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1 Introduction

We propose a complete version of the sequential equilibrium and its alternative solution

concept. Kreps and Wilson (1982) introduced the sequential equilibrium in the setting of

�nite games that allow only a �nite number of types and strategies. As shown by them, the

sequential equilibrium is appropriate for the �nite games. However, it might be inappropriate

for general games that can have a continuum of types and strategies. This inappropriateness

makes the sequential equilibrium an incomplete solution concept in the general games1 . In

the present study, we attempt to develop a complete solution concept in the general games

by improving the sequential equilibrium. Then, we simplify this complete solution concept

to �nd its weak version as its alternative solution concept.

Section 2 illustrates the incompleteness of the sequential equilibrium in the general games

with an example. Section 3 formulates a general �nite-period games with observed actions.

Section 4 introduces new concepts, complete beliefs and sequential convergency, and lays

the foundations of a complete version of the sequential equilibrium. Section 5 de�nes the

complete version of the sequential equilibrium and derives some results on it. Section 6

suggests an alternative solution concept to the complete version and analyzes their relation.

Section 7 concludes with the discussion about how these two solution concepts are related

to converted versions of the perfect equilibrium and the perfect Bayesian equilibrium.

1 In this sense, the perfect Bayesian equilibrium by Fudenberg and Tirole (1991a) is also an incomplete
solution concept in the general games.
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2 Example: Incompleteness of the sequential equilib-

rium in general games

Consider the information transmission game introduced by Crawford and Sobel (1982).

There are two players; a sender and a receiver. The sender is assigned a type � that is

a random variable from a uniform distribution on [0; 1] and makes a signal s 2 [0; 1] to the

receiver. Then, after observing the signal s, the receiver chooses his action a 2 [0; 1]. The

sender has a von Neumann-Morgenstern utility function US(�; a; b) = �(�� (a+ b))2 where

b > 0 and the receiver has another von Neumann-Morgenstern utility function UR(�; a)

= �(� � a)2.

In this game, the sender�s strategy s(�) = � and the receiver�s strategy a(s) = maxfs�

b; 0g are a sequential equilibrium together with the receiver�s system of beliefs �(maxfs �

b; 0g; s) = 1 which denotes that given a signal s, the type maxfs � b; 0g would be assigned

to the sender with probability one. This is because the strategies s(�) = � and a(s) =

maxfs�b; 0g are sequentially rational with respect to the system of beliefs �(maxfs�b; 0g; s)

= 1. In addition, under the sender�s strategy s(�) = �, each signal � occurs with probability

zero, and thus every system of beliefs does not violate Bayes� rule. As a result, the receiver�s

system of beliefs �(maxfs � b; 0g; s) = 1 is consistent with the sender�s strategy s(�) = �

according to Bayes� rule, and therefore these strategies and the system of beliefs are a

sequential equilibrium2 .

This sequential equilibrium, however, is not an appropriate prediction of behavior in that

2 Likewise, we can show that they are a perfect Bayesian equilibrium as well.
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the receiver makes a systematic mistake in forming her beliefs, and moreover it is not even

a Nash equilibrium. In the scenario of this equilibrium, the receiver constantly mistakes a

true type � for a wrong type maxf� � b; 0g even though she expects the sender to signal

truthfully s(�) = �. Furthermore, the receiver�s strategy a(s) = maxfs� b; 0g is not a best

response to the sender�s strategy s(�) = �, and so this sequential equilibrium is not a Nash

equilibrium. Consequently, this sequential equilibrium is not an appropriate prediction, and

therefore it is not an appropriate solution concept in this game.

This result of the game depends mainly on the setting that the sender has a continuum

of types and signals. Accordingly, most games that have similar settings can testify that the

sequential equilibrium might not be an appropriate solution concept. Since this setting rep-

resents a general situation, there are a large class of games in the general games that include

similar settings. Therefore, we conclude that the sequential equilibrium is an incomplete

solution concept in the general games.

3 General �nite-period games with observed actions

We adopt the ��nite-period games with observed actions� from Fudenberg and Tirole (1991a)

and adapt it for general games that allow in�nite actions and types, but �nite players. Hence,

in the general �nite-period games with observed actions, there are a �nite number of players

denoted by i = 1; 2; :::; I. Each player i has a type �i 2 �i and this type is her private

information as in Harsanyi (1967�68). In addition, there exists a state �0 2 �0 and the

players do not know an actual state when they play. Thus, each player has information
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on her type �i, but no information on the other players� types and the state ��i 2 ��i =

�0� (�i0 6=i�i0). We assume that � = �
I
i=0�i is a non-empty metric space. All players have

the same prior distribution � on � such that � is a probability measure on the class of the

Borel subsets3 �Ii=0ß(�i) of �. For simplicity, we assume �(B) > 0 for every open subset

B in �.

The players play the game in periods t = 1; 2; :::; T . At each period t, all players simul-

taneously choose an action, and then their actions are revealed at the end of the period.

We assume, for simplicity, that each player�s available actions are independent of her type

so that each player i�s action space at period t is Ati regardless of her type. In addition, we

assume that At = �Ii=1A
t
i is a nonempty metric space

4 for each t. Finally, we consider only

the perfect recall games introduced by Kuhn (1950).

A strategy is de�ned as follows. For each i = 1; :::; I and t = 1; :::; T , let �ti be a

measure from �i � A1 � � � � �At�1� ß(Ati) to [0; 1]. Then, a behavioral strategy �i is an

ordered set of measures �i = (�1i ; :::; �
T
i ) such that i) for each (�i; a

1; :::; at�1) 2 �i � A1 �

� � � � At�1, �ti(�i; a
1; :::; at�1; �) is a probability measure on ß(Ati) and ii) for every B 2

ß(Ati), �
t
i(�;B) is ß(�i) � (�

t�1
t0=1�

I
i0=1ß(A

t0

i0)) measurable. The condition i) requires that

each �ti(�i; a
1; :::; at�1; �) specify what to play at each information set (�i; a

1; :::; at�1). The

condition ii) requires that �ti allow an well-de�ned expected utility functional de�ned later.

Hereafter, we simply call a behavioral strategy a strategy. Let �i be the set of strategies

3 Given a metric space X, the class of the Borel sets ß(X) is the smallest class of subsets of X such that
i) ß(X) contains all open subsets of X and ii) ß(X) is closed under countable unions and complements.

4 Therefore, the space � � A1 � � � � � AT is a nonempty metric space. On this space, expected utility
functionals are well de�ned according to Ash (1972, 2.6).
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for player i and let � be the set of strategy pro�les, i:e: � = �Ii=1�i. Note that these

de�nitions originated from Milgrom and Weber (1985) and Balder (1988) and are adapted

for the general �nite-period games with observed actions5 .

AVon Neumann-Morgenstern utility function for player i is de�ned as Ui : ��A
1�����AT

�! R. We assume that each Ui is bounded and �Ii=0ß(�i)� (�
T
t=1�

I
i=1ß(A

t
i)) measurable,

which guarantees that Ui is integrable. In addition, we de�ne an expected utility functional

Ei : � �! R as

Ei(�1; :::; �n) =
R

�

R

A1

� � �
R

AT

Ui(�; a)�
T (�; a1; :::; aT�1; daT ) � � � �1(�; da1)�(d�)

where for each t, �t denotes the product measure of f�t1; :::; �
t
Ig on �

I
i=1ß(A

t
i), i:e: �

t =

�t1�� � �� �
t
I . This de�nition of the expected utility functional makes sense according to Ash

(1972, 2.6)6 . First, since each �ti is a probability measure and measurable, so is the product

measure �t. Next, since Ui(�; a) and �
T (�; a1; :::; aT�1; daT ) are�Ii=0ß(�i)�(�

T�1
t=1 �

I
i=1ß(A

t
i))

measurable, so is the inner part of the integral
R
AT
Ui(�; a)�

T (�; a1; :::; aT�1; daT ), and thus

it is �Ii=1ß(A
T�1
i ) measurable. Furthermore, the inner integral is bounded, so it is integrable

with respect to the measure �T�1. Finally, we can show each part of the integral is integrable

likewise, and therefore the whole integral is well-de�ned.

5 For each i and t � 2, the measure �ti(�; �) is known as a transition probability. For more information on
the transition probability, please refer to Neveu (1965, III), Ash (1972, 2.6), and Uglanov (1997).

6 Let zj be a � � field of subsets of 
j for each j = 1; :::::; n. Let �1 be a probability measure on z1,
and , for each (!1; :::; !j) 2 
1 � � � � �
j , let �(!1; :::; !j ;B), B 2 zj+1, be a probability measure on zj+1
(j = 1; 2; :::; n� 1). Assume that �(!1; :::; !j ;C) is measurable for each �xed C 2 zj+1. Let 
 = 
1 � � � �
�
n and z = z1 � � � � �zn.
(1) There is a unique probability measure � on z such that for each measurable rectangle A1 � � � � �An

2 z, �(A1 � � � � �An) =
R
A1

R
A2

� � �
R
An

�(!1; ::: ; !n�1; d!n) � �� �(!2; d!1)�1(d!1).

(2) Let f : (
;z) �! ([0; 1];ß([0; 1])) and f � 0. Then,
R


fd� =

R

1
� � �

R

n
f(!1; ::: ; !n)�(!1; :::

; !n�1; d!n) � �� �1(d!1).
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Based on this expected utility functional, the Nash equilibrium by Nash (1951) is ex-

tended in the general games. The Nash equilibrium condition is used as a minimum require-

ment for a complete solution concept in the general games. Accordingly, given any solution

concept, its complete version is required to satisfy at least the Nash equilibrium condition.

De�nition 1 A strategy pro�le � = (�1 � � � �I) is a Nash equilibrium if � satis�es Ei(�) �
max�0i2�i Ei(�

0
i; ��i) for each i � I.

4 Complete beliefs and Sequential convergency

In the setting of the general games, we develop a complete version of the sequential equi-

librium. This complete version is called a complete sequential equilibrium. To be brief,

a complete sequential equilibrium is a pair of a system of complete beliefs and a strategy

pro�le such that i) the system of complete beliefs is consistent with the strategy pro�le

through a sequentially convergent sequence of strategy pro�les and ii) the strategy pro�le

is sequentially rational with respect to the system of complete beliefs7 . Thus, the complete

sequential equilibrium bases on new concepts, complete beliefs and sequential convergency.

Accordingly, this section is devoted to formulate these new concepts.

Complete beliefs are counterparts of beliefs in the sequential equilibrium. The sequential

equilibrium consists of two components, a system of beliefs and a strategy pro�le. The

problem with the sequential equilibrium in the general games, incompleteness, is caused by

a weakness of the beliefs. The complete sequential equilibrium solves the problem with the

7 Note that a sequential equilibrium is a pair of a system of beliefs and a strategy pro�le such that i) the
system of beliefs is consistent with the strategy pro�le and ii) the strategy pro�le is sequentially rational
with respect to the system of beliefs.
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sequential equilibrium by improving the weakness of the beliefs. Complete beliefs are the

improved version of the beliefs.

De�nition 2 For each i and t, a probability measure �ti on �
I
i=0ß(�i) � (�

t�1
t0=1�

I
i=1ß(A

t0

i ))
is called a complete belief for player i at period t if �ti(��i � Bi) > 0 for every open set
Bi � �i�A

1 �� � ��At�1. For each t, let �t denote (�t1; :::; �
t
I), then a system of complete

beliefs is an ordered set of complete beliefs � = (�1; :::; �T ).

The property of a system of complete beliefs depends on the property of the space

� � A1 � � � � �AT . Since the space is metric, any system of complete beliefs consists

of regular probability measures8 according to Theorem 1.1 in Billingsley (1968). If the

metric space is also separable and complete, then every system consists of tight measures9

according to Theorem 1.4 in Billingsley (1968). In addition, the condition for a complete

belief �ti(��i �Bi) > 0 for every open set Bi assures that with respect to a complete belief,

we can check sequential rationality of a strategy pro�le in every open class of information

sets o¤ the equilibrium path as well as on the equilibrium path.

In the general games, particularly continuous games that have uncountably many types

and strategies, the sequential equilibrium concept might not well-de�ne a consistent relation

between a strategy pro�le, which is de�ned on the whole class of information sets at each

period, and a system of beliefs, which are de�ned on each information set. This is because

some information sets might have probability zero with respect to the strategy pro�le, which

implies those information sets are impossible to happen according to the strategy pro�le.

8 By Billingsley (1968), a probability measure � on ß(X) of a metric space X is de�ned to be regular
if for any B 2 ß(X) and " > 0, there exist a closed set G and an open set O such that G � B � O and
�(O �G) < ".

9 A probability measure � on ß(X) of a metric space X is tight if for any B 2 ß(X), �(B) is the supremum
of �(K) over the compact subsets K of A.
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Therefore, the strategy pro�le cannot de�ne how those information sets occur, and thus

it cannot be consistent with any beliefs on those information sets. This explains why the

sequential equilibrium sometimes fails to exclude an inconsistent system of beliefs in the

general games. The system of complete beliefs, on the other hand, is de�ned on the whole

class of information sets at each period. This change of the domains makes a consistent

relation between a system of complete beliefs and a strategy pro�le well-de�ned, and as a

result, an inconsistent system of complete beliefs would be excluded.

The complete sequential equilibrium indirectly de�nes the consistent relation between

a system of complete beliefs and a strategy pro�le by using a sequence of strategy pro�les

that is related to both of them, as the sequential equilibrium does. De�nition 3 presents

conditions for such a sequence of strategy pro�les that can show the consistent relation. For

notational convenience, we de�ne a probability measure � with respect to a strategy pro�le

� as

�(B; �) =
R

B1

R

B2(�)

� � �
R

Bt(�;a1;:::;at�2)

�t�1(�; a1; :::; at�2; dat�1) � � � �1(�; da1)�(d�) (1)

for every set B 2 �Ii=0ß(�i)� (�
t�1
t0=1�

I
i=1ß(A

t0

i )) where B
1 = f� 2 � : (�; a1; :::; at�1) 2 Bg,

i:e: B1 is the projection of B onto �, and for t0 = 2; :::; t, Bt0(~�; ~a1; :::; ~at
0�2) = fat

0�1 2

At
0�1 : (~�; ~a1; :::; ~at

0�2; at
0�1; :::; at�1) 2 Bg, i:e: Bt0(~�; ~a1; :::; ~at

0�2) is the projection of B onto

f(~�; ~a1; :::; ~at
0�2)g�At

0�1. The probability measure � is well-de�ned according to Ash (1972,

2.6). Furthermore, given a sequence of pairwise disjoint Borel subsets fKt
i;jg in �i�A

1� � �
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� � At�1 and a sequence of strategy pro�les f�ng, de�ne a measure �j;n as

�j;n(B) =
�(B n��i � [e<jK

t
i;e; �n)

�(�� A1 � � � � � At�1 n��i � [e<jKt
i;e; �n)

(2)

for each B 2 �Ii=0ß(�i) � (�
t�1
t0=1�

I
i=1ß(A

t0

i )). Then, for each i and t, if �j;n is well-de�ned,

it will be a probability measure on �Ii=0ß(�i) � (�
t�1
t0=1 �

I
i=1 ß(A

t0

i )) since so is �(�; �n). In

detail, we have �j;n(� � A1 � � � � � At�1) =
�(��A1�����At�1n��i�[e<jK

t
i;e;�n)

�(��A1�����At�1n��i�[e<jKt
i;e
;�n)

= 1 and �j;n(B)

� 0 for each B 2 �Ii=0ß(�i) � (�
t�1
t0=1 �

I
i=1 ß(A

t0

i )). In addition, for any disjoint count-

able union of Borel subsets [e2EBe, we have �j;n([e2EBe) =
�([e2EBen��i�[e<jK

t
i;e;�n)

�(��A1�����At�1n��i�[e<jKt
i;e
;�n)

=
P

e2E

�(Ben��i�[e<jK
t
i;e;�n)

�(��A1�����At�1n��i�[e<jKt
i;e
;�n)

=
P

e2E �j;n(Be). Therefore, �j;n is a probability

measure if it exists.

De�nition 3 A sequence of strategy pro�les f�ng
1
n=1 is sequentially convergent if for each

i and t, there exists a sequence of pairwise disjoint Borel sets fKt
i;jgj2Jti in �i�A

1�����At�1

with an index set J ti � N such that for each j, i) the probability measure �j;n de�ned by
(2) is well-de�ned for every n and converges weakly10 to some probability measure �j on
�Ii=0ß(�i) � (�

t�1
t0=1 �

I
i=1 ß(A

t0

i )); ii) K
t
i;j =

T
fGi : Gi is relatively closed in �i � A1 � � � �

�At�1 n [e<jK
t
i;e and �j(��i � Gi) = 1g; and iii) [j2Jt

i
Kt
i;j is dense. Here, the sequence

fKt
i;jg is called sequential supports of f�ng for player i at period t.

To resolve the abstractness of this de�nition, we examine how a sequentially convergent

sequence of strategy pro�les f�ng operates. First, the sequence f�ng de�nes a sequence

of probability measures f�1;ng and this sequence f�1;ng converges weakly to a probability

measure �1. Then, the measure �1 has the smallest support K
t
i;1 that is closed. Next,

the sequence f�ng and the support K
t
i;1 together de�ne a sequence of probability measures

f�2;ng and this sequence f�2;ng converges weakly to a probability measure �2. Then again,

10 A measure �j;n converges weakly to �j if limn�!1

R
��A1�����At�1 f(�; a)d�j;n(�; a) =

R
��A1�����At�1

f(�; a)d�j(�; a) for every bounded and continuous real function f on ��A
1 � � � � �At�1.
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the measure �2 has the smallest support K
t
i;2 that is relatively closed in ��A

1�� � ��At�1 n

��i�K
t
i;1. Likewise, for each j � 3, the sequence f�ng and the supports fK

t
i;eg

j�1
e=1 determine

a sequence of probability measures f�j;ng, a probability measure �j, and the support K
t
i;j

until [e�jK
t
i;e becomes dense.

To sum up, a sequence of strategy pro�les f�ng is sequentially convergent if f�ng together

with its sequential supports fKt
i;jg, whose union is dense, sequentially de�ne a sequence of

probability measures f�j;ng such that each sequence f�j;ng
1
n=1 converges weakly to a proba-

bility measure �j and �j has the smallest and relatively closed support K
t
i;j. In particular,

the condition i) requires that f�ng and fK
t
i;jg sequentially well-de�ne f�j;ng and f�jg. The

condition ii) requires that Kt
i;j be the smallest and relatively closed support of �j so that

Kt
i;j is uniquely determined and every open set in K

t
i;j has positive measure with respect to

�j. Finally, the condition iii) requires that the union of the supports [j2Jt
i
Kt
i;j be dense so

that fKt
i;jg �lls the whole space fully enough.

The sequential equilibrium also uses a sequence of strategy pro�les to show the consistent

relation between a system of beliefs and a strategy pro�le. Concretely, it uses a convergent

sequence of totally mixed strategy pro�les. Here, a strategy pro�le�� is de�ned to be totally

mixed if for each t, we have��
t

i(�i; a
1; :::; at�1;B) > 0 for every (�i; a

1; :::; at�1) 2 �i � A1 �

� � � �At�1 and for every open set B � Ati. In �nite games, a convergent sequence of totally

mixed strategy pro�les is sequentially convergent and well-de�nes the consistent relation as

shown in Kreps and Wilson (1982). In general games, however, it might not be sequentially

convergent and might not well-de�ne the consistent relation as shown in Example 1.
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Example 1 Consider the game in Crawford and Sobel (1982) again. De�ne the sender�s
strategy ��n as ��n(�;B) =

1
n+1

l(B) + n2

n+1
l(B \ [0; 1

n
]) for every � 2 [0; 1] and B 2 ß([0; 1])

where l : ß([0; 1]) �! [0; 1] is a Lebesgue measure. Then, the sequence f��ng is convergent
and each ��n is totally mixed. However, it is not sequentially convergent, and moreover, it
does not well-de�ne the consistent relation.

Although a convergent sequence of totally mixed strategy pro�les is not su¢cient to be

sequentially convergent, it is still useful to construct a sequentially convergent sequence in

the general games. Example 2 demonstrates this construction. Consequently, Example 2

provides su¢cient conditions for a sequence of strategy pro�les to be sequentially convergent.

Example 2 Suppose that a sequence of strategy pro�les f��ng
1
n=1 satis�es the following two

conditions. First, each ��n in the sequence is totally mixed. Second, there exist a set of
strategy pro�les f�ege2E[f�g where E � N and a sequence of positive real numbers f"ng such
that for each n,��n = (1�

P
e2E("n)

e) � �� +
P

e2E("n)
e � �e and "n converges to zero. Then,

the sequence f��ng is sequentially convergent.

The following Lemmas 1 and 2 reveal properties of the sequentially convergent sequence

of strategy pro�les. Speci�cally, Lemma 1 shows that every open class of information sets has

positive measure with respect to probability measures induced by a sequentially convergent

sequence. Lemma 2 proves that a linear combination of probability measures induced by

a sequentially convergent sequence can be a probability measure itself. These two lemmas

establish a way to de�ne a system of complete beliefs with respect to a sequentially convergent

sequence of strategy pro�les.

Lemma 1 If a sequence of strategy pro�les f�ng
1
n=1 is sequentially convergent, then given

i and t, for any nonempty open set Oi 2 ß(�i) � (�
t�1
t0=1�

I
i0=1ß(A

t0

i0)), there exists a set
~Kt
i;j

among the sequential supports fKt
i;jg of f�ng such that �j(��i � ( ~K

t
i;j \ Oi)) > 0 where the

probability measure �j;n de�ned by (2) converges weakly to �j.
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Proof. Since [j2Jt
i
Kt
i;j is dense in �i � A1 � � � � � At�1, there exists a set ~Kt

i;j in fK
t
i;jg

such that ~Kt
i;j \ Oi 6= ?. It su¢ces to show that �j(��i � ( ~K

t
i;j \ Oi)) > 0. Let a subspace

Xi be �i � A1 � � � � � At�1 n [e<j K
t
i;e. From the de�nition, ~Kt

i;j is relatively closed in Xi.

Since Xi\Oi is relatively open in Xi, the set ~K
t
i;j n (Xi\Oi) (= ~Kt

i;j nOi) is relatively closed

in Xi. Since ~K
t
i;j * ~Kt

i;j nOi and �j is a probability measure, we have �j(��i � ( ~K
t
i;j nOi))

< 1 according to the condition ii) in De�nition 3. Therefore, we have �j(��i � ( ~K
t
i;j \Oi))

= 1� �(��i � ( ~K
t
i;j nOi)) > 0.

Lemma 2 Let a sequence of strategy pro�les f�ng
1
n=1 be sequentially convergent with sequen-

tial supports fKt
i;jgj2Jti and let a function p : J

t
i �! [0; 1] be a probability mass function, i:e:P

j2Jt
i
p(j) = 1 and p(j) � 0 for each j. Given i and t, for each n 2 N, suppose that a set

function �n on �
I
i=0ß(�i)� (�

t�1
t0=1�

I
i=1ß(A

t0

i )) satis�es

�n(B) =
P

j2Jt
i
p(j)�j;n(B)

for every B where �j;n is de�ned by (2). Then, each �n is a probability measure. Moreover,
�n converges weakly to the probability measure � =

P
j2Jt

i
p(j) � �j such that for each j, �j;n

converges weakly to �j.

Proof. The �rst result follows from the fact that each �j;n is a probability measure on

�Ii=0ß(�i)�(�
t�1
t0=1�

I
i=1ß(A

t0

i )). That is, we have �n(��A
1�����At�1) =

P
j2Jt

i
p(j)ti�j;n(��

A1 � � � � � At�1) = 1 and �n(B) =
P

j2Jt
i
p(j)�j;n(B) � 0 for each B 2 �Ii=0ß(�i) �

(�t�1t0=1�
I
i=1ß(A

t0

i )). To show countable additivity, let [e2EBe be a pairwise disjoint countable

union of Borel sets. Then,

�n([e2EBe) =
P

j2Jt
i
p(j)�j;n([e2EBe) =

P
j2Jt

i

P
e2E p(j)�j;n(Be)

=
P

e2E

P
j2Jt

i
�j;n(Be) since the series is absolutely convergent, =

P
e2E �n(Be).

For the second assertion, since a sequence of strategy pro�les f�ng is sequentially con-

vergent with the sequential supports fKt
i;jg, there exists a probability measure �j such that

12



�j;n converges weakly to �j and �j(��i �Kt
i;j) = 1. For notational convenience, let a space

X be ��A1 � � � � �At�1. Then, for any arbitrary bounded and continuous real function f

on X, we have

lim
n�!1

Z

X

fd�n = lim
n�!1

Z

X

fd
P

j2Jt
i
p(j)�j;n

=
P

j2J p(j) lim
n�!1

Z

X

fd�j;n + lim
n�!1

Z

X

fd
P

j2Jt
i
nJ p(j)�j;n for any �nite subset J � J ti ,

=
P

j2J p(j)

Z

��i�Kt
i;j

fd�j + lim
n�!1

Z

X

fd
P

j2Jt
i
nJ p(j)�j;n =

P
j2Jt

i
p(j)

Z

��i�Kt
i;j

fd�j.

The last equality holds because limn�!1

R
X
fd
P

j2Jt
i
nJ p(j)�j;n converges to zero as J ap-

proaches to J ti . Therefore, the measure �n =
P

j2Jt
i
p(j)�j;n converges weakly to � =

P
j2Jt

i
p(j)�j. Finally, the result that

P
j2Jt

i
p(j)�j is a probability measure on �

I
i=0ß(�i)�

(�t�1t0=1�
I
i=1ß(A

t0

i )) comes from the observation that each �j is a probability measure.

Proposition 1 combines Lemmas 1 and 2 and concludes that given a probability mass

function, a sequentially convergent sequence uniquely de�nes a system of complete beliefs.

Proposition 1 Let a sequence of strategy pro�les f�ng
1
n=1 be sequentially convergent. Then,

given i and t, f�ng has a unique sequence of sequential supports fK
t
i;jgj2Jti . In addition, let

a function p : J ti �! [0; 1] be a probability mass function. Then, f�ng and p together de�ne
exactly one probability measure � on �Ii=0ß(�i) � (�

t�1
t0=1�

I
i=1ß(A

t0

i )) according to the same
way as in Lemma 2. Furthermore, the probability measure � is a complete belief for player
i at period t.

Proof. The uniqueness of the sequence of sequential supports results from the condition ii)

in De�nition 3; that is, each Kt
i;j is the smallest and relatively closed subset in �i�A

1� � � �

�At�1n[e<jK
t
i;e such that �j(��i�K

t
i;j) = 1. The other results directly follow from Lemmas

1 and 2.

13



5 Complete sequential equilibrium

In this section, we provide a formal de�nition of the complete sequential equilibrium based on

the results from the previous section and examine its properties. First, we de�ne a complete

assessment that is a counterpart of the assessment in the sequential equilibrium.

De�nition 4 An ordered pair of a system of complete beliefs and a strategy pro�le (�; �) is
called a complete assessment.

The complete sequential equilibrium, as a complete version of the sequential equilibrium,

preserves all the conditions for the sequential equilibrium. Thus, it requires a complete

assessment to satisfy both i) consistency and ii) sequential rationality. The �rst condition,

consistency, is formulated in De�nition 5.

De�nition 5 A complete assessment (�; �) is consistent if there exists a sequentially con-
vergent sequence of strategy pro�les f�ng such that i) �n converges weakly

11 to � and ii)
each complete belief �ti satis�es

�ti(B) =
P

j2Jt
i
(
1

2
)#fe2J

t
i :e�j and e<sup J

t
i g�j(B) (3)

for every set B 2 �Ii=0ß(�i)� (�
t�1
t0=1�

I
i=1ß(A

t0

i )) where the index set J
t
i and each probability

measure �j are de�ned in the same way as in De�nition 3 and #fe 2 J ti : e � j and
e < sup J tig denotes the number of elements e in J

t
i such that e � j and e < sup J ti .

De�nition 5 makes sense according to Proposition 1. Intuitive explanation of this de-

�nition is presented later when we compare the complete sequential equilibrium with the

sequential equilibrium. Note that De�nition 5 designates the probability mass function p as

p(j) = (1
2
)#fe2J

t
i :e�j and e<sup J

t
i g for each j 2 J ti . This designation of the probability mass

11 �n converges weakly to � if
R
�

R
A1 � � �

R
AT f(�; a)�

T
n (�; a

1; :::; aT�1; daT ) � � ��1n(�; da
1)d�(�) converges

to
R
�

R
A1 � � �

R
AT f(�; a)�

T (�; a1; :::; aT�1; daT ) � � ��1(�; da1)d�(�) for every bounded and continuous real
function f on ��A1 � � � � �AT .
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function guarantees that a sequentially convergent sequence de�nes a unique system of com-

plete beliefs by Proposition 1, and consequently it simpli�es the de�nition.

Next, the second condition of the complete sequential equilibrium, sequential ratio-

nality, is de�ned in De�nition 6. Let 	 be the set of all systems of complete beliefs.

For notational convenience, given i and t, de�ne a conditional expected utility functional

Eti : 	�ß(�i)� (�
t�1
t0=1�

I
i0=1ß(A

t0

i0))�� �! R as �ti(��i�Gi) �E
t
i (�;Gi; �) =

R
��i�Gi

R
At
� � �

R
AT
Ui(�; a)�

T (�; a1; :::; aT�1; daT ) � � ��t(�; a1; :::; at�1; dat)d�ti(�; a
1; :::; at�1).

De�nition 6 A strategy pro�le � is sequentially rational with respect to a system of
complete beliefs � if for each i and t, we have Eti (�;Gi; �) � Eti (�;Gi; (�

0
i; ��i)) for every

�0i 2 �i and for every Gi 2 ß(�i)� (�
t�1
t0=1�

I
i0=1ß(A

t0

i0)) such that �
t
i(��i �Gi) > 0.

Here, Gi denotes a class of player i�s information sets at period t. Thus, the sequential

rationality requires, responding to the other players� strategies ��i, each player i to play her

best response �i, which induces the greatest expected utility conditional on reaching a class

of information sets Gi that have positive measure with respect to the system of complete

beliefs �, i:e: �ti(��i �Gi) > 0. As a result, no player prefers to change her strategy at any

open class of information sets. Note that Kreps and Wilson (1982) described the sequential

rationality as the condition under which �taking the beliefs as �xed, no player prefers at

any information set to change his part of the strategy.� Therefore, De�nition 6 adapts the

sequential rationality from the sequential equilibrium for the general �nite-period games

with observed actions by replacing �any information set� with �any open class of information

sets.�

De�nition 7 de�nes the complete sequential equilibrium.
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De�nition 7 A complete assessment (�; �) is a complete sequential equilibrium if (�; �)
is both 1) consistent and 2) sequentially rational.

Here are the results on the complete sequential equilibrium.

Proposition 2 Every complete sequential equilibrium is a Nash equilibrium.

Proof. The result directly follows from the de�nitions.

Proposition 3 shows the relation between the complete sequential equilibrium and the

sequential equilibrium in �nite games. For notational simplicity, we de�ne a system of beliefs

_�12 associated with a system of complete beliefs � as _�(�). That is, _�(�) is a system of

beliefs inducing the same distributions on each information set as � does. We can see that

in �nite games, every system of complete beliefs uniquely determines the associated system

of beliefs _�(�).

Proposition 3 In �nite games, a complete assessment (�; �) is consistent if and only if the
assessment ( _�(�); �) is consistent.

Proof. The result directly follows from the de�nitions.

Proposition 3 implies that in �nite games, the complete sequential equilibrium satis�es

two intuitive notions of consistency introduced by Kreps and Wilson (1982); Structural

consistency and Lexicographic consistency. According to them, the structural consistency

is de�ned as a consistency criterion under which beliefs of the players should re�ect the

informational structure of the game. In addition, the lexicographic consistency is meant

to be another consistency criterion under which all players should hold the same sequence

12 Kreps and Wilson (1982) de�ned a system of beliefs _� as a function from a set of all decision nodes to
[0; 1] such that

P
x2h _�(x) = 1 for each information set h.
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of hypotheses to play a game and whenever they fail to apply the most likely hypothesis

to their situation, they should apply the next most likely hypothesis. Kreps and Wilson

showed the sequential equilibrium satis�es these two consistency criteria in �nite games.

Since the complete sequential equilibrium is equivalent to the sequential equilibrium in the

�nite games, the complete sequential equilibrium also satis�es these two consistency criteria

in the �nite games.

Theorem 1 is a corollary of Proposition 3. Moreover, Theorem 1 and Proposition 2 evi-

dence that the complete sequential equilibrium is indeed a complete version of the sequential

equilibrium. That is, the complete sequential equilibrium is a complete solution concept in

the general games as a version of the sequential equilibrium.

Theorem 1 In �nite games, a complete assessment (�; �) is a complete sequential equilib-
rium if and only if the assessment ( _�(�); �) is a sequential equilibrium.

6 Alternative solution concept: Weak complete sequen-

tial equilibrium

Next, we introduce an alternative solution concept to the complete sequential equilibrium.

The complete sequential equilibrium has many advantages in that it is at least a Nash

equilibrium and in �nite games, it is equivalent to the sequential equilibrium. It is, however,

rather complicated. Moreover, in practice, a solution concept that is weaker, but simpler

than the complete sequential equilibrium is reasonable enough to make plausible predictions

as Fudenberg and Tirole (1991a) indicated. Therefore, we attempt to develop a weak, but

simple version of the complete sequential equilibrium as its alternative solution concept.
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The complexity of the complete sequential equilibrium arises mainly from its consistency

condition. Hence, we can develop a weak, but simple version of the complete sequential

equilibrium by relaxing its consistency condition. At length, we impose restrictions only

on the equilibrium path, and thus no restriction o¤ the equilibrium path. This version of

the consistency is called weak consistency and is formulated in De�nition 8. For notational

convenience, we use the same probability measure � de�ned by (1)13 .

De�nition 8 A complete assessment (�; �) is weakly consistent if i) for every i, we have
�1i = � and ii) for each i and t � 2, there exists pti 2 (0; 1] such that �

t
i(B) = pti � �(B; �) for

every Borel subset B in ��i �Kt
i where K

t
i =

T
fGi : Gi is closed in �i � A1 � � � � �At�1

and �(��i �Gi; �) = 1g.

Then, the alternative solution concept which is called a weak complete sequential equilib-

rium is de�ned as follows.

De�nition 9 A complete assessment (�; �) is a weak complete sequential equilibrium
if (�; �) is both 1) weakly consistent and 2) sequentially rational.

Here are the results on the weak complete sequential equilibrium. Theorem 2 reveals the

relation among the three equilibria; the complete sequential equilibrium, the weak complete

sequential equilibrium, and the Nash equilibrium. This theorem con�rms that the weak com-

plete sequential equilibrium is indeed a weak, but simple version of the complete sequential

equilibrium.

13 That is, given any strategy pro�le � and for each set B 2 �Ii=0ß(�i)� (�
t�1
t0=1�

I
i=1ß(A

t0

i )),

�(B; �) =
R

B1

R

B2(�)

� � �
R

Bt(�;a1;:::;at�2)

�t�1(�; a1; :::; at�2; dat�1) � � � �1(�; da1)�(d�)

where B1 = f� : (�; a1; :::; at�1) 2 Bg and Bt
0

(~�; ~a1; :::; ~at
0�2) = fat

0�1 : (~�; ~a1; :::; ~at
0�2; at

0�1; :::; at�1) 2 Bg
for t0 = 2; :::; t.
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Theorem 2 Every complete sequential equilibrium is a weak complete sequential equilib-
rium, and every weak complete sequential equilibrium is a Nash equilibrium.

Proof. The results directly follow from the de�nitions.

Theorem 2 is especially useful in practice. In order to �nd a complete sequential equilib-

rium, we need to check only on weak complete sequential equilibria, which is simple, thus can

be found easily. Consider the example by Crawford and Sobel (1982) again. We can see that

partition equilibria found by them are weak complete sequential equilibria, and furthermore

they are actually complete sequential equilibria. With the exception of a solution set of

measure zero, there is no other weak complete sequential equilibria. Therefore, according to

Theorem 2, these are all of the complete sequential equilibria in this game with the exception

of a solution set of measure zero.

The next result concerns the relation between the weak complete sequential equilibrium

and the weak sequential equilibrium introduced by Myerson (1991, 4.3). Recall that for each

system of complete beliefs �, _�(�) denotes a system of beliefs inducing the same distributions

on each information set as � does.

Proposition 4 In �nite games, a complete assessment (�; �) is a weak complete sequential
equilibrium if and only if the assessment ( _�(�); �) is a weak sequential equilibrium.

Proof. The result directly follows from the de�nitions.

In a word, the weak complete sequential equilibrium is equivalent to the weak sequential

equilibrium in �nite games. Therefore, Proposition 4 together with Theorem 2, which proves

a weak complete sequential equilibrium is a Nash equilibrium, show that the weak complete

sequential equilibrium is in fact a complete version of the weak sequential equilibrium.
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7 Complements and comments

In �nite games, the perfect equilibrium, introduced by Selten (1975), and the perfect Bayesian

equilibrium, formulated by Fudenberg and Tirole (1991a), are closely related to the sequential

equilibrium in that every perfect equilibrium is a sequential equilibrium and every sequen-

tial equilibrium is a perfect Bayesian equilibrium14 . These equilibrium concepts can be

converted for the general games. Then, it is natural to ask whether their converted versions

maintain their close relation in the general games. Hence, as a complement to the previous

study, this section answers this question and shows they do not.

We �rst de�ne a converted version of the perfect equilibrium.

De�nition 10 For " > 0 and a totally mixed strategy pro�le ��, an " ���-constrained
equilibrium15 is a totally mixed strategy pro�le �"(��) such that for each i, the strategy �"i (

��)
solves max�i Ei(�i; �

"
�i(
��)) subject to �i = "��i+(1�")�

0
i for some �

0
i 2 �i. A strategy pro�le �

is a perfect equilibrium if there exists a sequence of "n���n-constrained equilibria f�
"n(��n)g

such that i) �"n(��n) converges weakly to � and ii) "n converges to zero.

That is, a strategy pro�le � is a perfect equilibrium if there exists a sequence of totally

mixed strategy pro�les f�"n(��n)g such that i) the sequence f�
"n(��n)g converges weakly to

the strategy pro�le � and ii) each strategy pro�le �"n(��n) in the sequence constitutes mutual

best responses under some constraint that disappears gradually. According to this de�nition,

a perfect equilibrium might not be a complete sequential equilibrium or a weak complete

sequential equilibrium. This is because in the continuous games, which belong to the general

14 The second part of this statement is true only in perfect recall games. That is, in imperfect recall
games, a sequential equilibrium might not be a perfect Baysian equilibrium.

15 This " ���-constrained equilibrium is named after the �"-constrained equilibrium� in Fudenberg and
Tirole (1991b, 8.4.1)
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games, convergency of strategy pro�les does not mean convergency of expected utilities if

utility functions are unbounded or discontinuous. As a result, a perfect equilibrium could

fail to be even a Nash equilibrium, and therefore it could fail to be a complete sequential

equilibrium or a weak complete sequential equilibrium.

Next, we de�ne a converted version of the perfect Bayesian equilibrium and call it a

complete equilibrium.

De�nition 11 A complete assessment (�; �) is a complete equilibrium if (�; �) is both
reasonably consistent and sequentially rational.

In other words, the complete equilibrium is a complete assessment which satis�es i) that

the system of complete beliefs is reasonably consistent with the strategy pro�le and ii) that

the strategy pro�le is sequentially rational with respect to the system of complete beliefs.

The de�nition of reasonable consistency is as follows. For notational convenience, we de�ne a

probability measure  with respect to a system of complete beliefs � and a strategy pro�le �

as  (B;�; �) =
R
Bt�1

R
Bt(�;a1;:::;at�2)

�t�1(�; a1; :::; at�2; dat�1)�t�1i (�; a1; :::; at�2) for every set

B 2 �Ii=0ß(�i)� (�
t�1
t0=1�

I
i=1ß(A

t0

i )) where B
t�1 = f(�; a1; :::; at�2) : (�; a1; :::; at�1) 2 Bg and

Bt(~�; ~a1; :::; ~at�2) = fat�1 : (~�; ~a1; :::; ~at�2; at�1) 2 Bg.

De�nition 12 A complete assessment (�; �) is reasonably consistent if i) for every i,
we have �1i = � and ii) for each i and t � 2, there exists pti 2 (0; 1] such that �ti(B)
= pti �  (B;�; �) for every Borel subset B in ��i � �Kt

i where
�Kt
i =

T
fGi : Gi is closed in

�i � A1 � � � � �At�1 and  (��i �Gi;�; �) = 1g.

That is, a system of complete beliefs (�; �) is reasonably consistent if each complete belief

�ti and the strategy pro�le � together de�ne the distribution of the complete belief of the next

period �t+1i over the class of information sets �Kt
i that is the smallest and closed support of �

t
i
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and �. According to this de�nition, the consistency in the complete sequential equilibrium

does not means the reasonable consistency in the complete equilibrium, but the reasonable

consistency means the weak consistency in the weak complete sequential equilibrium. This

happens because the consistency and the reasonable consistency place di¤erent restrictions

o¤ the equilibrium path while the weak consistency places no restriction. Therefore, a

complete sequential equilibrium might not be a complete equilibrium even though a complete

equilibrium is always a weak complete sequential equilibrium.

Note that De�nition 12 covers only the �rst condition out of the three consistency con-

ditions for the perfect Bayesian equilibrium by Fudenberg and Tirole (1991a). Thus, it does

not cover the �no-signaling-what-you-don�t-know� conditions that restrict beliefs o¤ the

equilibrium path. Basically, these no-signaling-what-you-don�t-know conditions function as

restrictions to make the perfect Bayesian equilibrium close to the sequential equilibrium.

In the general games, however, the reasonable consistency, which is a converted version of

the �rst condition for the perfect Bayesian equilibrium, already di¤ers from the consistency,

which is a converted version of the consistency condition for the sequential equilibrium.

Thus, no-signaling-what-you-don�t-know conditions would not function as well as they do in

the �nite games. Accordingly, these conditions are excluded in De�nition 12 for the sake of

simplicity.
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