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Abstract

We prove that every undiscounted multi-player stopping game in discrete time ad-
mits an approximate correlated equilibrium. Moreover, the equilibrium has five ap-
pealing properties: (1) “Trembling-hand” perfectness - players do not use non-credible
threats; (2) Normal-form correlation - communication is required only before the
game starts; (3) Uniformness - it is an approximate equilibrium in any long enough
finite-horizon game and in any discounted game with high enough discount factor;
(4) Universal correlation device -the device does not depend on the specific parame-
ters of the game. (5) Canonical - the signal each player receives is equivalent to the
strategy he plays in equilibrium.

1 Introduction

Stopping games have been introduced by Dynkin (|7]) as a generalization of
optimal stopping problems, and later used in several models in economics,
management science, political science and biology, such as research and de-
velopment (see e.g., Fudenberg and Tirole [10] and Mamer [14]), struggle of
survival among firms in a declining market (see e.g., Fudenberg and Tirole [11],
Ghemawat and Nalebuff [12]), auctions (see e.g., Krishna and Morgan [13]),
lobbying (see e.g., Bulow and Klemperer [4]), and conflict among animals (see
e.g., Nalebuff and Riley [19]).

I This work is in partial fulfillment of the requirements for the Ph.D. in mathematics
at Tel-Aviv University. I would like to thank Eilon Solan for his careful supervision,
for the continuous help he offered, and for many insightful discussions.
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In this paper we focus on (undiscounted) multi-player stopping games in dis-
crete time. The game is played by a finite set of players. There is an unknown
state variable, on which players receive symmetric partial information along
the game. At stage 1 all the players are active. At every stage n, each active
player declares, independently of the others, whether he stops or continues. A
player that stops at stage n, becomes passive for the rest of the game. The
payoff of a player depends on the history of players’ actions while he has been
active and on the state variable.

Much work has been devoted to the study of 2-player stopping games in dis-
crete time. This problem, when the payoffs have a special structure, was stud-
ied, among others, by Neveu (|21]), Mamer ([14]), Morimoto ([16]), Ohtsubo
(]23]), Nowak and Szajowski (|22]), Rosenberg, Solan and Vieille (|25]), and
Neumann, Ramsey and Szajowski ([20]). Those authors provided various suffi-
cient conditions under which (Nash) e-equilibria exist. Recently, Shmaya and
Solan (]|28]) have proved the existence of (Nash) e-equilibria assuming only
integrability of the payoffs. In contrast with the 2-player case, there is no
existence result for e-equilibria in multi-player stopping games.

The equilibrium path of Nash equilibrium may be sustained by “non-credible”
threats of punishment. Since by punishing a deviator, some of the punishing
players may receive low payoff (lower than if they do not punish the deviator),
it is not clear whether one should expect players to follow such an equilibrium.
Thus, a few papers study the stronger concept of perfect equilibrium (Selten
[26,27]) in 2-player stopping games (see for example, Fine and Li [8]).

Aumann ([1]) defined the concept of correlated equilibrium in a finite normal-
form game as a Nash equilibrium in an extended game that includes a corre-
lation device, which sends to each player, before the start of play, a private
signal. The strategy of each player can then depend on the private signal that
he received. Correlated equilibria have a number of appealing properties. They
are computationally tractable. Existence is verified by checking a system of
linear inequalities rather than a fixed point. The set of correlated equilib-
ria is closed and convex. Aumann ([2]) argues that it is the solution concept
consistent with the Bayesian perspective on decision making.

For sequential games, two main versions of correlated equilibrium have been
studied (see e.g., Forges [9]): normal-form correlated equilibrium, in which
each player receives only private signal before the game starts, and extensive-
form correlated equilibrium, in which each player receives a private signal at
each stage of the game. Note that every normal-form correlated equilibrium
is an extensive-form correlated equilibrium, but the converse is not true.

Communication between the players, that can lead to correlation of strategies,
is natural in many setups, for example: countries negotiate about their actions



to each other and to other countries; firms decide on their strategies based on
common information such as past behavior of the market; and a manager
coordinates the actions taken by his subordinates. In some situations players
may coordinate before the play starts, but coordination along the play is costly
or impossible, and only the notion of normal-form correlated equilibrium is
appropriate. Two examples of such situations are:

e News playing among day traders - An announcement of macroeconomic
news is expected at a certain time. Empirical studies (see for example,
Christie-David, Chaudhry and KhanEconometrica [5]) show that several
minutes elapse before financial instruments adjust to such announcements.
This gap of time may provide a chance for substantial profit for quick trad-
ing. In this setup, the traders of a financial institution can coordinate their
actions in advance. For example, they may decide that if the announcement
is of type a and the price of a certain financial instrument increases by more
than b in the following 10 minutes, then certain buy and sell orders should
be made quickly. On the contrary, coordination along the play is costly due
to the time limit. Note that these traders may have different payoff func-
tions: each trader may be interested not only in the firm’s profit, but in the
part of the profit that is made in financial instruments that are under his
responsibility.

e War of attrition in nature, which is commonly modeled as a stopping game,
where normal-form (but not extensive-form) correlation devices are imple-
mented by evolution of phenotype roles (see e.g., Shmida and Peleg [29)]).

A few papers have defined and studied the properties of perfect correlated
equilibria in finite games, see e.g., Myerson ([17,18]) and Dhillon and Mertens
(|6]). Generalizing the definition of the last paper, we define a (“trembling-
hand”) perfect correlated (4, €)-equilibrium, as a profile where with probability
of at-least 1 — 9, no player can earn more than € by deviating at any stage of
the game.? We hope that this definition, which has been adapted from may
be useful in future study of other dynamic games. 3

Our main result shows that for every §,¢ > 0, a multi-player stopping game
admits a normal-form uniform perfect correlated (J,¢)-equilibrium. Due to
the uniformness property, this equilibrium is an approximate equilibrium in
any long enough finite-horizon stopping game and in any discounted stopping

2 More formally, § > 0 is an upper bound for the probability that the correlation
device sends signals in some set M’ and for the probability that some event E occurs,
and € > 0 is the maximal profit a player can earn by deviating at any stage of the
game and after any history of play, conditioned on that the state variable is not in
E and the signal profile is not in M’.

3 Our definition is similar to the notion of (sub-game) perfect (9, €)-equilibrium
presented in Mashiah-Yaakovi ([15]), where it is proven that such equilibrium exists
in multi-player stopping games where at any stage a single player is allowed to stop.



game with high enough discount factor.* Moreover, the correlation device in
this equilibrium has two appealing properties: (1) Universality - the device
depends only on € and on the number of players. (2) Canonical - the signal
sent to each player is equivalent to the strategy he uses in equilibrium.’
When the stopping game has special properties, we can further characterize
the approximate equilibrium, as discusses in Sect. 8.

The proof relies on two reductions: we first define terminating games, as stop-
ping games that immediately end as soon as any player stops, and reduce the
problem of existence of equilibrium from general stopping games to terminat-
ing games.® This reduction requires us to use a universal correlation device
that is (9, €)-constant-expectation - the expected payoff of a player almost does
not change when he receives his signal. Next, we use a stochastic variation of
Ramsey’s theorem (|28]) to further reduce the problem to that of studying the
properties of correlated e-equilibria in multi-player absorbing games”. The
study uses the result of Solan and Vohra [32]| that any multi-player absorbing
game admits a correlated e-equilibrium.

The paper is arranged as follows. Section 2 presents the model and the result.
A sketch of the proof appears in Section 3. In Section 4 we reduce the problem
to existence of perfect correlated (d, €)-equilibrium in terminating games with
special properties. Section 5 studies games played on finite trees. In Section
6 we use the stochastic variation of Ramsey’s theorem, which allows us to
construct a perfect correlated (d, €)-equilibrium in Section 7. In Sect. 8 we
discuss special properties of the approximate equilibrium in specific kinds of
stopping games.

4 Arguments in favor of the notion of uniform equilibrium can be found in Aumann
and Mashcler ([3]).

® In sect. 2 we define a correlation device with a finite signal space, while the the
strategy space is infinite. Thus the correlation device is not exactly canonical, but
it is closely-related to canonical representation: The signal informs each player at
which stages he should stop, conditioned on the information he has on the state of
nature and on the history of play, in any subtree where the players play a correlated
profile. All of our results remain the same if one would use a canonical correlation
device with infinite signal space.

6 In other papers, both games are referred to as stopping games. We have denoted
them by a different name, because the reduction from stopping games to terminating
games is not trivial in our setup due to the requirement of normal-form correlation.
7 An absorbing game is a stochastic game with a single non-absorbing state.



2 Model and Main Result

Definition 1 A (multi-player) stopping game (in discrete time) is a 6-tuple
G= (I, A p,F,R) where:

I is a finite set of players;

(Q, A, p) is a probability space (the state space);

F = (Fn),>o 1s a filtration over (2, A, p);

R = (R,),~,U R« is an F-adapted process:

- Let H? denote the set of all histories of realized actions of each player
(stop or continue) until stage n, under the constraint that the members of
S always continue. The coordinates of R, are denoted by Rg,n,hs, where
n € N, S C I is the set of players that stop at stage n, ¢ € S is a player,
and h¥ € H? is the history of realized actions before stage n.

- Let HY denote the set of all infinite histories of realized actions, in which
the members of S always continue and all the members of I'\S have
stopped. The coordinates of R, are denoted by Rg,oo,hgo where S C [

is the set of players who have never stopped, and h2 € HZ is the infinite
history of realized actions. Let n;s be the last stage in which a player stops
in hY . We require that Rg,oo,h& is measurable in f”hgo’ i.e., the payoff of
a player who never stops changes only when other players stop.

A stopping game is played as follows. At stage 1 all players are active. At
each stage n, each active player is informed about F),(w), the minimal set in
F, that includes the state w € €2, and declares, independently of the others,
whether he stops or continues. An active player ¢ that stops, becomes passive
for the rest of the game, and his payoff is given by Rgm,hﬁ,’ where 1 € S C [
is the set of active players who stop at stage n, and h¥ € H? is the history
of realized actions until stage n. If player ¢ never stops, his payoff is Rgoo’hgo
where i € S C I is the set of players who never stop, and hZ2. is the infinite
realized history of actions.

Definition 2 A (normal-form) correlation device is a pair D = (M, u): (1)
M = (M"),.;, where M" is a finite space of signals the device can send player
i. (2) p e A(M) is the probability distribution according to which the device
sends the signals to the players before the stopping game starts.

Given a correlation device D, we define an extended game G (D). The game
G (D) is played exactly as the game G, except that before the game starts, a
signal combination m = (mi)iE ; is drawn according to p, and each player is
informed of m'. Then, each player may base his strategy on his signal.

For simplicity of notation, let the singleton coalition {i} be denoted as i,
and let —i = {I\i} denote the coalition of all the players besides player i.



A (behavioral) strategy for player i € I in G (D) is an F-adapted process
z' = (21), 50, Where 2, : (Q x M*x H.) — [0,1]. The interpretation is that
2t (w,m’ hi) is the probability by which an active player i stops at stage
n after an history of play h! when he has received a signal m'. A strategy
profile x = (xi)iel is completely mized if at each stage, given any signal and
history of play, each player has a positive probability to stop and a positive
probability to continue. Formally: for each i € I, m* € M’ n € N, and

hi € Hi: 0 <z (w,m' k) <1

Let 6; be the stage in which player i stops and let §; = oo if player 7 never
stops. If 0; < oo let ¢ € Sy, C I be the coalition that stops at stage 6;, and if
0; = oo let © € Sy, C I be the coalition that never stops in the game. Let hy,
be the history of realized actions until stage 6;. The expected payoff of player
i under the strategy profile x = (2%),_; is given by: 7' (z) = E, (Rge-,ehhe-)
where the expectation E, is with respect to (w.r.t.) the distribution P, over
plays induced by z. Given an event E C Q, let o (x| (F)) be the expected

payoff conditioned on Q\E: ' (x| (F)) = E, (Rise (E))

,hS|
Wisltg,

The strategy a' is e-best reply for player 4 when all his opponents follow z ¢ if
for every strategy of player i, y": v (z) > 7' (z7%,3") — €. Similarly, ' is e-best
reply conditioned on E if 7! (z| (E)) > v' (z7%, y*| (E)) — €. Let H,, denote the
set of all histories of realized actions before stage n, and Let .7:'” C F,, denote
the minimal sets in F,,: F, = {Fn € F,|—30 # E,eF,, st F, C Fn}.

Let G(h,, F,, D) be the induced stopping game that begins at stage n after,
an history of play h,, has been played, and when the players are informed that
w € F, C F,. The active players when G(hy, F,,, D) starts, are those who have
not stopped in h,,. For simplicity of notation, we use the same notation for a
strategy profile in G (D) and for the induced strategy profile in G(h,, F},, D).
We now define a perfect correlated (4, €)-equilibrium.

Definition 3 Let G (D) be a stopping game, let F C 2 be an event, let M’ C
M be a set of signal profiles, and let € > 0. A strategy profile x = (xi)iel is a
perfect e-equilibrium of G (D) conditioned on Q\E and given M\M’', if there
exists a sequence (Y)pen—(¥i) pen.icr Of completely mixed strategy profiles in
G (D), and a sequence (€),.n (0 < € < 1) converging to 0, such that for all
iel,me M\M',neN,hi e H F, e F, satisfying p (Q\E) |F,) > 0, 2
is e-best reply for player i € I in the induced game G(h,, F},, D) conditioned
on Q\F, when all his opponents j € —i use (1 — ¢;) 27 + ey

Definition 4 Let G (D) be a stopping game and let d,¢ > 0. A profile x =
(2"),c; is a perfect (0, €)-equilibrium of G (D) if there exists an event £ C
and a set of signal profiles M’ C M, such that p(F) < 6, p(M') < 0, and z is
a perfect e-equilibrium of G (D) conditioned on Q\E and given M\M'.



Definition 5 Let G be a stopping game and let §,e > 0. A perfect correlated
(0, €)-equilibrium is a pair (D, x) where D is a correlation device and z is a
perfect (0, €)-equilibrium in the extended game G (D).

Our main Result is the following:

Theorem 6 Let d,e > 0 and let G = (I,Q,A,p,F, R) be a multi-player
stopping game such that SUD,,c (N oo) IRl € L'(p) (integrable payoffs).
Then for every §,e > 0, G has a prefect correlated (9, €)-equilibrium.

Remark 7 The perfect correlated (e, d)-equilibrium that we construct is uni-
form in a strong sense: it is a (d, 3¢)-equilibrium in every finite n-stage game,
provided that n is sufficiently large. This can be seen by the construction itself
(Prop. 30) or by applying a general observation made by [30, Prop. 2.13|.

Definition 8 A payoff vector r € RI!! is a (uniform) perfect correlated payoff
if for every €,0,€¢ > 0 there is a perfect correlated (e, §)-equilibrium z with a
payoff r — €/ < ~(x) <r+¢€.

Corollary 9 Any multi-player stopping game with integrable payoffs admits
a perfect correlated payoff.

3 Sketch of the Proof

In this section we provide the main ideas of the proof. Let a terminating game
be a stopping game in which as soon as any player stops, the game terminates.
Let G be a terminating game. To simplify the presentation, assume that F,, is
trivial for every n, so that the payoff process is deterministic, and that payoffs
are uniformly bounded by 1. For every two natural numbers k£ < [, define the
periodic game G(k,[) to be the game that starts at stage k and, if not stopped
earlier, restarts at stage [. Formally, the terminal payoff at stage n in G(k,1)
is equal to the terminal payoff at stage k + (nmod ! — k) in G.

This periodic game is equivalent to an absorbing game, where each round of T
corresponds to a single stage of the absorbing game (a stochastic game with a
single non-absorbing state). Moreover, it has two special properties: It is recur-
sive (payoff in the non-absorbing state is 0), and there is a unique action profile
with a 0 absorbing probability. Solan and Vohra ([32, Prop. 4.10]) proved a
classification result for absorbing games. Applying it to the two special prop-
erties yields that G(k,[) has one of the following: (1) A stationary absorbing
equilibrium. (2) A stationary non-absorbing equilibrium. (3) A correlated dis-
tribution 7 over the set of action profiles in which a single player stops. The
special properties of n allows to construct a correlated e-equilibrium.



Assign to each pair of non-negative integers k < [ an element from a finite set
of colors c(k,l) that denotes which case of the classification result holds and
an e-approximation of the equilibrium payoff. A consequence of RamseyaAZs
theorem ([24]) is that there is an increasing sequence of integers 0 < ky <
ko < ... such that c(ky, ko) = c(kj, kj41) for every j.

Assume first that k; = 0. A perfect correlated 3e-equilibrium is constructed
as follows. The construction depends on the case indicated by c(ky, k). If the
case is 1 or 2, then between stages k; and k;;; the players follow a periodic
(0, €)-equilibrium in the game G(k;, k;+1) with a payoff in an € neighborhood of
the payoff indicated by ¢(ky, ko). For this concatenated strategy to be a perfect
3e-equilibrium in G in case 1, it is needed to verify that: (1) The equilibrium
in each G(k,) is e-perfect. (2) The game is absorbed with probability 1. This
is done by giving appropriate lower bounds to the stopping probability of each
G(k;, kj41) in the first round. If the case indicated by c(kq, ko) is 3, then we
adept the procedure presented by Solan and Vohra for the construction of
a correlated e-equilibrium in a quitting game ([31, Section 4.2]). As part of
the adaptation we require the correlation device to be universal and (J, €)-
constant-expectation.

If k& > 0, then Between stages 0 and kq, the players follow an equilibrium in
the ki-stage game with the terminal payoff that is implied by c¢(k1, k2). From
stage k; and on, the players follow the strategy described above. It is easy to
verify that this strategy profile forms a 5e-equilibrium.

We now consider a deterministic stopping game. Assume by induction that
any m-player stopping game admits a perfect correlated payoff vector. Given
a stopping game G with m + 1 players we construct an auxiliary terminating
game G’ with m + 1 players by setting the payoff of a player i ¢ S when the
non-empty coalition S stops at stage n, as his perfect correlated payoff in the
induced (m + 1 — |S|)-player game that begins at stage n + 1. The existence
of (4, €)-constant-expectation perfect correlated (4, €)-equilibrium in G’ (with
a universal correlation device) implies naturally a similar equilibrium in G.

When the payoff process is general, a periodic game is defined now by two
stopping times p; < po: py indicates the initial stage and o indicates when
the game restarts. We analyze this kind of periodic games, by adapting the
methods presented in [28] for 2-player stopping games, and by using their
stochastic version of Ramsey’s theorem.



4 Reductions

In this section we make 3 reductions to the problem of existence of perfect cor-
related (J, €)-equilibrium in stopping games: (1) We reduce it to the problem
of existence of such equilibrium in terminating games. (2) We further reduce
it to the problem of existence of such an equilibrium in tree-like terminating
games with a finite-range payoff process. (3) Finally, we reduce it to the prob-
lem of existence of such equilibrium in an induced game deep enough in the
tree, where with high probability each payoff occurs infinitely often or does
not occur at all. Thus, in the following sections we deal only with terminating
games with a finite-range payoff process deep enough in the tree.

4.1 Terminating games

Definition 10 A terminating game is a 6-tuple G = (I,Q, A, p, F, R) where:

I is a finite set of players;

(2, A, p) is a probability space;

o F = (Fn),s is a filtration over (Q, A, p);

R = (Rn)nzo is an F-adapted R/ =1 yalued process. The coordinates
of R, are denoted by Ry, wherei e I and ) #S C N.

A terminating game is played as follows. At each stage n € N, each player is
informed about F),(w), the minimal set in F,, that includes w, and declares,
independently of the others, whether he stops or continues. If all players con-
tinue, the game continues to the next stage. If at-least one player stops, say a
coalition S C I, the game terminates, and the payoff to player 7 is gm. If no
player ever stops, the payoff to everyone is zero.

A (behavioral) strategy for player i € I in G (D) is an F-adapted process z* =
(25,50, Where &, : (Q x M") — [0,1]. A perfect correlated (4, €)-equilibrium
and a perfect correlated payoff vector are defined in an analog way to Sec. 2.
A profile z in G(D) is (0, €)-constant-expectation if with high probability the
expected payoff of a player almost does not change when he obtains his signal.

Definition 11 Let G be a terminating game, ¢ > 0, D = (M, u) a correlation
device, and = a profile in G(D) . The strategy profile x is (6, €)-constant-
expectation if there is a set M’ C M satisfying u(M') < 0, such that for
every player ¢ € I and every message m' € (M\M')": |y (z|m') — v (z)| < e,
where 7/(x|m") is the expected payoff of player i where all players follow z,
conditioned on receiving a message m/'.



A (9, €)-constant-expectation profile is similarly defined for stopping games.
Consider a function that assigns a correlation device to each stopping game
(given € and ¢). We say that the assigned correlation device is universal if it
depends only on the number of players and e.

Definition 12 Let f be a function that assigns to each stopping (or terminat-
ing) game G and to each €, > 0 a correlation device f(G,¢,0) = D(G,¢,0).
The function f is universal if the assigned correlation device depends only on
the number of players and e: D(G,¢€,6) = D(|I|,¢€). Given such a function, we
call the the assigned device a universal (correlation) device.

The following proposition reduces the problem of existence of (9, €)-constant-
expectation perfect correlated (9, €)-equilibrium (with a universal device) in
stopping games to the problem of existence of such equilibrium in terminating
games.

Proposition 13 Assume that each terminating game with integrable payoffs
admits a (0, €)-constant-expectation perfect correlated (9, €)-equilibrium for
every d,€ > 0 with a universal correlation device. Then any stopping game G
with integrable payoffs admits such an equilibrium for every 9,¢ > 0.

PROOF. We prove the proposition by induction on the number of play-
ers. Let G = (1,9, A,p,F, R) be a stopping game with m = |I| players. By
the induction hypothesis every stopping game with k& < m players has a (9, €)-
constant-expectation perfect correlated (4, €)-equilibrium with a universal cor-
relation device Dj. For each induced stopping game G(h,,, F),, D, ) with &
players, let zy, 5, p., be a (J, €)-constant-expectation perfect correlated (6, €)-
equilibrium with a payofF of vn, r,p., - We define an auxiliary terminating

game G* = (I,Q, A, p, F, R'), where the payoff process R* = (R‘fg’n) I SCInEN

is defined as follows for each n € N and F, € F,,:

e Foreachi € SCI: RY (F,) = th, - R sl » Where hl is the history
of realized actions, in Wthh all players contlnue at all stages before s(t%ge n.
NS
e Foreachi ¢ S CI: R, (F,) = hﬂ\f)* FoDuns T ool » Where hn+1 is
the history of realized actlons, in which all the players continue at all stages
before stage n, and the players in S stop at stage n.

The terminating game G’ has a (J, €)-constant-expectation perfect correlated
(0, €)-equilibrium with a universal device (ZL’/ , D;m) according our assumption.
Let Dem DY, X ITg<m Dex, and let the proﬁle z in G(D,,) be as follows:

r =2 as 1ong as no player stops, and z = x KO 5D s after a coalition
ﬂ+1 ny=e,
S C I stops at stage m. The construction of z implies that it is a (9, €)-

constant-expectation perfect correlated (2'1 .6, e)—equilibrium in G with a

10



universal correlation device.lJ

4.2 Tree-like stopping game

Definition 14 A terminating game G = (I,Q, A, p, F, R) is tree-like if for
every n € N, |F,| < oco.

Shmaya and Solan prove (|28, Sec. 6]) that any 2-player terminating game
can be approximated by tree-like terminating games. With minor changes,
the proof can be adapted for multi-player terminating games, and for normal-
form perfect correlated equilibria. This implies the following lemma (the proof
is omitted):

Lemma 15 Assume that each tree-like terminating game with integrable pay-
offs admits a perfect correlated (4, €)-equilibrium for every d,e > 0. Then any
terminating game with integrable payoffs admits such an equilibrium V¢, ¢ > 0.

4.8 The Induced Game G(F, D)

The definitions imply that for every two payoff processes R and R such that
E (supnZO HR” — R, ‘L}) < €, every perfect correlated (0, €)-equilibrium in the
terminating game G = (I,Q, A, p, F, R) is a (J, 3¢)-equilibrium in the ter-
minating game G = (I, QA p, F, }?) Hence we can assume w.l.o.g. that the
payoff process R is uniformly bounded and that its range is finite. Actually, we
assume that for some K € N, R"&n € {O, ﬂ:%7 i%, o i%} for every n € N.
Let D = [lier pzscr {O, j:%, i%, o ﬂ:%} be the set of all possible one-stage
payoff matrices of the terminating game G. Let R,(w) be the payoff matrix

at stage n. Let 7: €2 — N a bounded terminating time. Let partition 7, be:
Fr = Unen {Fn € Fol3w, st.7(w) =n, F,(w) = Fn}

Given any payoff matrix d € D, let A; C \/,,en Fn be the event that d occurs
infinitely often: Ay = {w € Qli.o. R, (w) = d}, and let By C V,en Fn be the
event that d never occurs after stage k: By = {w € Q|Vn >k, R,(w) # d}.
Since all Ay and By, are in \V F,, there exist Ny € N and sets (/_ld, Bd) €

neN deD
FNn, such that:

(1) For each d € D: A;N By =0 and (AdUBd> =Q.
(2) Vd e D, p(AdAq) > 1 - 3t

(3) Vde D, p (Bd,N0|Bd> >1- ﬁ

11



Let £ = Ugen ({w € Aglw ¢ Ad} U {w € Bylw ¢ Bd’NO}). Observe that p(E) <
% Forany F € Flet Dy = {d € D|F € fld}, and let o, = max (dii}ld € DF).

Let G(F,,D) be the induced terminating game that begins at stage n when
the players are informed that w € F,. The following lemma is standard.

Lemma 16 Let G be a tree-like terminating game, d,e > 0, D = (M, )
a correlation device, M’ C M a set of signals s.t. u(M') <9, 7 a bounded
stopping time, and £ C Q an event with p(F) < §. Assume VF' € F, satisfying
p((Q\E)|F,) > 0, there is a (J,€)-constant-expectation perfect correlated
(0, €)-equilibrium x g of G(F, D) conditioned on Q\E and given M\M’. Then
G admits a perfect correlated (2 - 6,3 - €)-equilibrium with a universal device.

PROOF. Tt is well known that any finite-stage game admits a 0-equilibrium
(see, e.g., [25, Prop. 3.1]). Since 7 is bounded, p(£) < § and p(M’) < 4, the
following strategy profile z is a (26,3 - €)-equilibrium in G(D):

e Until stage 7, play a 0O-equilibrium in the game that terminates at 7, if no
player stops before that stage, with a terminal payoff v'(zr) where F' =
FT(w) (w) S ﬁT.

o If the game has not terminated by stage 7, play from that stage on the
profile zr in G(F, D).

5 Terminating Games on Finite trees

An important building block in our analysis is terminating games that are
played on finite trees. In this section we define these games. discuss their
equivalence with absorbing games, and study some of their properties.

5.1 Finite trees

Definition 17 A terminating game on a finite tree (or simply a game on a
tree) is a tuple T = (I, V., Vieaf, 7, Vitops (Co, Do, RU)UeV\VlW), where:

e [ is a finite non-empty set of players.

° (V, Vieafs T, (Cv)veV\Vlwf) is a tree, V is a nonempty finite set of nodes,
Vieaf € V is a nonempty set of leaves, r € V is the root, and for each
v € V\Vieas, C, € V\ {r} is the nonempty set of children of v. We denote

by Vo = V\Viear the set of nodes which are not leaves.
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® Viop € Vp is the set of nodes the players can choose to stop in. Observe
that players can not stop at the leaves.

and for every v € Vj:

e p, is a probability distribution over Cy-; We assume that Vo € C,: p,(0) > 0.

_ (pi
* R, = (R”’S i€l 0ASCI
S stops at that node.

€ D is the payoff matrix at v if a nonempty coalition

A terminating game on a finite tree starts at the root and is played in stages.
Given the current node v € Vg, and the sequence of nodes already visited,
the players decide, simultaneously and independently, whether to stop or to
continue. Let S be the set of players that decide to stop. If S # (), the play
terminates and the terminal payoff to each player i is Rf},s- If S =0, anew
node v € Cy is chosen according to ps . The process now repeats itself, with
v being the current node. If v € V\ Vg, then the players can not stop at that
stage, and a new node v € CYy is chosen according to p,. If v € Vi¢qr then the
new current node is the root r. The game on the tree is essentially played in
rounds, where each round starts at the root and ends once it reaches a leaf.

A stationary strategy of player i is a function z' : Vg, — [0,1]; 2%(v) is
the probability that player 1 stops at v. Let ¢ be the strategy of player i that
never stops, and let ¢ = (¢'),.;. Given a stationary strategy profile x = (2),;,
Let ~i(z) = v*(z) be the expected payoff under z, and let np(z) = 7(x) the
probability that the game is stopped at the first round (before reaching a leaf).

Definition 18 A profile of stationary strategies x = (x;);es is an e-equilibrium
of the game on a tree T if, for each player : € I, and for each strategy v;,

() > (a7 y) —e

Assuming no player ever stops, the collection (p,),cy, of probability distri-
butions at the nodes induces a probability distribution over the set of leaves
or, equivalently, over the set of branches that connect the root to the leaves.
For each set V C Vo, we denote by p; the probability that the chosen branch
passes through V. For each v € V, we denote by F, the event that the chosen
branch passes through v.

We finish this subsection by defining the game on a finite tree 7,, ,(F"). The
game begins at stage n, when w € F C F, is randomly chosen (according
to pip). If the game has not absorbed before reaching stage 7(n), the game
restarts at stage n again (and a new w € F C F,, is randomly chosen).

Definition 19 Let G = (I,Q,A,p,F, R) be a tree-like terminating game,
n € N a number, n < 7 a bounded terminating time, and F' € F,,. The game
on the finite tree T}, .(F) is (I, V, Vieas: 7, Vatops (Ci, Do Rv)vev\maf) where:

13



e V=U wer {Fa(W)} Viear = U {Fr (W)t =F, Viop = {v € V|d, € Dr}
n<k<T(w) weF
e R,,C,, p, are defined by induction. Assume that v € V\Vjur and v € ﬁk
for some n < k, then: R, = R,(v), C, = {Fk+1 € ﬁk+1|Fk+1 C v}, and

Po(Fit1) = p (Fia|v).
5.2 Fquivalence with Absorbing Games

A terminating game on a finite tree T is equivalent to an absorbing game,
where each round of T corresponds to a single stage of the absorbing game.
An absorbing game is a stochastic game with a single non-absorbing state.
As an absorbing game, the game T has two special properties: (1) It is a
recursive game: the payoff in the non-absorbing state is zero; (2) There is a
unique action profile that is non-absorbing.

Adapting [32]’s Prop. 4.10 to the two special properties gives the following:

Definition 20 Let T be a game on a tree, and i € I a player. ¢' = MaXycvy,,,
(R;U) is the maximal payoff a player can get in T by stopping alone. Let o'
be a node that maximizes the last expression, and let dz € D be the payoff
matrix in that stage.®

Proposition 21 Let 7' be a game on a finite tree. 7' has one of the following:

(1) A stationary absorbing equilibrium = # c.
(2) For each player i € I and for each node v € Vi, : R;v < 0. This implies
that c is a perfect stationary equilibrium.
(3) There is a distribution € A( x {¢'}) such that:
(3) Sier Py (i) = 1 R
(b) For each player j € I : i, Py(0',0) - Ry 5 2 97
(c) Let the players i € I that satisfy P, (0°,4) > 0 be denoted as the
stopping players. For every stopping player ¢ € I there exists a player
ji # i, the punisher of i, such that: g* > Rf{ji},ﬂfi'
When we want to emphasize the dependency of these variables on the game
T, we write g, 0%, np, z7. The equilibrium in case 1 may not be perfect, as
players may use non-credible threats after of-equilibrium path. The following
lemma asserts that a perfect e-equilibrium exists.

8 Originally part 3 of Prop. 21 requires that every player would have a unique
pure action that maximizes his payoff, conditioned on that the other players always
continue. This can be achieved by small perturbations on the payoffs (o (€)), such
that Rz,@i is strictly larger than any other payoff Ré,u where v € Viiop.
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Lemma 22 In case 1 of prop. 21, T admits a stationary absorbing perfect
e-equilibrium z # c.

PROOF. Let T, be a perturbed version of the game on a tree T: In T,
when a non-empty coalition stops at some node, there is a probability € that
the stopping is ignored, and the game continues to the next stage, as if no
player has stopped. In 7T, under any profile z, any node is reached with a
positive probability, thus non-credible threats cannot be used in a stationary
equilibrium. If case 1 of prop. 21 applies, then T, admits a perfect stationary
equilibrium z., and x. is a perfect stationary absorbing e-equilibrium in T.

5.8  Limits on Per-Round Probability of Termination

In this subsection we bound the probability of termination in a single round
when a stationary equilibrium z # ¢ exists (case 1 of Prop. 21), by adapting to
the multi-player case the methods presented in [28, Subsec. 5.2] for two players.
We first bound the probability of termination in a single round when the e-
equilibrium payoff is low for at least one player. The lemma is an adaptation
of Lemma 5.3 in [28], and the proof is omitted as the changes are minor.

Lemma 23 Lel G be a terminating game, n € N |, 0 > n a bounded stopping
time, F' € F,, and € > 0. Let x # c be a stationary §-equilibrium in T, ,(F)
such that there exists a player ¢ € I with a low payoff: 7'(z) < ol — e

Then 7(c',z™") > £ - ¢', where ¢' = ¢ = p (Uvevstup {Fv|Rii}7U = 053:}) is the
probability that if all the players never stop, the game visits a node v € Vy,,,
with Ry, , = af in the first round.

Definition 24 Let T = (I, V,Vieafs 75 Vstops (Cus Doy Ry)

) and let 7" =
(I, Vi Viears™'s Vitops (C’;,p;,R;)Uevo,) be two games on trees. We say that T”

is a subgame of T if: V! CV, Vi, = Vi, NV', 7' = r, and for every v € V,

C! =C,, p, =p, and R, = R,.

veEVY

In words, 7" is a subgame of T if we remove all the descendants (in the
strict sense) of several nodes from the tree (V, Vieafs T, (CU>UGV0) and keep all
other parameters fixed. Observe that this notion is different from the standard
definition of a subgame in game theory.

Let T be a game on a tree. For each subset D C 1}, we denote by Tp the sub-
game of T generated by trimming 7" from D downward. Thus, all descendants
of nodes in D are removed. For every subgame 7" of T and every subgame
T" of T', let prv g = pyr v , be the probability that the chosen branch in

leaf’ " lea

T passes through a leaf of T” strictly before it passes through a leaf of T".
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The following definition divides the sets in F, into 2: simple and complicated.

Definition 25 Let G be a terminating game, € > 0, and No < n € N. The
set F' € F, is e-simple if one of the following holds:

(1) For every i € I: o < 0. or
(2) There is a distribution § € A(Dp x I) such that for each player i € I:

(a) 0(d,i) > 0= Ry, ;= af. and

(b) ap+e> > 0(d,j) Ry, >ap —e

jeI,deDp

F is simple if it is e-simple for every € > 0. F' is complicated if it is not simple,
i.e.: there is an €y > 0 such that F' is not €p-simple. In that case we say that
F'is complicated w.r.t. . Observe that F,, € F,, is e-simple if and only if
Fn, € Fn, is e-simple (where n > Ny and F,, C Fy,).

The next proposition analyzes stationary e—equilibria that yield a high payoff
to all the players. The proposition is an adaptation of Prop. 5.5 in |28, Sec.
8]. The proof is omitted as the changes compared with [28] are minor.

Proposition 26 Let G be a terminating game, Ng < n € N, 0 > n a
bounded stopping time, F € F, a complicated set (w.r.t. €), € << \II?D\ ,
and for each i € I let a® > a% — €. Then there exists a set U C V; of nodes
and a strategy profile z in 7' =T, ,(F') such that:

(1) No subgame of Ty has an e-equilibrium with a corresponding payoff in
I1 [a*, a® + €]
iel

(2) Either: (a) U = 0 (so that Ty = T') or (b) x is a 9e-equilibrium in T,
and for every i € I and for every strategy y': a' —e < v (z), v'(z7%, y") <
a’ + 8¢, and w(x) > € - pr, 7.

6 The Use of Ramsey Theorem

In this section we use a stochastic variation of Ramsey theorem (]24,28]), to
disassemble an infinite terminating game into games on finite trees with special
properties. We begin by defining an F-consistent C-valued NT-function.

Definition 27 An NT-function is a function that assigns to every integer
n > 0 and every bounded stopping time 7 an F,-measurable r.v. that is
defined over the set {7 > n}. We say that an NT-function f is C-valued,
for some finite set C, if the r.v. f, ; is C-valued, for every n > 0 and every
bounded stopping time 7.

Definition 28 An NT-function f is F-consistent if for every n > 0, every
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Fn-measurable set F, and every two stopping times 7, 75, we have: 7, = 75 > n
on F' implies f,, 5, = fno, O0 F.

Where A holds on B (A, B € F) iff p(A°N B) = 0.When f is an NT-function,
and 71 < 7, are two bounded stopping times we denote f;, -, (w) = fr (@) (W)
Thus f; -, is an F,-measurable random variable. Shmaya and Solan proved
the following proposition (|28, Theorem 4.3|):

Proposition 29 For every finite set C, every C-valued F-consistent NT-
function f, and every € > 0, there exists an increasing sequence of bounded
stopping times 0 < 0y < 03 < 03 < ... such that: p (fo, 5y = fopos = -..) > 1—€.

In the rest of this section we provide an algorithm that attaches a color ¢, ,(F)
and several numbers (A, (F")); for every F' € F,, s.t. ¢no(F) is a C-valued
F-consistent NT-function.

A (hyper)-rectangle ([a’,a’ + €]),.; is bad if for every i € I, oy — e < a'. Tt is
good if there exists a player 7 € I such that a’ +€ < o) —e. Let W be a finite
covering of [—1,1]"! with (not necessarily disjoint) rectangles ([a*,a’ + €]),.,,
all of which are either good or bad. Let B = {by,bs,...,b;} be the set of bad
rectangles in W and let O = {01, 09, ..., 0k } the set of good rectangles.

Set C' = (simpleJallbad J{1 x O}U{2}U{3 x W x W}). Let G be a ter-
minating game, n € N , ¢ > n a bounded stopping time, and F € Fo.
If F is simple we let ¢, ,(F) = simple. Otherwise, F' is complicated w.r.t.
to some ¢y(F). In that case we assume that from now we fix € on that

: . ©o(F)
0<e<< Ml pe £ (711D]

. The color ¢, ,(F) is determined as follows: ?

e Set T =T, ,(F).
e For 1 < j < J apply Prop. 21 to TU=Y and the bad rectangle h; =

11;[1 {aé,aé- + e} to obtain a subgame TV) of TU=Y and strategy profile z;
in T such that:
(1) No subgame of TV has a stationary e-equilibrium with a corresponding
payoff in h;.
(2) Either TU) = TU=Y or the following three conditions hold:
(a) Forevery i € I, a} — e < 7*(x5).
(b) For every i € I and every strategy y': 7'(z;",y") < a’ + 8e.
() m(x;) = € X pro) 76-1-
o If TV is trivial (the only node is the root), set c,,(F) = allbad; otherwise
due to Prop. 21 and our procedure one of the following holds:
(1) T") has a perfect stationary absorbing e-equilibrium =, with a payoff ()
in one of the good hyper-rectangles. Let ¢, ,(F) = (1, 0;), where o; is the

9 The procedure is an adaptation of the 2-player procedure described in |28, Sec. 5|
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good rectangle that includes v, .

(2) T") has a perfect stationary non-absorbing equilibrium ¢, with a payoff
0. Let ¢, »(F) = (2).

(3) There is a correlated strategy profile n € A(A) in T) that satisfies
3(a)+3(b)+3(c) in Prop. 21. Let ¢,,(F) = (3, w;,ws) where w; is the
hyper-rectangle that includes v, (n), and ws is the hyper-rectangle that
includes g(T)).

The strategy profiles z;, as given by Prop. 21, are strategies in 70—, We
consider them as strategies in 7' by letting them continue from the leaves of
TU=Y downward. We define, for every j € J, Xj .0 (F) = pro) 76-v-

By Prop. 29 there exists an increasing sequence of bounded stopping times
0 < o0y <oy < o3 < ..such that: p(co, oy = Copog = -..) > 1 — g. For every

Fe ]:"O.l, let cp = Coy.00(F).

Let (AEJ,AOOj)jEJ € A Oo]:n be: Ay, { |k ; Nj oo ( ) oo},
Ae7j = {w € Q| Zl:ooAj7Uk7Uk+1 o'k S J } e], OO])jEJ € . \1/oofn7
there is large enough N; > Nj and sets (/_1 A ) ier € Fn, s.t.: (1) For
eachjeJ:AeﬁjﬂAmJ:Q)and(AEjUAOO])— ( €3|AE])>1 6|J‘.

(3) p (Aoo,j|f_1007j> >1-5 \JI From now on, we assume w.l.o.g. that o; > Nj.
Let E’ be defined as follows (Observe that p(E’) < §):

A €
=LK U {w = AGJ’ Z )‘j,dk,ak+1 (ng(w)) > ’J|}

JjeJ k=1..00

{w € Aoo,j| Z /\j’gk’olCJrl (ng(w)) < OO}

k=1..0c0

U {w € QTns.t.co,oniy (W) F# Cr2 (w)}

7 Approximate Constant-Expectation Perfect Correlated Equilib-
rium

We finish the proof of the main theorem by the following proposition:

Proposition 30 Let G be a tree-like terminating game, let €,0 > 0, let the
event B/ C Q and oy be defined as in the previous subsection, and let F € -7:—:71-
Then there is a universal correlation device D = (M, ) and a strategy profile
xp in the game G(F,D), such that xp is a perfect (0, €)-constant-expectation
e-equilibrium in the game G(F, D) conditioned on Q\E and given M\M'.
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PROOF. The proof is divided to a few cases according to the color of ¢r and
whether F' € A, ;. The first 3 cases adapts the methods of [28, Sec.7].

7.1 There exists j€J st. F e Ay

Let 1 < j < J be the smallest index such that F' € A ;. Let z;,, »,,, be the
4" profile in the procedure described in Section 6, when applied to T,

k' Ok+1"

Let x be the following strategy profile in G (F, D): between o and 0.1 play
according to T4, o, ,,- The procedure of Section 6 implies the following:

e Conditioned on that the game was absorbed between o and oy the profile
Tjopons Gives each player a payoff: af —e <4l = (x;) < a} + 8e.

IN

e For each player i € I and for each strategy y' in Ty, o, ,,: (1) 7, 5., (257, 97)
a;’ + 8e. (2) Tok,0r11 (xj) > 62 X )‘j(TgkﬁkH)

Those facts that outside E’ the game is absorbed with probability 1, and that
zr is a 1le-equilibrium conditioned on Q\ £’ . Observe that crp = allbed implies
that there exists j € J such that F' € A, ;.

7.2 F € ﬂ[lgj and cp = 2

jeJ

Let zr be the profile in which everyone continues. It is implied that no player
can profit more than e by deviating at any stage, conditioned on Q\ .

7.8 Fe NAe and cp = (1,01) € (1 x O)

jed

Let 24, 4,,, be a stationary absorbing equilibrium in 7/) with a payoff s, .,
in the good hyper-rectangle o,: [I;c; [al,,al, + €]. As o, is good, there is a
player ¢ € I s.t.: a';, < a% — 2¢. Let xp be the following strategy profile
in Gp: betwgen o, and Ot play according t0 To, 0,,,- Lemma 23 implies
that m(c', 2, 50 .1) = §° Qopon,s Where gy o = p(Jo, < n < opqa, B, =

a%, Ri, € Dp).Outside E', R}, = o/ infinitely often and le . 21: Noporin <
j=1..Jk=1..00

€. This implies that under zp the game is absorbed with probability 1, and
that xp is a 4e-equilibrium in G, conditioned on Q\E'.
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7.4 Fe NA and cp = (1,my,my) € (1 x W x W)

=

The construction in this case is as an adaptation of the procedure of [31],
which deals with quitting games (stationary terminating games where payoff
is the same at all stages). Let n = 7,,,, be a correlated strategy profile
in T,, ,, that satisfies 3(a), 3(b) and 3(c) in Prop. 21. The definition of a%
implies that ot = ¢*(T,, ,,) € w},. This implies that there is a distribution
0 =0(n) € A(Dp x I) such that for each player i € I:

(1) 6(d,i) > 0 = Ri, = al, Vd' # d € Dp, 6(d’,i) = 0. Let d(i) € Dp be
the payoff satisfying 6(d;,7) > 0. If no such payoff exists, let d(i) = 0.

(2) Yjer.aens0(d. j) - Rl{j},d > ajp

(3) If there is d € Dp such that 6(d,7) > 0, then there exists a punisher
ji € I such that: d(j;) # 0 and d(j;)}, < o

Let ¢ € A(1) be: (i) = n(d(i),1). Let (7}),c; x—1 oo b€ an increasing sequence

of stopping times defined by induction: 7{° is the first stage n such that R, =

d(ig). 7%, is the first stage m > max (7¢) such that R,, = d(iy). Observe

that in Q\E' each 7° < oo. We now describe the correlation device Dp, =
(Mpy, ptp,.). Let My ={1,....,T +T + 1}, where T' € N is sufficiently large,
and T >> T. Let pup, be as follows:

1) A number [ € N is chosen uniformly over {1, T}

(1)

(2) The quitter 7 € I is chosen according to ¢. Player i receives signal .
(3) A number [ € N is chosen uniformly over {Z+ 1,1+ T}

(4) Player j;, the punisher of player i, receives the signal I.

(5) Each other player i # i, j receives the signal [ + 1.

Let M}, C Mp, be those signal profiles in which some of the players receive

an “extreme” signal: relative close to 1 or to T+T.IUT,T are large enough,
we can assume that pu(Mp ) < 5. Define now the following strategy z for
each player ¢+ € I: let m; be the signal of player i. Player 7 stops at stages 7,
that satisfy: n = (m;) mod T + T + 1,19 and continues in all other stages. Let
the universal correlation device D = (M, ) be the Cartesian multiplication:
D = [1p,cp Dp,. Similarly let M' = [1p,cp Mp,.. Observe that pu(M’) < 4.

If the players follow the strategy profile zr then the game is absorbed with
probability 1 conditioned on Q\E’ and the expected payoff satisfies o’ <
~vi(z) € mi . Moreover, if T >> T, then immediately after receiving his
signal m; (assuming m € M\M') no player can infer from his signal whether

10°On equilibrium path the player stops at stage 7,,. The requirement to stop at later
stages where n = (m;) mod T'+7T +1 is needed to satisfy the perfection requirement.
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or not he is the quitter, thus zg is (J, €)-constant-expectation.

We now verify that if T, 7" are sufficiently large, no player can gain too much
by deviating at any stage of the game conditioned on that w € Q\FE’ and
given m € M\ M'. First, the probability the quitter ¢ € I correctly guesses the
punishment stage is very low, and thus he cannot profit too much by deviating.
Similarly, any other player (j # i € I) has a low probability to correctly guess
T;, the stage the quitter stops . Moreover, if T' is sufficiently large, then, with
high probability, player j does not know whether he is the quitter, punisher or
a ‘regular” player, and he cannot infer which of the other players is more likely
to be the quitter. Therefore, player j can’t earn much by stopping before stage
[. Observe that when the quitter deviates and does not stop. his punisher, say
player i, does not know that he is a punisher. When player j has to stop, he
believes that he is the quitter (assuming m € M\M’). This implies that the
players e-best-respond at all stages including while (unknowingly) punishing,
and that zp is a perfect e-equilibrium in G(F,D) conditioned on w € Q\F’
and given m € M\M'.

7.5 cp = simple

If for every i € I: o’ < 0, then the profile in which all the players always
continue is an equilibrium in Q\E’. Otherwise, the fact that cp = simple
implies that there is a distribution # € A(Dp x I) such that for each i € I:
(1) 0(d,i) > 0= Ry s =afp. (2)ap+e> > 0(d,j) R > ap—eIn

jeI,deDp
this case, one can use a procedure similar to the one described in the previous

subsection, to construct a perfect e-equilibrium in G(F,D) conditioned on
w € Q\FE' and given m € M\M'.

8 Equilibrium’s Special Properties in Specific Cases

In this Section we present a few examples of specific kinds of stopping game,
with applicative interest, and we shortly discuss the special properties of the
perfect correlated (6, €)-equilibrium in those cases.

(1) Symmetric stopping games: Stopping games where the payoff process
is the same for all players. That is:Vi,j7 € [, S C I,n € N, he €
H gn s = R’ 5 where S;.,; is the coalition derived from S by

n?a iej?

G510 n
substituting players 7 and j). As can be seen from the construction in Sect.
7, such games admit a symmetric perfect correlated (9, €)-equilibrium.

(2) Ewventual continuation Games: Stopping games where late enough in the
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game each player would rather continue forever than stop alone. That
is, 3Ny € N, such that Vi € I,i € S C I,n > Ny, hi € H! h3 €

HS R ,. < R _.s.Such games admit a perfect Nash-equilibrium:
Players play the perfect Nash equilibrium of the finite game that ends at
Ny with an absorbing payoff of R% s (where S is the set of players who

have not stopped until stage Ny), and continue forever afterwords.
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