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Abstract

The paper concerns the design of nonparametric low-pass filters that have the property of repro-

ducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted

polynomial regression (LWPR), which leads to linear filters depending on three parameters: the band-

width, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic)

relationship between the cutoff period (frequency) and the bandwidth, conditional on the choices of

the order and the kernel, upon which we build the design of a low-pass filter.

The second hinges on a generalization of the maximum concentration approach, leading to filters

related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of low-

pass filters that maximize the concentration over a specified frequency range, subject to polynomial

reproducing constraints. The design of generalized DPSS filters depends on three parameters: the

bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the

corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass

filters by investigating how the three parameters are related to the cutoff frequency.

Keywords Low-Pass filters; Kernels; Concentration; Filter Design.



1 Introduction

Trend filters that arise from fitting a locally weighted polynomial to a time series have a well established

tradition in time series analysis and signal extraction; see Anderson (1971, ch. 3), Kendall (1973),

Kendall, Stuart and Ord (1983), and the excellent historical review in Cleveland and Loader (1996). A

thorough treatment is provided in books like Fan and Gijbels (1996), Loader (1999), Härdle (1989),

Hastie and Tibshirani (1990) Ruppert, Wand and Carroll (2003), Fan and Yao (2005).

Locally weighted polynomial regression (LWPR) generates finite impulse response filters (LWPR

filters, henceforth), that are widely applied in practice. See Ladiray and Quenneville (2001) for the

application of the Henderson (1916) and Macaulay (1931) filters within the X-12 seasonal adjustment

procedure. The seasonal-trend decomposition procedure STL, by Cleveland et al. (1990) is based on a

particular LWPR filter called Loess.

The properties of LWPR filters are uniquely determined by three ingredients: the order of the ap-

proximating polynomial, the size of the neighborhood, also known as the bandwidth, and the weighting,

or kernel, function. While on the one hand the choice of the kernel contributes only marginally to the

estimation accuracy (see e.g. Härdle, 1989, sec. 4.5), and, for economic applications, the order of the

polynomial never goes beyond the cubic, on the other hand the bandwidth is the most crucial component

of the accuracy of the method, and thus its selection is a very sensitive issue. Usually, it is estimated

from the observed data according to some criterion, e.g. by crossvalidation.

LWPR filters are trend extraction filter, and as such they somehow pass low frequency components

and reduce the amplitude of high frequency ones. The first aim of the paper is to enforce the interpretation

of LWPR filters as low-pass filters and to illustrate how the cutoff period (or frequency) is related to the

above three key ingredients: bandwidth, polynomial order and kernel.

We define the cutoff period Pc as the smallest periodicity of the fluctuations that are passed i.e. that

are preserved to a great extent, by the filter, whereas the fluctuations with smaller period are compressed.

Conversely, the cutoff frequency in radians ωc ∈ (0, π) is the maximum frequency in radians that is

preserved by the filter, whereas higher frequencies are suppressed. The two quantities are inversely

related, as Pc = 2π/ωc. An ideal low-pass filter has unit transfer function (TF) in the frequency range

(0, ωc), and zero TF elsewhere (see Percival and Walden, 1993).

For any LWPR filter, we derive the underlying cutoff frequency by least squares filter design princi-

ples, as the frequency at which a given LWPR filter provides the best approximation to an ideal low pass

filter. Interestingly, we find out that given the kernel and polynomial order, the cutoff period is linearly

related to the bandwidth; the intercept and slope of the linear relationship depend on the the order of the

polynomial and the kernel.

This tight relationship is a mixed blessing: one the one hand, for any LWPR we can determine

a reference period or frequency, which would enable us, say, to pick up the correct combination of

bandwidth, order and kernel that produces a trend filter passing all the fluctuation with period greater

than 8, or 10, years (the deviations of the observations from this component would be an high-pass

component that is often identified as the business cycle). On the other hand, the relationship is also a

most important limiting factor in the design of a LWPR low-pass filter. For instance, it will turn out that
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a local linear polynomial fit can produce a low-pass filter with a small cutoff period, such as one year

and a half (e.g. 6 quarters), only when it uses a very small bandwidth, which is nevertheless detrimental

to the reliability of the estimates (the accuracy of the trend estimator will be poor). If the bandwidth is

increased then the cutoff period necessarily increases.

The second contribution of the paper is to propose a generalization of a well-known class of filters

that are designed by using the discrete prolate spheroidal sequences (DPSS). The DPSS approach to filter

design is based on the maximization of the concentration of a filter at a reference frequency, denoted ̟.

See by Tufts and Francis (1970), Papoulis and Bertran (1970), Eberhard (1973) and Slepian (1978).

The concentration, introduced by Slepian and Pollak (1961) and Landau and Pollak (1961, 1962) for

continuous signals, measures the proportion of the transfer function in the frequency range [0, ̟]. The

reader is referred to Slepian (1983), Mathews, Breakall and Karawas (1985) and Percival and Walden

(1993, sec. 5.9) for further details on the development of the method. For the statistical properties of

DPSS and their use in statistics, see Lii and Rosenblatt (2008).

A DPSS filter reproduces a constant or linear function of time. The filter that solves the traditional

concentration problem is given by a zeroth order discrete prolate spheroidal sequence (Slepian, 1978;

see also Thomson, 1982, and Xu and Chamaz, 1984). We generalize the DPSS approach by imposing

the constraint that the filter reproduces a polynomial trend of any degree; we thus obtain a class of DPSS

filters that depend on three parameters, the bandwidth, the order of the polynomial and the concentration

frequency, ̟.

We then discuss the interpretation of the latter. Our interpretation differs from the mainstream one: in

fact, we show that the choice of the concentration frequency does not really differ from the choice of the

kernel. Finally, we discuss the properties of the corresponding filters in relation to the LWPR filters, and

illustrate their use for the design of low-pass filters by investigating how the three parameters are related

to the cutoff frequency.

The plan of the paper is the following. Section 2 reviews trend estimation by local polynomial mod-

elling and the essential properties of the corresponding LWPR filters. In Section 3 we discuss the inter-

pretation of LWPR filters as low-pass filters and how the cutoff frequency is related to the the bandwidth,

the order of the polynomial and the kernel. We also provide a comparison with a nonparametric low-

pass filters widely applied in economics, due to Baxter and King (1999), and discuss the case when the

reference series is difference stationary. The class of generalized DPSS filters is dealt with in section 4.

In section 5 we draw our conclusions.

2 Trend estimation with locally weighted polynomial regression

Let yt denote a time series measured at discrete and equally spaced time points. The series can be

decomposed as

yt = µt + εt,

where µt is the underlying trend, and εt is the noise. We further assume that µt is a smooth but unknown

deterministic function of time, which can be approximated in a neighborhood of time t by a polynomial of
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degree p of the time distance, j, between yt and the neighboring observations yt+j , j = 0,±1, 2, . . . , h.

This enables to write µt+j ≈ mt+j , with

mt+j = β0 + β1j + · · · + βpj
p, j = 0,±1, . . . ,±h.

2.1 Specification: polynomial order and bandwidth

Replacing µt+j by its approximation gives the local polynomial model:

yt+j =

p
∑

k=0

βkj
k + ǫt+j , j = 0,±1, . . . ,±h. (1)

If we assume that ǫt+j ∼ NID(0, σ2), then (1) is a linear Gaussian regression model with explanatory

variables given by the powers of the time distance jk, k = 0, . . . , p and unknown coefficients βk, which

are proportional to the k-th order derivatives of µt. Working with the linear Gaussian approximating

model, we are faced with the problem of estimating mt = β0, i.e. the value of the approximating

polynomial for j = 0, which is intercept β0 of the approximating polynomial.

The model (1) can be rewritten in matrix notation as follows:

y = Xβ + ǫ, ǫ ∼ N(0, σ2I),

where y = [yt−h, · · · , yt, · · · , yt+h]′, ǫ = [ǫt−h, · · · , ǫt, · · · , ǫt+h]′,

X =



























1 −h · · · (−h)p

1 −(h − 1) · · · [−(h − 1)]p

...
... · · ·

...

1 0 · · · 0
...

... · · ·
...

1 h − 1 · · · (h − 1)p

1 h · · · hp



























, β =













β0

β1
...

βp













.

The degree of the polynomial is crucial in determining the accuracy of the approximation. Another

essential quantity is the size h of the neighborhood around time t; in our particular setup the neighbor-

hood consist of H = 2h + 1 consecutive and regularly spaced time points at which observations yt+j

are made. The parameter H is the bandwidth, but we shall also refer to h as the bandwidth parameter

henceforth. We shall assume throughout that p ≤ 2h.

2.2 Kernels

In the estimation of the unknown level, we would like to weight the observations differently according

to their distance from time t. In particular, we may want to assign larger weight to the observations that

are closer to t. For this purpose we introduce a kernel function κj , j = 0,±1, . . . ,±h, which we assume
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known, such that κj ≥ 0, and κj = κ−j . Hence, the κj’s are non negative and symmetric with respect to

j.

There is a large literature on kernels and their properties. An important class, embedding several

widely used kernels, is the class of Beta kernels:

κ(u) = krs (1 − |u|r)s I(|u| ≤ 1), krs =
r

2B
(

s + 1, 1
r

)

with r > 0, s ≥ 0, and

B (a, b) =

∫ 1

0
ua−1 (1 − u)b−1 du

with a, b > 0 is the Beta function.

In the discrete case, up to a proportionality factor,

κj =

(

1 −

∣

∣

∣

∣

j

h + 1

∣

∣

∣

∣

r)s

, j = 0,±1, . . . ,±h.

The pair (r = 1, s = 0) gives the uniform kernel, r = s = 1 gives the triangle kernel, (r = 2, s = 1)

the Epanechnikov kernel, r = s = 2 the biweight kernel, (r = 2, s = 3) the triweight kernel, r = s = 3

the tricube kernel. Other kernels are defined from parametric density functions, as in the case of the

Gaussian kernel. For a comparative assessment of the various kernels see Wand and Jones (1995). The

overall conclusion is that their choice is not very relevant in terms of efficiency.

2.3 Estimation and LWPR filters

We assume throughout that we are interested in the estimation of the trend at an interior point, and we

will not be concerned with the treatment of end points, for which we refer to Proietti and Luati (2008).

Provided that p ≤ 2h, the p + 1 unknown coefficients βk, k = 0, . . . , p, can be estimated by the

method of weighted least squares (WLS), which consists of minimising with respect to the βk’s the

objective function:

S(β̂0, . . . , β̂p) =

h
∑

j=−h

κj

(

yt+j − β̂0 − β̂1j − . . . − β̂pj
p
)2

. (2)

Defining K = diag(κh, . . . , κ1, κ0, κ1, . . . , κh), the WLS estimate of the coefficients is β̂ = (X′KX)−1X′Ky.

In order to obtain m̂t = β̂0, we need to select the first element of the vector β̂. Hence, denoting by e1

the p + 1 vector e′1 = [1, 0, . . . , 0],

m̂t = e′1β̂ = e′1(X
′KX)−1X′Ky = w′y =

h
∑

j=−h

wjyt−j ,

which expresses the estimate of the trend as a linear combination of the observations with coefficients

w′ = e′1(X
′KX)−1X′K. (3)
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The trend estimate is local since it depends only on the subset of the observations that belong to the

neighbourhood of time t. The linear combination yielding our trend estimate is often termed a (linear)

filter, and the weights wj constitute its impulse responses. The latter are time invariant and carry essential

information on the nature of the estimated signal; they enjoy two important properties, symmetry and

reproduction of p-th degree polynomials. Symmetry (wj = w−j) follows from the symmetry of the

kernel weights κj and the assumption that the available observations are equally spaced. As far as the

second is concerned, from (3) we have that X′w = e1, or equivalently,

h
∑

j=−h

wj = 1,
h

∑

j=−h

jlwj = 0, l = 1, . . . , p.

As a consequence, the filter w is said to preserve a deterministic polynomial of order p, which means

that if the series is y = Xβ than the filter will reproduce it exactly, i.e. m̂t = β0 = yt.

2.4 Special cases

For illustrative purposes, in the sequel we shall concentrate on a few well known cases. As for the choice

of the order p we shall focus on two cases: p = 0, 1 and p = 2, 3 which we shall refer to as the linear and

the cubic case. The case p = 0 (local constant fit) yields the well-known Nadaraya-Watson estimator

(Nadaraya, 1964, Watson, 1964).

Macaulay filters When the kernel is uniform, K = I, the weighting function w = X(X′X)−1e1 is

known as a Macaulay’s filter. In the case of a local constant/linear polynomial, that is p = 0, 1, the filter

performs the arithmetic moving average: wj = w = 1/(2h + 1), j = 0,±1, . . . ,±h.

Epanechnikov Kernel The Epanechnikov (1969) kernel is such that

κj =

[

1 −

(

j

h + 1

)2
]

, j = 0,±1, . . . ,±h.

This kernel is often recommended (see Fan and Gijbels, sec. 3.2.6) as the optimal kernel minimizing the

mean square estimation error in a local polynomial regression framework.

Loess Loess (Cleveland, 1979) is a LWPR method using a tricube kernel

κj =

[

1 −

∣

∣

∣

∣

j

h + 1

∣

∣

∣

∣

3
]3

, j = 0,±1, . . . ,±h.

and either p = 0, 1, or p = 2, 3. The peculiar trait of Loess is that it uses a nearest neighbor bandwidth

but for our purposes we will override this feature.
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The Henderson filter An important class of local polynomial filters, proposed by Henderson (1916),

arises as a particular case of the local cubic fit, p = 3 in (2). The relevance of Henderson’s contribution

to modern local regression is stressed in the first chapter of Loader (1999). The Henderson filters are

employed for trend estimation in the X-12 nonparametric seasonal adjustment procedure. See Findley et

al. (1998) for more details.

The problem faced by Henderson is to determine the weighting function (3) which, for a given band-

width h and p = 3 provides the smoothest estimates of the trend. The smoothness criterion adopted

by Henderson is based on the variance of the third differences of the estimates of the trend, in that the

smaller the variance the greater the extent of smoothness, as the trend acceleration is subject to the least

variation.

It can be shown (Kenny and Durbin, 1982) that the solution is (3) using

κj =

[

1 −

(

j

h + 1

)2
][

1 −

(

j

h + 2

)2
][

1 −

(

j

h + 3

)2
]

, j = 0,±1, . . . ,±h

This kernel can be seen as a discrete approximation of the triweight kernel.

3 LWPR filters as low-pass filters: the relationship between bandwidth

and cutoff frequency

The LWPR filter are low-pass filters, i.e., they leave almost unchanged low frequency components, such

as the trend, and attenuate high frequency fluctuations associated to the noise. This is evidenced by the

transfer function of the filter

Gh,p,κ(ω) =
h

∑

j=−h

wje
−ıωj

where ı is the imaginary unit and ω ∈ (−π, π) is the frequency measured in radians. Due to the symmetry

of the weights wj , Gh,p,κ(ω) is real; |Gh,p,κ(ω)| is the gain of the filter.

Figure 1 displays the gain of six filters arising from the following combinations:

(h = 12, p = 1, Macaulay), (h = 12, p = 3, Macaulay)

(h = 12, p = 1, Epanechnikov), (h = 12, p = 3, Epanechnikov),

(h = 6, p = 1, Macaulay), (h = 6, p = 3, Epanechnikov).

It is clear that the filters behave differently, in the way certain components are passed. It is thus useful

to understand what is the reference frequency for each filter. A common feature is Gh,p,κ(0) = 1, as it

stems from the property
∑

j wj = 1. Also, the transfer function close to one at the low frequencies and

close to zero at the high frequencies. Higher order kernels produce an attenuation of side lobes.

It should be recalled that an ideal low-pass filter retains only the low frequency fluctuations in the

series and reduces the amplitude of fluctuations with frequencies higher than a cutoff frequency ωc. Its
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Figure 1: Gain of six LPWR filters.
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transfer function takes the following form: for ω ∈ (0, π),

Glp(ω) =

{

1 if ω ≤ ωc

0 otherwise

As it is well known the ideal filter is available analytically, but unfeasible. Taking the inverse Fourier

transform, yields the weights of the ideal filter:

wj =

{

sin(ωcj)
πj

, j = ±1, 2, . . . ,
ωc

π
j = 0

(4)

The filter can be approximated by truncating the weights at lead and lag h, and rescaling them so that

their sum is one (see Percival and Walden, 1993, Baxter and King, 1999).

We now derive the cutoff frequency associated to any LWPR filter by a least squares filter design

approach. The latter is usually applied for determining the filter which minimizes the squared modulus

of the discrepancy between its transfer function, Gh,p,κ(ω) and that of the ideal low pass filter, Glp(ω),

for a given cutoff frequency ωc. See Tufts, Rorabacher and Mosier, (1961), Tufts and Francis (1970) and

Percival and Walden (1993, sec. 5.8). In our problem, instead, the filter weights are given and the cutoff

is unknown. The latter will be determined as the frequency

ωc = argmin {D(ωc; h, p, κ)} , D(ωc; h, p, κ) =

∫ π

0
|Gh,p,κ(ω) − Glp(ω)|2 dω.
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for given h, p, and kernel κ.

The solution is straightforward: rewriting

D(ωc; h, p, κ) =

∫ ωc

0
|Gh,p,κ(ω) − 1|2 dω +

∫ π

ωc

|Gh,p,κ(ω)|2 dω,

and differentiating with respect to ωc, the first order condition for the above problem is

h
∑

j=−h

wje
−ıωcj =

1

2
, (5)

i.e. we need to locate the frequency at which the transfer function is 1/2. The solution to equation (5) is

obtained as the phase of the conjugate pair of roots with unit modulus of the polynomial
∑

j wjx
j .

Figure 2 displays the result for the LWPR filters most commonly in use. The left panel shows the

cutoff frequency (vertical axis) corresponding to a particular bandwidth h: as h increases, for given p

and kernel function, the cutoff frequency is pushed towards zero, i.e we obtain a filter that produces a

smoother trend. It is interesting to present the same results in terms of the cutoff period, Pc = 2π/ωc,

since this enables to discover a remarkable linear relationship between cutoff period and bandwidth.

For the Henderson filter, Pc = 1.4 + 1.1h, so that when h = 12, Pc = 14.6. The (h = 12, p = 1,

Macaulay) filter (see first panel of figure 1) has Pc slightly greater than 40, whereas in the cubic case

((h = 12, p = 3, Macaulay), top right hand panel of figure 1) the period is less than 20. For the filter

(h = 6, p = 1, Macaulay), see the bottom left panel of figure 1, the period is about 23.

It should be noticed that the intercept and slope depend on the order of the polynomial and the kernel.

If we move from a linear to a cubic fit, cœteris paribus, i.e. using the same h and kernel, the cutoff period

decreases. Secondly, higher order kernels yield lower cutoff periods for fixed h and p.

Figure 2 provides an effective tool for designing the LWPR filter that is appropriate for a particular

cutoff frequency or period: drawing an horizontal straight line at a particular value and looking at the

intersection with the hyperboles (left panel) or lines (right panel) would make immediately available

the bandwidth, order and kernel of the relevant LWPR filter. We provide two applications in the next

paragraph.

3.1 Comparison with the Baxter and King filter

Baxter and King (1999, BK henceforth) have popularized the use of the band-pass filter for cycle ex-

traction in economic time series using a least squares approximation to the ideal filter that leads to a

finite impulse response filter with a half bandwidth of 3 years, e.g. h = 12 when the data are quarterly.

A band pass filter is obtained by subtracting two low-pass filters. Band-pass filtering is widely applied

various fields, among which economics, to extract signals with given features. For instance, business

cycle theory is concerned in the fluctuations with periodicity ranging from 1 year and half to eight years.

When the data are quarterly, the approximation of a low-pass filter with curoff frequency ωc = 0.2

(Pc = 32, i.e. eight years of quarterly data) as weights that are a scaled version of (4) for h = 12. Figure

3 plot this weights along the weights of the local linear LWPR using the Epanechikov filter and the same
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Figure 2: Relationship between bandwidth (horizontal axis) and cutoff frequency ωc (left panel), and

cutoff period, Pc = 2π/ωc, (right panel) for different LWPR filters.
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Figure 3: Comparison with Baxter and King low-pass filter with Pc = 32.
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bandwidth. The latter is characterized by the same cutoff period, and thus the gains of the two filters,

plotted in the central panel, are virtually indistinguishable.

Our results on the relationship between LWPR and the cutoff frequency also suggest that the local

cubic polynomial regression filters (h = 24, p = 3, Epanechnikov) and (h = 28, p = 3, Henderson) are

characterized by about the same cutoff frequency. The last panel of figure 3 compares their gain with

that of the BK approximation to the ideal low-pass filter, showing that the two filters provide a better

approximation. However, the higher polynomial order and bandwidths account for the attenuation of

both leakage and the Gibbs phenomenon, i.e. the side lobes. If h is increased also for BK, then the filters

behave almost identically.

The comparison with the BK filter is also useful to illustrate a possible limitation of LWPR filters,

as far as the design of low-pass filters is concerned, which is a consequence of the stringent relationship

between bandwidth and cutoff period. As mentioned above, BK construct a cycle filter by subtracting

from the low-pass filter with cutoff period Pc = 32 quarters the low-pass filter with cutoff period equal

to 6 quarters. The latter provides a trend estimate suppressing all the high frequency fluctuations, such

as seasonal effect, with periodicity up to one year and half. Both BK low-pass filters have h = 12 (three

years of quarterly data).

As we have shown, there exists an LWPR filter with h = 12 that has cutoff 32 quarters; however,

we are unable to find a filter with P̄ = 6 and h = 12. From figure 2 it is clear that when the cutoff

10



Figure 4: Comparison with Baxter and King low-pass filter with Pc = 6.

−10 −5 0 5 10

0.0

0.1

0.2

0.3

Filter weights BK h=12

−4 −2 0 2 4

0.0

0.1

0.2

0.3

BK, Local cubic filter weights, h=4

BK 
Local Cubic − Epan 
Henderson 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

Gain comparison 

BK h=12 
Local Cubic − Epan 
Henderson 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.50

0.75

1.00

BK with h=4: gain comparison

BK h=4 
Local Cubic − Epan 
Henderson 

period is small, such as Pc = 6, the local linear polynomial filters produce a too smooth trend estimate,

even for small h. The only LWPR filters that get close to this cutoff are (h = 4, p = 3, Henderson)

and (h = 4, p = 3, Epanechnikov). Figure 4 displays the filter weights and the gains of the two filters

and compares them with the BK filter with ωc = π/16 and bandwidth 12 (left panels) and BK with

bandwidth 4. Only in the second case we get filters with comparable properties, at the cost of lowering

the bandwidth to a very small values.

A key consequence is that we cannot design a band-pass filter from two LWPR low-pass filters using

the same h, p and kernel. At least one of the elements has to vary. As the bandwidth is the most important

factor in determining the cutoff period, h qualifies as the key factor in band-pass filter design.

3.2 Modified least squares design

Christiano and Fitgerald (2003, CF henceforth) proposed a modified least squares criterion for deriving

the optimal filter weights which minimizes the discrepancy function, for a given ωc:
∫ π

0
|
∑

j

wje
−ıωj − 1|2

dω

2(1 − cos ω)
.

With respect to the traditional least square problem, the discrepancy is defined with respect to a random

walk process. This produces, for fixed h, a filter which differs slightly from the BK optimal approxima-
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tion; see their figure 2, p. 447.

This is an interesting modification, since it brings under consideration the nature of the filtered series

and its possible nonstationarity. It also makes clear that the assumption underlying the traditional least

squares filter design is the assumption of trend stationarity around a white noise component.

It is thus sensible to ask whether the LWPR filter cutoff frequency changes when we take a modified

least squares approach. The answer is no. The first order condition would be (5) again. The proof is

very simple and follows from the straightforward the application of the fundamental theorem of calculus.

This result does not contradict CF, as it uses the modified criterion for a different problem. In fact, the

LWPR filter is available, whereas the cutoff frequency is unknown. In conclusion, the cutoff frequency

that minimizes the discrepancy with the ideal filter is the same as that derived above in figure 2. The only

change is in the curvature of the objective function, which is flatter.

4 The use of the DPSSs in low-pass filter design

We turn out our attention to a different approach to the design of a low-pass filter which can be adapted

to the problem of fitting a local polynomial. This adaptation configures the main contribution of the

paper to this strand of literature. The approach here considered is based on the idea of maximizing the

concentration of the transfer function inside a particular frequency range, and leads to define the weights

in terms of discrete prolate spheroidal sequences (DPSS).

Let w denote a filter characterized by the transfer function G(ω), ω ∈ [0, π]; then its concentration at

frequency ̟ ∈ (0, π) is defined as

β2(̟) =

∫ ̟

0 |G(ω)|2dω
∫ π

0 |G(ω)|2dω
(6)

The above concentration measure was defined and analysed according to different perspectives by Tufts

and Francis (1970), Papoulis and Bertran (1970), Eberhard (1973) and Slepian (1978), who also referred

to (6) as an energy ratio.

The concentration can be expressed as a ratio of quadratic forms,

β2(̟) =
w′A(̟)w

w′w
, (7)

where A(̟) is the symmetric and positive definite matrix whose generic ij-th element, i, j = 1, . . . , 2h+

1, is

aij(̟) =

{

sin(̟(i−j))
π(i−j) for i 6= j

̟/π for i = j

as follows by replacing

|G(ω)|2 = G(ω)G∗(ω) =
h

∑

i=−h

w2
i + 2

h
∑

i=−h

i−1
∑

j=−h

wiwj cos((i − j)ω)

12



in (6) and then performing the integrations; G∗(ω) denotes the complex conjugate of G(ω).

A strategy for designing filters is, for a given bandwidth h, to choose the filter that maximizes the

concentration at a given concentration frequency, under the constraint that the weights sum to one. Under

this condition the filter capable of reproducing a polynomial of order 0, 1. Hence, given ̟, the filter

weights result from the solution of the following constrained maximization problem:

max
wj ,j=−h,...,h

β2(̟) subject to w′i = 1, (8)

where i = [1, . . . , 1]′.

The quantity (7) is a Rayleigh quotient that reaches its maximum when it is equal to the largest

eigenvalue of A(̟) (see Meyer, 2000, p. 549); let us call it λ0(̟). The corresponding eigenvector,

denoted v0, is the filter that maximises the concentration (6) or (7) at the concentration frequency ̟,

when no restrictions are imposed to the weights except, possibly, to be of unitary norm. The filter

weights arise from the normalization: w = v0/(v′

0i).

The (unit norm) vector v0 is a subsequence of length 2h + 1 of a zeroth-order discrete prolate spher-

oidal sequence (DPSS). Its direct computation from the spectral decomposition A(̟) is computationally

unattractive and unstable. Fortunately, it has been shown that it can be derived as the eigenvector associ-

ated to the largest eigenvalue of the symmetric tridiagonal matrix C whose nonzero elements are

cj+1,j+1 =

(

2h − 2j

2

)2

cos ω, j = 0, . . . , 2h

and

cj+1,j = cj,j+1 =
j(2h − j)

2
, j = 1, . . . , 2h,

see Slepian (1978) and the tutorial by Mathews, Breakall and Karawas (1985), where numerical solutions

are also proposed. An explicit form for v0 cannot be obtained for all h but efficient algorithms for its

computation are available also for large h (see Dhillon and Parlett, 2004).

4.1 Generalized local polynomial DPSS filter design and their relation with LWPR filters

The DPSS approach described above generates a filter that passes a local constant/linear polynomial,

mt+j for p = 0, 1; this is a simple consequence of the constraint w′i = 1. It seems therefore natural

to propose a generalization by introducing further linear constraints on the weights that aim at the re-

production of higher order polynomials. We show below that there is a solution to this problem. The

price to be paid is that there is no closed form solution to this problem and the solution has to be found

iteratively.

For any bandwidth h, we aim at designing the filter that maximizes the concentration at a given

frequency, under the constraint of reproducing a polynomial of degree p. This produces the following

constrained maximization problem:

max
wj ,j=−h,...,h

β2(̟) subject to w′X = e′1, (9)

13



Obviously, for X = i, we are back to the standard problem discussed above.

The objective function to be maximized is

φ(w, µ) =
w′A(̟)w

w′w
− 2(w′X − e′1)µ,

where e′1 = [1, 0, . . . , 0] and µ is a vector of Lagrange multipliers. The first order conditions give

B(̟)w(w′w)−1 = Xµ and w′X = e′1, where B(̟) = A(̟) − β2(̟)I. If w is an eigenvector of

A(̟), associated to the eigenvalue β2(̟), then B(̟) is singular and the first order conditions imply

that µ is the null vector, i.e. the problem collapses to the unconstrained maximization discussed above.

On the other hand, if w is not an eigenvector of A(̟), then B(̟) is nonsingular and its inverse B(̟)−1

exists. Rearranging, w(w′w)−1 = B(̟)−1Xµ and µ′X′B(̟)−1X = e′1(w
′w)−1, the solution of (8)

is the filter

w′ = e′1(X
′B(̟)−1X)−1X′B(̟)−1. (10)

It is evident that this is an implicit solution, as B(̟) depends on w through β2(̟).

Hence, the solution can be obtained by the following iterative algorithm.

i. Start from a symmetric LWPR filter w1 that satisfies the polynomial reproducing constraints.

ii. For r = 2, 3, . . .,

1. compute the concentration:

β2
r (̟) =

w′

rA(̟)w1

w′

rwr

;

2. construct the matrix Br(̟) = A(̟) − βr(̟)2I;

3. update the solution

w′

r = e′1(X
′Br(̟)−1X)−1X′Br(̟)−1. (11)

iii. Repeat until convergence, i.e. for some r the discrepancy ‖wr − wr−1‖
2 is negligible.

We would like to point out the correspondence of (11) with the expression (3) for the LWPR filters.

The weights now arise from generalized least square regression using Br(̟)−1 en lieu of the kernel. We

shall refer to β2
r (̟) as the restricted concentration index. It is interpreted as the maximum concentration

at the frequency ̟ that a filter reproducing a polynomial of a degree p can achieve.

The properties of the filter (11) essentially follow by those of the matrix A(̟), since Br(̟) differs

from A(̟) only for the diagonal elements. Denote σ(A(̟)) = {λ0(̟) > λ1(̟) > . . . > λ2h(̟)}

the spectrum of A(̟), which satisfies σ(A(̟)) ⊂ (0, 1) (Eberhard, 1973); A first result A(̟) and

Br(̟) have the same eigenvectors: B(̟)vk = A(̟)vk − β2
r (̟)vk = λk(̟)vk − β2

r (̟)vk =

(λk(̟)−β2
r (̟))vk = ξk(̟)vk, where ξk(̟) = λk(̟)−β2

r (̟). Secondly, the restricted concentration

β2
r (̟) can take values ranging from the minimum to the maximum eigenvalue of A(̟) (Meyer, 2000,

p.549):

λ0(̟) > β2
r (̟) > λ2h(̟). (12)
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We remind here that λk(̟) is a measure of concentration,

λk(̟) =
v′

kA(̟)vk

v′

kvk

where vk is the corresponding eigenvector of A(̟) and the unit norm vector v0 is the solution of (8).

The eigenvalues of Br(̟) are those of A(̟) shifted back of β2
r (̟), i.e. σ(Br) = {ξ0(̟) > ξ1(̟) >

. . . > ξ2h(̟)}.

4.2 Filter design with generalized DPSS

For the design of a generalized DPSS filter, three parameters are crucial: the bandwidth, the order of the

polynomial it can reproduce without bias, p, and the concentration frequency ̟. Henceforth we shall

write DPSS(h, p,̟). Such a filter has associated a value of the concentration index.

The concentration frequency has often been interpreted as a genuine cutoff frequency. We will argue

that this interpretation, which has been responsible for the dismissal of this approach for low-pass filter

design, is unwarranted. We are going to illustrate that perhaps ̟ is better interpreted as a kernel. Indeed,

this interpretation is in line with the view of DPSS filters as convergence factors, supported for instance

by Percival and Walden (1993, p. 182). Moreover, the comparison of expression (11) with the general

expression of an LWPR filter (3) reinforces such interpretation: the only way ̟ affects the shape of the

filter is via the matrix B(̟).

Figure 5 displays the value of percentage concentration, 100 × β2(̟), as a function of h and either

P̄ (top left panel) or ̟ ∈ (0, π) (top right panel), for the standard, i.e. locally constant/linear, DPSS

filters . The value of β2(̟) value is obtained from the first eigenvalue of the matrix A(̟). To enhance

the interpretability of the underlying patterns, we present also the contour plots of 100 × β2(̟) on the

(h, P̄ ) plane (bottom left panel) and (h,̟) plane (bottom right panel). For given h, the concentration

is a decreasing function of P̄ and an increasing function of ̟. For small periods (high concentration

frequencies), and for P̄ < h, the DPSS filter is 100% concentrated in the desired frequency range.

The concentration is poor, instead, when the concentration period (frequency) is high (small) and the

bandwidth is small; the latter provides a limiting factor.

The concentration contours enable to assess the trade-off between h and the concentration frequency:

to achieve a given concentration level we can decrease h, providing we increase P̄ along a straight line,

whose intercept and slope depend on the level of β2(̟), or equivalently decrease ̟ along an hyperbole.

A remarkable feature is indeed that the combinations of (h, P̄ ) giving the same concentration lie along

straight lines, whereas the equi-concentration points describe hyperboles on the (h, ωc) plane. The plot

also informs us that if h = 12 (e.g. three years of quarterly data, so that 25 consecutive observations are

used to estimate the trend), we can estimate with unit concentration fluctuations with period up to 22 time

units. The concentration for P̄ = 32 (eight years of quarterly data) is about 94%. To get a concentration

equal to 1 for this concentration period a bandwidth h ≥ 18 would be needed.

The same considerations hold for the local quadratic/cubic DPSS filter given in (11). Figure 6 display

the concentration for such filters. The major difference lies in the vertical shift of the concentration,
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Figure 5: Concentration for standard DPSS filters, as a function of the concentration period and fre-

quency.
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Figure 6: Concentration for cubic DPSS filters, as a function of the concentration period and frequency.
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which results from the fact that, for given h and either P̄ or ̟, β2
r (̟) ≤ β2(̟). In other words,

if we aim at designing a filter with the same concentration, but that passes a cubic, rather than linear,

polynomial, we have to increase either h or P̄ , or both. The linear and hyperbolic patterns of the contours

are present also in this case.

As we stated before, the concentration frequency is a different concept from the cutoff frequency:

when h is high with respect to the concentration frequency, so that for that particular frequency we are

able achieve a unit concentration, the gain of the DPSS filter will monotonically decrease from 1 to 0 in

the interval [0, ̟]. In general, the gain at the concentration frequency is smaller than 1/2.

Figure 7 illustrates this. It displays the filter weights and the gains of three DPSS(12, p, π/3) filters.

It is clear that the three filters, obtained for p = 1 (standard case) and p = 3 and 5, designed for a

concentration frequency equal to π/3, are characterized by different cutoff frequencies, which are in turn

smaller than the concentration frequency. In particular, if the order of the filter increases the localization

of the weight pattern increases and the trend estimates are less smooth.

According to the same least squares design principle that was adopted for LWPR filters, the effective

cutoff frequency ωc of any DPSS(h, p, ̟) filter is computed as the frequency at which the transfer func-

tion of the filter is equal to one half. Figure 8 presents the results of such computations; in particular, the

right panel displays the contours of the cutoff period Pc = 2π/ωc, where ωc is the frequency at which
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Figure 7: Filter weights for generalized DPSS filters, with h = 12 and ̟ = π/3, as a function of the

order of the polynomial p.
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the gain of the filter equals 1/2, in the standard DPSS case (p = 0, 1), as a function of the bandwidth

(horizontal axis) and the concentration period (vertical axis). For convenience, we overlay the contours

of 100×β2(̟), arising from the same (h, P̄ ) combination (see also figure 5). The plot provides the pairs

(h, P̄ ) that produce the same cutoff period. For instance, to have a cutoff of 26 quarters (6 years and a

half) we could choose a large P̄ and a small bandwidth or a large h and a small P̄ . The first solution

would however provide a poor concentration, e.g. not greater than 20%. The second solution would

provide a filter with excellent properties (100% concentration), but more demanding in terms of data

points required to estimate the signal (and more difficult to adapt at the extreme of the sample period).

The right panel displays the relationship between the cutoff period Pc and the bandwidth for the case

p = 0, 1; the different curves correspond to different values of P̄ ; the relationship is nonlinear, but we

may appreciate the fact that as P̄ increases the curves converge to a straight line that correspond to the

Macaulay LWPR filter with the same bandwidth and p = 0, 1. In other words, for a fixed bandwidth,

if we let P̄ (̟) increase (decrease), the cutoff period (frequency) increases (decreases) up to an upper

limit, which is the value of the cutoff period for the local linear Macaulay filter.

This finding actually generalizes to any order p. In general, for a given h the limiting DPSS(h, p, ̟)

filter as ̟ decreases, is the LWPR(h, p, Macaulay) filter. This is illustrated in the same plot by the

dashed line which refers to the local cubic Maculay filter (see also figure 2) and is already coincident

with the bandwidth-cutoff period relationship for the DPSS(h, 3, π/60) filter. Another conclusion that we

draw from the graph is that the generalized DPSS approach can reveal itself more flexible for the design

of band-pass filters, with respect to the LWPR approach. In particular the concentration frequency, or

period, can be seen as a device that is responsible for the continuous adaptation of the kernel of the local

polynomial fit.

5 Concluding remarks

The paper has first aimed at characterizing local polynomial filters as low-pass filters, by investigating

the relationship between the cutoff frequency and the three ingredients of the design: the bandwidth,

the order of the polynomial, and the kernel. The conclusions of this investigation provide guidance

over the choice of the three parameters for designing a low-pass filter with a particular cutoff frequency.

They also point out that the strategy of designing a band-pass filter (e.g. for isolating the business cycle

fluctuations) by subtracting two low-pass filters using the same bandwidth, kernel and polynomial order

is unfeasible, as at least one of the elements has to change.

Secondly, the paper has proposed a generalized DPSS filter design approach that depends on three

parameters: the bandwidth, the order of the polynomial that is reproduced by the filter, and the concen-

tration frequency. The paper has investigated how this three parameters can be combined so as to design

a low-pass filter with a preassigned cutoff frequency. The overall conclusion is that the DPSS filters have

more flexibility and can provide a more coherent design for band-pass filtering. The preferred strategy

would be to contrast two DPSS low-pass filters using the same bandwidth and polynomial order, but

different concentration frequencies.
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Figure 8: DPSS(h, p, ̟) filters. Contour plots of the cutoff period Pc = 2π/ωc as a function of the bandwidth h, and the concentration

period (left panel, case p = 0, 1). Cutoff period as a function of bandwidth for different values of P̄ (rigth panel).
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