n∑

i=1

ω̃i +
n∑

i=1

(
αi −

1

n

)
ω̃i (12)

we have that
n∑

i=1

αi.ω̃i is a mean-preserving spread of
1

n
.
n∑

i=1

ω̃i if:

E

(
n∑

i=1

(
αi −

1

n

)
ω̃i

∣∣∣∣
n∑

k=1

ω̃k

)
= 0 (13)

that is if the variable
n∑

i=1

αi.ω̃i is equal to
1

n
.
n∑

i=1

ω̃i augmented by a noise with null conditional

expectation.

Then,
n∑

i=1

αi.ω̃i is more risky than
1

n
.
n∑

i=1

ω̃i if:

n∑

i=1

(
αi −

1

n

)
E

(
ω̃i

∣∣∣∣
n∑

k=1

ω̃k

)
= 0 (14)

for which a sufficient condition is:

E

(
ω̃i

∣∣∣∣
n∑

k=1

ω̃k

)
= E

(
ω̃j

∣∣∣∣
n∑

k=1

ω̃k

)
∀i, j (15)

Thus, if for each given macroscopic state
n∑
k=1

ω̃k , individual risks have a common expectation

(which is the case for independent risks), an equal sharing agreement makes everybody better

off.

Moreover, equal sharing is obviously Pareto efficient since it maximizes (for instance) the

utilitarian criterion:

χ̃∗

1 = χ̃∗

2 = ... = χ̃∗

n =

n∑
k=1

ω̃k

n
=
ω̃

n
= arg max

{
1

n

n∑

i=1

E (u (χ̃i)) ,
n∑

i=1

χ̃i = ω̃

}
(16)
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Indeed for all (χ̃i)i=1...n such that
∑n
i=1 χ̃i = ω̃, we have:

1

n

n∑

i=1

E (u (χ̃i)) = E

(
n∑

i=1

1

n
u (χ̃i)

)

≤ E

(
u

(
1

n

n∑

i=1

χ̃i

))
= E

(
u
(
ω̃

n

))

that is :
1

n

n∑

i=1

E (u (χ̃i)) ≤
1

n

n∑

i=1

E
(
u
(
ω̃

n

))

As individuals are the owner of the mutual firm, equal sharing of resources is then optimal.

The proof of the second part of Proposition 1 is provided in Fagart, Fombaron and Jeleva

(2002).

7.2. Proof of Proposition 2

7.2.1. First Order Conditions

The first order condition of program 6 can be written as:

−
∂Π(y,K)/∂K

∂C(y,K)/∂K
= −

∂Π(y,K)/∂y

∂C(y,K)/∂y

⇔
1 − δ[1 − F (n.y −K)]

1

n

∫ n.y−K

−∞

u′
(
ω +K

n

)
f (ω) dω

=
n.δ

u′(y)

⇔
1 − δ[1 − F (n.y −K)]

δF (n.y −K)
=
E
(
u′
(
ω+K
n

)
|ω+K

n
≤ y

)

u′(y)

⇔ Φ(y,K) ≡
∫ n.y−K

−∞



u′
(
ω+K
n

)
− u′ (y)

u′(y)


 f (ω) dω −

1 − δ

δ
= 0

7.2.2. Second Order Conditions

It can then be proved that this first order condition along with the constraint correspond to

necessary and sufficient conditions that describe a maximum.

To do so let us study the following larger problem:

max
y,K,z(.)

∫ +∞

−∞

ωf(ω)dω − n
∫ +∞

−∞

z(ω)f(ω)dω −
1 − δ

δ
K (17)

s.t.





∫ +∞

−∞

u(z(ω))f(ω)dω ≥
∫ +∞

−∞

u
(
ω

n

)
f(ω)dω

min
(
ω +K

n
, y
)
≥ z(ω) ∀ω

The objective function of (17)

(
V (K, y, z(.)) =

∫ +∞

−∞

ωf(ω)dω − n
∫ +∞

−∞

z(ω)f(ω)dω −
1 − δ

δ
K

)

is linear in K, y and z(.). Thus if the constraints define a convex set, then problem (17) is regular
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and its first order conditions are both necessary and sufficient for a maximum.

To verify whether it is true let us consider two triplets K1, y1, z1(.) et K2, y2, z2(.) that satisfy

the constraints:





∫ +∞

−∞

u(z1(ω))f(ω)dω ≥
∫ +∞

−∞

u
(
ω

n

)
f(ω)dω

min
(
ω +K1

n
, y1

)
≥ z1(ω) ∀ω

(18)





∫ +∞

−∞

u(z2(ω))f(ω)dω ≥
∫ +∞

−∞

u
(
ω

n

)
f(ω)dω

min
(
ω +K2

n
, y2

)
≥ z2(ω) ∀ω

(19)

Then:

1. ∀α ∈ [0, 1]

α
∫ +∞

−∞

u(z1(ω))f(ω)dω + (1 − α)
∫ +∞

−∞

u(z2(ω))f(ω)dω ≥
∫ +∞

−∞

u
(
ω

n

)
f(ω)dω,

α
∫ +∞

−∞

u(z1(ω))f(ω)dω + (1 − α)
∫ +∞

−∞

u(z2(ω))f(ω)dω

≤
∫ +∞

−∞

u(αz1(ω) + (1 − α)z2(ω))f(ω)dω

and thus:

∫ +∞

−∞

u(αz1(ω) + (1 − α)z2(ω))f(ω)dω ≥
∫ +∞

−∞

u
(
ω

n

)
f(ω)dω

2. Similarly, ∀α ∈ [0, 1], we have

αmin
(
ω +K1

n
, y1

)
+ (1 − α) min

(
ω +K2

n
, y2

)
≥ αz1(ω) + (1 − α)z2(ω)

Then, the two variables function min(a, b) being concave from R
2 into R, it follows that:

αmin
(
ω +K1

n
, y1

)
+ (1 − α) min

(
ω +K2

n
, y2

)

≤ min

(
ω + αK1 + (1 − α)K2

n
, αy1 + (1 − α)y2

)

Which leads to: min

(
ω + αK1 + (1 − α)K2

n
, αy1 + (1 − α)y2

)
≥ αz1(ω) + (1 − α)z2(ω)

Thus, the constraints of program (17) define a convex set and, as already pointed out, its first

order conditions are both necessary and sufficient for a maximum.

Now, to prove that the equations Φ(y,K) = 0 and C(y,K) = 0 define the optimum choice

of the insurance company we have to prove that they satisfy the first order conditions of the

program (17). Indeed, if those equations define the maximum of program (17) that is larger than

(6) in imposing min
(
ω +K

n
, y
)
≥ z(ω) ∀ω instead of min

(
ω +K

n
, y
)
≡ z(ω) ∀ω, they also

define the maximum of (6).
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Calling λ and µ(ω)f(ω) the multipliers associated with the constraints, the first order condi-

tions of (17) can be written as:

∀ω, −nf(ω) + λu′(z(ω)f(ω) = µ(ω)f(ω) (20)
∫ +∞

ny−K
µ(ω)f(ω)dω = 0 (21)

−
1 − δ

δ
+

1

n

∫ ny−K

−∞

µ(ω)f(ω)dω = 0 (22)

the complementarity conditions being:

λ ≥ 0 (23)

µ(ω)f(ω) ≥ 0 (24)

λ
∫ +∞

−∞

(
z(ω) − u

(
ω

n

))
f(ω)dω = 0 (25)

µ(ω)f(ω)
(
min

(
ω +K

n
, y
)
− z(ω)

)
= 0 (26)

(20) together with µ(ω) ≥ 0 then leads to ω ≥ ny −K =⇒ µ(ω)f(ω) = 0
which gives, using (21): ω ≥ ny −K =⇒ z(ω) = cte = z

We then have:

λu′(z) = n (27)

1

n

∫ ny−K

−∞

[−n+ λu′(z(ω))]f(ω)dω =
1 − δ

δ
(28)

µ(ω)f(ω)
(
ω +K

n
− z(ω)

)
= 0 for ω ≤ ny −K (29)

z(ω) = z for ω ≥ ny −K (30)

λ(
∫ +∞

−∞

(
u(z(ω)) − u

(
ω

n

))
f(ω)dω = 0 (31)

And one then can see that λ, z(ω), y,K verifying:

λu′(y) = n (32)

1

n

∫ ny−K

−∞

[
−n+ λu′

(
ω +K

n

)]
f(ω)dω =

1 − δ

δ
(33)

z(ω) = min
(
ω +K

n
, y
)

(34)

∫ +∞

−∞

(
u(z(ω)) − u

(
ω

n

))
f(ω)dω = 0 (35)

(that are the solutions of (6)) are solutions of previous equations (that is of (17)) with y = z.

Thus, the solutions of the program of the insurance company being the maximum of a larger

program containing the one of the firm, it is also the maximum our this first program.
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7.2.3. The Existence of An Optimum

Once the optimum characterized we need to focus on the conditions under which an opti-

mum giving a positive expected profit exists. As the company can always make null profit by

mimicking a mutual firm in setting K = 0 and y = ω
n

(as explained in section 2.2, to avoid for

moral hazard, the company has to propose y 6 R ≡ ω
n

), this will be the case when there exists

an optimum different from K = 0 and y =
ω

n
.

Rewriting the first order condition as:

∫ ny−K

−∞

(
u′
(
ω +K

n

)
− u′(y)

)
f(ω)dω =

1 − δ

δ
u′(y)

we can see that the left hand side is increasing in y and decreasing in K, when the right hand

side is decreasing in y and independent on K. Thus, a necessary condition for a solution not to

exist is that for K = 0 and y = ω
n

the right hand side to be strictly lower than the left hand side,

that is

∫ ω

−∞

(
u′
(
ω

n

)
− u′

(
ω

n

))
f(ω)dω <

1 − δ

δ
u′
(
ω

n

)
.

So,

• if ω̃ is not bounded (ω = +∞), as the utility function satisfies the Inada condition, u′(+∞) =
0 and an optimum that gives positive profit always exists

• if ω̃ is upward bounded (ω < +∞) equilibrium exists only if

1 − δ

δ
<

∫ ω

−∞

(
u′
(
ω

n

)
− u′

(
ω

n

))
f(ω)dω

u′
(
ω

n

)

7.2.4. Uniqueness of The Optimum

Rewriting the first order condition of the firm’s program as:

E
(
u′
(
ω̃ +K

n

) ∣∣∣
ω̃ +K

n
≤ y

)

u′(y)
=

1 − δ.[1 − F (n.y −K)]

δ.F (n.y −K)
(36)

one can then show that when it holds, this condition corresponds to a unique mapping between

the offered premia (y) and the capital stock (K). Indeed, keeping K constant, the left hand side

is increasing in y from 1 to +∞, when the right hand side is decreasing from +∞ to 1. So,

for each value of stock of capital the first order condition of studied programm gives a unique

optimal premium.

Moreover,

• As:
∂Φ(y,K)

∂K
=

1

n.u′(y)

∫ n.y−K

−∞

u′′
(
ω +K

n

)
f (ω) dω < 0, and

∂Φ(y,K)

∂y
= −

u′′(y)

u′(y)2

∫ n.y−K

−∞

u′
(
ω +K

n

)
f (ω) dω > 0,

the first order condition of our problem gives rise to an increasing relationship between y

and K
(
∂y
∂K

≡ −∂Φ(y,K)/∂K
∂Φ(y,K)/∂y

> 0
)
.
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• Likewise, as
∂C(y,K)

∂K
=

1

n
.
∫ n.y−K

−∞

u′
(
ω +K

n

)
f (ω) dω > 0

∂C(y,K)

∂y
= [1 − F (n.y −K)].u′(y) > 0

the constraint corresponds to an decreasing relationship between y and K(
∂y
∂K

≡ −∂C(y,K)/∂K
∂C(y,K)/∂y

< 0
)
.

So, the optimal behavior of an entrant insurance company that competes with an incumbent

mutual firm, characterized by the two equations Φ(y,K) = 0 and C(y,K) = 0, is unique (when

it exists).

7.3. Proof of Proposition 3

7.3.1. Effect of Changes in δ

As the optimal choice of the company is fully characterized by the two equations Φ(y,K) =
0 and C(y,K) = 0, and as C(y,K) is independent on δ, the effect of the capital cost (δ) on the

equilibrium has to verify:





∂C(y,K)
∂y

.∂y
∂δ

+ ∂C(y,K)
∂K

.∂K
∂δ

= 0
∂Φ(y,K,δ)

∂y
.∂y
∂δ

+ ∂Φ(y,K,δ)
∂K

.∂K
∂δ

+ ∂Φ(y,K,δ)
∂δ

= 0
(37)

That is:

∂y

∂δ
=

∂C(y,K)
∂K

.∂Φ(y,K,δ)
∂δ

∂C(y,K)
∂y

.∂Φ(y,K,δ)
∂K

− ∂C(y,K)
∂K

.∂Φ(y,K,δ)
∂y

(38)

and,

∂K

∂δ
=

−∂C(y,K)
∂y

.∂Φ(y,K,δ)
∂δ

∂C(y,K)
∂y

.∂Φ(y,K,δ)
∂K

− ∂C(y,K)
∂K

.∂Φ(y,K,δ)
∂y

(39)

Now as,
∂C(y,K)

∂y
> 0,

∂C(y,K)
∂K

> 0,
∂Φ(y,K,δ)

∂y
> 0,

∂Φ(y,K)
∂K

< 0 and
∂Φ(y,K,δ)

∂δ
= 1

δ2
> 0

one ends up with ∂y
∂δ
< 0 and ∂K

∂δ
> 0.

7.3.2. (Effect of Changes in The Distribution of ω̃

If F2 (ω̃) first-order stochastically dominates F1 (ω̃)
(
F1 (ω̃) ≥ F2 (ω̃)∀ω̃ ∈] − ∞,+∞[

)

then:

• The first order condition: Φ(y,K) = 0 can be written as:

∫ n.y−K

−∞

u′
(
ω +K

n

)
f (ω) dω −

1 − δ [1 − F (n.y −K)]

δ
u′(y) = 0 (40)

that is, after integrating by parts: Φp(y,K, F ) ≡ −
∫ ny−K

−∞

u′′
(
ω +K

n

)
F (ω) dω −

1 − δ

δ
u′(y) = 0
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Thus,

Φp(y,K, F1) − Φp(y,K, F2) =
∫ ny−K

−∞

[F2 (ω) − F1 (ω)]︸ ︷︷ ︸
<0 by assumption

u′′
(
ω +K

n

)

︸ ︷︷ ︸
<0

dω ≥ 0 (41)

• Similarly, integrating by parts the incentive constraint C(y,K) = 0, one gets:

Cp(y,K, F ) ≡ u(y) − lim
a→+∞

u(a) +
∫ n.y−K

−∞

[
u′
(
ω

n

)
− u′

(
ω +K

n

)]
F (ω) dω

+
∫ +∞

ny−K
u′
(
ω

n

)
F (ω) dω = 0 (42)

And,

Cp(y,K, F1) − Cp(y,K, F2) =
∫ n.y−K

−∞

[
u′
(
ω

n

)
− u′

(
ω +K

n

)]
[F1 (ω) − F2 (ω)] dω

+
∫ +∞

ny−K
u′
(
ω

n

)
[F1 (ω) − F2 (ω)] dω ≥ 0 (43)

Using (41) and (43) one can then prove by contradiction that changing the distribution from F1(.)
to F2(.) leads to a increase in the optimal offered coverage.

Indeed, if y∗1 > y∗2 and F2 first-order stochastically dominates F1 then, according to the first

order condition, we necessarily have SP (y∗1, K
∗

2 , F1) = SP (y∗2, K
∗

2 , F2) = 0 which means, from

(41) and as
∂Φp(y,K,F )

∂y
> 0 and

∂Φp(y,K,F )
∂K

> 0, that the company will optimally chooseK∗

1 < K∗

2 .

However, under the same assumption, according to the incentive constraint, we also neces-

sarily have that Cp(y
∗

1, K
∗

2 , F1) = Cp(y
∗

2, K
∗

2 , F2) = 0. Now, with (43) and as
∂Cp(y,K, F )

∂y
> 0

and
∂Cp(y,K, F )

∂K
> 0 this would mean that K∗

1 > K∗

2 which enters in contradiction with the

previous result.

Thus, if F2 first-order stochastically dominates F1, then the company will necessarily choose

y∗1 < y∗2 .

7.3.3. Effect of Changes in individuals degree of risk aversion

In the program of the insurance company:

max
y,K

{
δ.
∫ +∞

n.y−K
(ω +K − n.y) f (ω) dω −K

}
(44)

s.t. C(y,K, u(.)) ≡
∫ n.y−K

−∞

[
u
(
ω +K

n

)
− u

(
ω

n

)]
f (ω) dω +

∫ +∞

n.y−K

[
u (y) − u

(
ω

n

)]
f (ω) dω ≥ 0

the objective function being independent of insureds utility function, the effect of risk aversion

on optimal profit only goes through the constraint.
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Let us take a strictly increasing and concave function g and set w = g ◦ v. We then have that

w is a Von Neumann Morgenstern utility function of a more risk averse individual than v.

We now can prove that because C(y,K,w(.)) ≥ C(y,K, v(.)), that is because it enlarge the

set of possible choices, an increase in individual risk aversion increase optimal profit.

Indeed as g is increasing and concave:

w
(
ω +K

n

)
− w

(
ω

n

)
= g

(
v
(
ω +K

n

))
− g

(
v
(
ω

n

))

≥ g′
(
v
(
ω +K

n

))
.
(
v
(
ω +K

n

)
− v

(
ω

n

))

≥ g′(v(y)).
(
v
(
ω +K

n

)
− v

(
ω

n

))
∀ω < n.y −K

⇒
∫ n.y−K

−∞

[
w
(
ω +K

n

)
− w

(
ω

n

)]
f(ω)dω ≥

∫ n.y−K

−∞

[
v
(
ω +K

n

)
− v

(
ω

n

)]
f(ω)dω (45)

and

w(y) − w
(
ω

n

)
= g (v(y)) − g

(
v
(
ω

n

))

≥ g′(u(y)).
(
v(y) − v

(
ω

n

))

⇒
∫ +∞

n.y−K

[
w(y) − w

(
ω

n

)]
≥

∫ +∞

n.y−K

[
v(y) − v

(
ω

n

)]
(46)

which together leads to C(y,K,w(.)) ≥ C(y,K, v(.)).
It follows that if (y,K) is acceptable for a given individual, it is also acceptable for a more

risk averse one. Thus, the profit of an insurance company increases with individuals risk aversion.

The second part of the proposition is obvious. Indeed, if individuals are risk neutral, the

constraint becomes

∫ n.y−K

−∞

[
ω +K

n
−
ω

n

]
f (ω) dω +

∫ +∞

n.y−K

[
y −

ω

n

]
f (ω) dω ≥ 0 (47)

As the constraint is binding, it then leads to

∫ +∞

n.y−K
(ω − n.y)f(ω)dω = K.F (n.y −K)

and the profit becomes Π = −(1 − δ).K

The optimal choice is thus to set K = 0, and y = ω
n

, which exactly amount to the behavior

of a mutual firm.
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