
Munich Personal RePEc Archive

Misspecification and Heterogeneity in

Single-Index, Binary Choice Models

Chen, Pian and Velamuri, Malathi

Victoria University of Wellington

May 2009

Online at https://mpra.ub.uni-muenchen.de/15722/

MPRA Paper No. 15722, posted 15 Jun 2009 05:52 UTC



 

 

Misspecification and Heterogeneity in Single-Index,  

Binary Choice Models 
 
 

 

 
By 

Pian Chen* 

pian.chen77@gmail.com  

and  

Malathi Velamuri* 

malathi.velamuri@vuw.ac.nz 

 

 

Abstract:  We propose a nonparametric approach for estimating single-index, binary-
choice models when parametric models such as Probit and Logit are potentially 
misspecified. The new approach involves two steps: first, we estimate index 
coefficients using sliced inverse regression without specifying a parametric 
probability function a priori; second, we estimate the unknown probability function 
using kernel regression of the binary choice variable on the single index estimated in 
the first step. The estimated probability functions for different demographic groups 
indicate that the conventional dummy variable approach cannot fully capture 
heterogeneous effects across groups.  Using both simulated and labor market data, we 
demonstrate the merits of this new approach in solving model misspecification and 
heterogeneity problems. 
 

Keywords: Probit, Logit, Sliced Inverse Regression, categorical variables, treatment 
heterogeneity 
 
JEL-Codes:  C14, C21, C52 

                                                 
*  School of Economics and Finance, Victoria University of Wellington, P. O. Box 600, Wellington, 

New Zealand. The authors thank Colin Cameron, Aaron Smith, Halbert White and the seminar 
participants in the Department of Applied Economics, University of Minnesota. 

mailto:pian.chen77@gmail.com
mailto:malathi.velamuri@vuw.ac.nz


1. Introduction 

 In this paper, we consider the problem of misspecified binary choice models 

and model heterogeneity associated with categorical explanatory variables. The 

leading examples of binary choice models, such as Probit and Logit, are single index 

models, i.e., Pr( 1| ) ( )
i i i

y x F x β′= =

i

, where the conditional probability function F is 

nonlinear in the single index x β′ . The advantage of Probit and Logit specifications 

over a linear probability model is that the conditional probability function can be 

restricted to be between zero and one. However, there is no reason to believe that 

these parametric models necessarily capture the underlying nonlinear pattern in the 

data generating process. It is well-known that maximum likelihood estimates (MLE) 

of β  are inconsistent if the parametric functional form of ( )
i

F x β′  is misspecified.  

 To consistently estimate index coefficients β , semiparametric methods have 

been proposed in the literature, including (1) maximum score estimator (Manski 1975, 

1985), (2) smoothed maximum score estimator (Horowitz 1992), (3) maximum rank 

correlation estimator (Han 1987), (4) semiparametric MLE (Klein and Spady 1993), 

(5) semiparametric least squares (Ichimura 1993), and (6) derivative-based estimator 

(Powell, Stock, and Stocker 1989).  

 These semiparametric methods may avoid the model misspecification 

problem, but they also have technical problems and can be computationally difficult 

in practice. The first two estimators have convergence rates slower than root-n; the 

third estimator is root-n consistent and asymptotically normal, but it requires that 

(
i

F x )β′  be monotonically increasing in
i

x β′ . The fourth method estimates the index 

coefficients β  by maximizing the log likelihood function 

    ( )1
ˆ ˆln ( ) (1 ) ln 1 ( )

n

i i i ii
y F x y F xβ β

=
⎡ ⎤′ ′+ − −⎣ ⎦∑  ,  
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where ˆ (
i

F x )β′  is a nonparametric estimate of ( )
i

F x β′  and  n denotes the sample size. 

This estimate attains the semiparametric efficiency bound. But the procedure is time-

consuming because it involves estimating ( )
i

F x β′  and searching for β  iteratively. 

The fifth method is also not cheap to compute as it requires solving for ( )
i

F x β′  and 

( )
i i

F x xβ β′∂ ∂ ′ n for all . In addition, its asymptotic properties rely on the 

assumptions of asymptotic independence and stochastic equicontinuity, which impose 

restrictions on the nature of data. The last method estimates index coefficients using 

the density-weighted average derivatives of the regression function. This method is 

subject to the ‘curse of dimensionality’ because it is based on 

1, ,i =

( )
i i

xF x β′∂ ∂  and the 

advantage of the single-index restriction is essentially being lost. A detailed summary  

of semiparametric estimation of discrete choice models can be found in Pagan and 

Ullah (1999) and Cameron and Trivedi (2005).  For applied researchers, these 

semiparametric methods are technically demanding and therefore, it is desirable to 

have a simple and efficient method for estimating single-index, binary-choice models. 

 We present a new two-step procedure for this purpose.  In the first step, we 

estimate the single-index coefficients β  using sliced inverse regression (SIR), a 

method originally proposed by Li (1991) for dimension reduction.  In the second step, 

we estimate the conditional probability function ( )
i

F x β′  using kernel regression of 

the binary choice variable 
i

y  on the estimated index ˆ
i S

x
IR

β′ , where ˆ
SIR

β  is obtained 

from the first step. To differentiate our method from parametric MLE and 

semiparametric methods, we call it a SIR-Nonparametric method.  

In the first step, we favour SIR for four reasons.  First, it assumes a multi-

index model, which includes single-index, binary-choice models treated in this paper 

as a special case. Second, it imposes no parametric restrictions on the regression 

 2



function and the error term, thus avoiding model misspecification. Third, the SIR 

algorithm only requires estimating a covariance matrix and its eigen value 

decomposition, which is easy to implement and computationally fast. Fourth, the 

estimated index coefficients, ˆ
SIR

β , are root-n consistent, which in turn suggests that 

the estimated probability function  in the second step converges to ˆˆ (
i SIR

F x β′ ) ( )
i

F x β′  

at rate  by the standard nonparametric regression results. 2/5
n

 The two-step SIR-Nonparametric method (i.e., ˆ ˆ
SIR

Fβ → ) has at least three 

comparative advantages. First, we do not estimate β  in a traditional maximum 

likelihood framework whose consistency relies on correct model specification. 

Second, we do not need to estimate β  and F iteratively (i.e., ) as Klein and 

Spady’s semiparametric MLE (1993), which conserves computational time.  Third, it 

allows us to include a large number of explanatory variables, unlike the derivative-

based method of Powell, Stock, and Stocker (1989).   

ˆ
MLE

β F̂

 The second empirical modelling issue we tackle in this paper is how to handle 

categorical explanatory variables in binary choice models. The common practice is to 

combine categorical and continuous explanatory variables in a single index (e.g., 

Horowitz and Härdle 1996).  This approach implicitly assumes that the conditional 

probability functions are identical across groups defined by categorical variables 

except for horizontal shifts. This assumption may be too strong and rarely satisfied in 

many empirical data sets.  

 An alternative approach is to treat categorical and continuous variables 

separately. Specifically, we construct sub-samples based on categorical explanatory 

variables. For each sub-sample, we allow for a different nonparametric model 

involving a dependent variable and continuous explanatory variables only. By so 
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doing, we can better capture heterogeneous relationships for different demographic 

groups or geographic regions.   

 We design four Monte Carlo experiments to show how SIR works compared 

to parametric MLE and to illustrate model heterogeneity. The first experiment shows 

that SIR outperforms Probit and Logit MLE when the data generating process is not 

governed by the Probit or Logit specification. The second experiment indicates that 

the efficiency loss of SIR to Probit MLE is trivial when the underlying true model is 

Probit. The third and fourth experiments demonstrate model heterogeneity associated 

with categorical variables. The results support the sub-sample estimation strategy and 

again favour SIR to Probit and Logit MLE.  

 We apply our SIR-Nonparametric method to a well-known dataset from the 

treatment evaluation literature. This literature lends itself to our approach because it 

commonly involves discrete-choice settings and a few categorical variables. 

Specifically, we re-examine the National Supported Work (NSW) Demonstration 

evaluation, previously studied by Lalonde (1986) and Dehejia and Wahba (1999). We 

stratify the data into eight demographic groups based on three categorical variables --- 

race, marital status, and a high-school degree indicator.  For each group, we perform 

SIR and estimate a propensity score function nonparametrically. The estimated 

propensity score function has a different nonlinear pattern across the eight groups, 

which not only indicates that Probit and Logit models are misspecified but also 

supports our model heterogeneity argument. We then compute the average treatment 

effect on the treated (ATET) for each group using the nearest-neighbour matching 

method. The different values of ATET generated by SIR-Nonparametric method, 

Probit and Logit MLE suggest that the two modelling issues raised in this paper are 

not merely of theoretical interest but critically important for empirical analyses. 
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 The rest of the paper is organized as follows. In Section 2, we discuss the 

possible sources of misspecification in binary choice models and motivate our 

nonparametric approach. Section 3 introduces the SIR theory and estimation 

algorithm. In Section 4, we compare SIR, Probit and Logit MLE in various settings 

via Monte Carlo simulations. In Section 5, we demonstrate our modelling strategy for 

treatment evaluation across heterogeneous demographic groups.  Section 6 concludes 

the paper and suggests directions for future research. 

 

2. Misspecification Problems 

 To understand the misspecification problems associated with Probit and Logit, 

we summarize the two models using the following three components: (i) an 

observable decision variable *1i iy y 0⎡ ⎤= >⎣ ⎦ , where  is a continuous latent variable, *
iy

[ ]1 ⋅  is an indicator function that takes value one if  and zero if ; (ii) a 

linear latent variable model

*
i

y 0> * 0
i

y ≤

*
i i i

y x β ε′= + , where 
i

x  represents observed covariates and 

β  is a column vector compatible with 
i

x ; (iii) the error term 
i
ε  is independent of 

i
x . 

Assuming ~ (0,1)
i

iid Nε  generates the Probit model, while ~
i

iidε standard logistic 

distribution generates the Logit model. 

 The conditional probability function of 
i

y  given 
i

x  is  

(1)   Pr( 1 ) ( ) ( )i i i i i ip y x E y x F x β′= = = = .  

For the Probit model, ( ) ( )
i

F x x
i

β β′ = Φ ′ , where ( )Φ ⋅  is the CDF of the standard 

normal distribution. For the Logit model, [ ]( ) (i iL ) exp( ) 1 exp( )i iF x x x xβ′ β β β′ ′ ′= = + , 

where  denotes the CDF of the standard logistic distribution. Maximum likelihood ( )L ⋅
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estimates (MLE) of β  are consistent when the functional form of ( i )F x β′  is correctly 

specified.  

 However, there are two possible sources of misspecification. First, the model 

for the latent variable *
i

y  may not be linear in 
i

x β′ .  Second, the error term iε  may not 

follow a standard normal or logistic distribution. If the linear latent variable model  

*
i iy x iβ ε′= +  is correctly specified, quasi-MLE of β  is consistent as long as the 

specified density of 
i
ε  belongs to the linear exponential family (e.g., Normal, 

Exponential, Bernoulli, Poisson). But  is unobservable, and therefore it is difficult 

to check any parametric restrictions imposed on it using empirical data.  In this sense, 

all parametric binary choice models are potentially misspecified. A misspecified 

parametric model generates not only incorrect parameter estimates but also 

misleading probability predictions.   

*
iy

To solve this problem, we propose a more general framework as follows: 

(i) ; (ii) *1i iy y⎡= >⎣ 0 i
⎤⎦

* ( )i iy H x β ε′= + , where ( )H ⋅  is unknown; (iii) 
i
ε  is 

independent of 
i

x . We can consistently estimate the index coefficients β  using sliced 

inverse regression (Li 1991) without imposing parametric structure on H  and 

distributional assumption on

( )⋅

i
ε . We will introduce the theory and estimation 

procedure of SIR in Section 3. 

 The second misspecification problem is the failure of modelling heterogeneity 

across demographic groups. Suppose that the observed x covariates comprises a set of 

continuous variables, denoted by x , and a categorical variable, denoted by D
x .  For 

example, D
x  could be a marital status dummy variable, with 1 0D

ix =  if individual i  

is married/not married. The conditional probability function may be different across 

married and unmarried groups. There is no reason to presume that such difference can 
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be fully captured by a single dummy coefficient α  in models like ( )D
F x xβ α′ +

( )F x

. In 

this model, the difference between the two groups is F x( )β α β′ ′+ − , where α  

represents a horizontal shift of the conditional probability function.  This specification 

restricts the conditional probability function to have the same curvature for the two 

groups on the entire support of x β′ , which may be too strong for many applications.1  

 We relax this restriction by assuming different nonparametric models for the 

married and unmarried groups, i.e.,  

(2)    1 1( )iF x 11 , 1) ( , 1)D D

i i i i ix x E y x xPr(i ip y β′  = = = = ==

for the married group and  

(3)    0 2) ( )D

i
F x 21 , 0 ( , 0

i i i i i
p x x y x xPr(

i i
y )D

E β′== =

1( )F

 = ==

 and 2 ( )F ⋅  can be different functions;  and for the unmarried group. Here, ⋅ 1β 2β  

can be different vectors. If we have more than one categorical variable, we can split 

the sample into several strata and allow a different model for each stratum, i.e., 

(4)   Pr(
i

p y 1 , ) , ) (
i s i i s

x i s y x i s(
i

E )
i s

F x β′ , = = ∈ ∈ =

                                                

=

where s represents the  stratum. This generalization enables us to better capture 

heterogeneous characteristics across different groups.   

th
s

 In summary, empirical data may have nonlinear conditional probability 

functions more complicated than those specified in Logit or Probit.  This motivates 

estimating single-index coefficients using nonparametric methods that allow for 

general functional forms.  In the next section, we suggest using sliced inverse 

regression (SIR) proposed by Li (1991) for this purpose.  In addition, categorical 

 
1 In practice, this restriction can be relaxed by interacting the categorical variable(s) with other control 
variables to capture differences in response across categories. For example, in a Probit regression of 
employment, a marital status dummy interacted with years of schooling allows us to estimate 
differential effects of schooling across the different marital groups. Such specifications, while allowing 
more flexibility, do so within the framework of a parametric specification which is still potentially 
limiting. 

 7



variables may imply different nonlinear models for various demographic groups. 

Under such a circumstance, splitting data according to categorical variables may be 

necessary for obtaining consistent estimates of index coefficients.  We demonstrate 

this point in Section 4 via Monte Carlo simulations. 

 

3. Sliced Inverse Regression and Nonparametric Approach 

 In this section, we briefly introduce the fundamental theory of SIR and outline 

its estimation procedure. The inverse regression method assumes that the dependence 

relationship of 
i

y  on the K-dimensional
i

x  is determined only through J  linear 

combinations of 

K≤

i
x , i.e., 

(5)   ( , )
i i i

y F x B u′= ,    

where 1 j JB β β β⎡= ⎣ ⎤⎦ K J is ×  and contains J column vectors known as 

“effective dimension reduction” (e.d.r.) directions. The regression function F is 

unknown, ix B′

i

 are called inverse regression variates, and  denotes an error term 

that is independent of 

i
u

x  and has mean zero. The conditional probability function in 

(1) is a special case of (5), in which 1J =  (i.e., single index), 
i

y  is a binary variable, 

and  is an additive error term. i
u

Li (1991) proposes using sliced inverse regression of 
i

x  on 
i

y  to estimate B.  

For easy exposition, we standardize i
x  to [ ]1/2 (

i X i
z x

−= Σ − )
i

E x , where  denotes 

the  covariance matrix of 

X
Σ

K K×
i

x . Under a linear design condition (Li 1991, 

Condition 3.1), Li shows that the centred inverse regression curve  is 

contained in the linear subspace spanned by 

(E z | )
i i

y

1/2
j X j 1, ,2,j Jη β= Σ ∀ = ⋅

[

⋅ ⋅  (Li 1991, 

Corollary 3.1). This result implies that the covariance matrix ]( |E z )i iyCov  is 
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degenerate in any direction orthogonal to 1 j JSpan η η η⎡ ⎤⎣ ⎦ . Therefore, 

1 j Jη η η⎡⎣

[

⎤⎦  are the eigenvectors associated with the J  nonzero eigenvalues 

of ]( | )
i i

Cov E z y , and the e.d.r. directions are 1 j Jβ β β⎡ ⎤⎣ ⎦   with 

1/2 1, 2,
j X j

,j J⋅ ⋅ ⋅β η−= Σ ∀ = .  

 The eigen decomposition of [ ]( | )i iy

i
z

Cov  requires an estimate of . 

Li (1991) suggests using the mean values of  within several intervals or slices 

determined by 

E z (E z | )
i i

y

i
y , which leads to the following SIR algorithm: 

Step 1:  Standardize 
i

x  by an affine transformation to yield 1/2ˆˆ
i X

−= Σ i X⎡ ⎤−⎣ ⎦z x , 

where  and ˆ
X

Σ X
i

x are the sample covariance and mean of , respectively.  

Step 2:  Divide the range of 
i

y  into G slices, denoted by 1, , GI I⋅⋅⋅

g

. Let the 

proportion of the  that fall in slice  be ,
iy s gw ( 1,2, ,g G )= ⋅⋅⋅

ˆ
i

z

. 

ˆStep 3:  Within each slice, compute the sample mean of , denoted by mg , such 

that the sliced mean 1ˆ ( ) ˆ
i gy Ig iz∈gm n w

−= ∑ . 

Step 4:  Calculate the weighted variance-covariance matrix of the sliced means 

1
ˆ G

gSIR
ˆ ˆ

g g g
w m m′M , and then find its eigenvalues and eigenvectors.  == ∑

ˆStep 5:  Let ( 1,2, ,j = ⋅⋅⋅ )J  be the J largest eigenvectors of . The outputs, 
j

η ˆ
SIR

M

1/2ˆ ˆ ˆ
j X j

β η−= Σ  , are the estimates of the e.d.r. directions. ( 1,2j = ⋅, ,⋅⋅ )J

 Chen and Li (1998) show that ˆ
j

β  from SIR is root-n consistent and 

asymptotically normal with a covariance matrix that can be approximated by 

1 1 1ˆ ˆ ˆ(1 )j j Xn λ λ− − −− Σ , where ˆ
j

λ  is the jth largest eigenvalue of the matrix  in step 4. 

The root-n consistency enables us to consistently estimate

M̂

( )iF x

SIR

β′ , the conditional 
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probability function defined in (1), nonparametrically by regressing iy  on ˆ
i SIRx β′ . 

Nonparametric estimates have slower convergence rates than n  in general.  

Consequently, replacing the true β   with its root-n consistent estimate does not affect 

the asymptotic properties of nonparametric estimates (see Chen and Smith 2008).  

 The remaining task is to determine J, the number of significant e.d.r. directions.  

To do so, we test the number of zero eigenvalues of .  One can use the summation 

of the smallest  eigenvalues of  as the test statistic, i.e., 

ˆ
SIR

M

K − j ˆ
SIR

M

1

ˆ(6)   ˆ
K

j
k j

n
k
λ

= +
Λ = ∑ ,     

where 1
ˆ ˆ

k
ˆ

K
λ λ≥ ≥ ≥ ≥ λ  and n is the sample size. Li (1991) derives the asymptotic 

distribution for the case where ix  is normally distributed. But in many applications, 
i

x  may 

not be normally distributed.  

 To make inferences for general cases, Cook and Yin (2001, Section 3.3) 

develop the following permutation test. Let Θ  be the K K×  eigenvector matrix 

of . Partitionˆ
SIR

M [ ]1 2Θ = Θ Θ , where 1Θ  is K j×  and 2Θ  is (K K )j× − . The idea 

of the permutation test is that 
i

x′ 1i
x′Θ

i
y should provide no information for   given Θ2   

if  is true.  If we randomly permute 0 :H j J= 2i
x′Θ  and recalculate ˆ

j
Λ  a large 

number of times, we can obtain a permutation distribution of ˆ
j

Λ . Comparing the ˆ
j

Λ  

computed using the original data to its permutation distribution gives the p-value. 

Specifically, for testing j = 0, 1, ⋅ ⋅ , we can use the following procedure: ⋅

Step 1:  Compute   and 1 1i i
V x′= Θ 2 2i i

V x′= Θ . 

Step 2:  Randomly permute the indices i  of  2i i
V x 2

′= Θ  to obtain a permuted set . *
2iV

Step 3: Construct the test statistic *ˆ
j

Λ  using the data *( , )
i i

y x , where * *
1 2ii ix V V⎡ ⎤⎣ ⎦= . 
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Step 4:  Repeat Steps 1-3 several times (e.g., 100 times) and save *ˆ
j

Λ  each time. 

Step 5: Compute the p-value, which is just the proportion of *ˆ
j

Λ ’s obtained in Step 4 

that exceeds the ˆ
j

Λ  computed using the original data ( , )
i i

y x . 

 We close this section with two remarks on the SIR algorithm and permutation 

test.2 

 Remark 1:  If iy  is a binary variable, the maximum J obtained from SIR is 

one. Recall that SIR estimates [ ]( | )
i i

Cov E z y  using 1
ˆ ˆ ˆG

gSIR g g g
M w m m= ′= ∑

0

 whose 

maximum rank equals mi  because n{ 1,G − }K G
g=1 ˆ

g g
w m =∑ , where G is the number 

of slices and K is the number of explanatory variables. The binary dependent variable 

implies that we have only two slices in Step 2 of the SIR algorithm, i.e., G=2. So, SIR 

based on first-moment information  can only identify single-index, binary 

choice models.  To identify more than one index, one needs second-moment based 

SIR method (Li 1991) or Sliced Average Variance Estimate (Cook and Weisberg 

1991). 

( | )
i i

E z y

 Remark 2:  For single-index models, J is assumed to be one.  But it is possible 

that the single index ix β′  may capture little information relevant for 
i

y . If this is true, 

J is essentially zero and one should reconsider his selection of explanatory variables. 

This is similar to a linear regression context where F test suggests that all explanatory 

variables except the constant term are jointly insignificant. So, the permutation test is 

still meaningful for single-index models. 

 In the next section, we demonstrate the misspecification problem and model 

heterogeneity in single-index, binary choice models via Monte Carlo simulation. The 

                                                 
2  Both GAUSS and STATA codes for the SIR algorithm and permutation test are available upon 
request. 

 11



focus is on comparing the performance of SIR and parametric MLE in estimating 

index coefficients under various model settings. 

 

4. Monte Carlo Simulations 

 We design four Monte Carlo (MC) experiments, each with 1000 replications. 

The results show that SIR outperforms Logit and Probit MLE when the latent model 

is not 
i

y x
*
i i

β ε′= +  but is nonlinear in 
i

x β′ .  But when the Probit model is the true 

data generating process (DGP), we show that the efficiency loss of SIR compared to 

MLE is small given a sample of moderate size.  In addition, given the specifications 

(2)-(3), we find that estimating the misspecified model ( )D
i iF x xβ α′ +  with the full 

sample generates incorrect estimate of β , regardless of whether MLE or SIR is used. 

We obtain consistent and efficient estimates if we perform SIR for each stratum 

separately. 

 

4.1 MC Experiment I 

 We generate 400n = observations using the following DGP. For 

, 1, 2, , 400i =

(a) [ 1 2 3 4 5i i i i i i ]x x x x x x ′=  whose five elements are all ; (0,1)iid N

(b) [ ](1) (2) (3) (4) (5) 1 0 1 0 0β β β β β β ′ ′⎡ ⎤= =⎣ ⎦ ; 

(c) * ( 2)i iy x
3

iβ ε′= + + , where ~ (0,1)
i

iid Nε ;   

(d) . *1 0i iy y⎡ ⎤= >⎣ ⎦

 In this DGP, the latent variable *
i

y  is nonlinear in
i

x β′ , which is one of the 

major sources of model misspecification discussed in Section 2. The results in Table 1 
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indicate that SIR performs better than Probit and Logit MLE. The estimates of SIR 

have smaller variances and small-sample biases. Using (3)β̂ , the third element of 

estimated β , as an example, its small-sample biases are 0.05, 0.05, and 0.01 for 

Probit, Logit, and SIR, respectively; the corresponding standard errors are 0.308, 

0.312, and 0.171. 3 

Table 1:  Probit and Logit MLE v.s. SIR in Experiment I  

Methods           Estimates (1)β̂  (2)β̂  (3)β̂  (4)β̂  (5)β̂  

Probit MLE mean 1.000 0.000 1.050 0.002 -0.007 

 std. err 0.000 0.205 0.308 0.207 0.210 

Logit MLE mean 1.000 0.000 1.050 0.003 -0.008 

 std. err 0.000 0.208 0.312 0.210 0.212 

SIR mean 1.000 -0.002 1.010 -0.001 -0.001 

 std. err 0.000 0.118 0.171 0.117 0.115 

 
 
4.2 MC Experiment II 

 

 We use the same DGP as in the first experiment except that we change (c) 

to *
i i

y x β
i
ε′= + , where ~ (0,1)

i
iid Nε . In this setting, Probit is the true model, and 

therefore Probit MLE works best, as indicated by the smallest standard error of 0.118 

for (3)β̂   in Table 2. But the efficiency loss of SIR is trivial as the corresponding 

standard error is 0.122.   

Table 2: Probit and Logit MLE v.s. SIR in Experiment II 

Methods           Estimates (1)β̂  (2)β̂  (3)β̂  (4)β̂  (5)β̂  

Probit MLE mean 1.000 0.002 1.010 0.002 0.003 

 std. err 0.000 0.079 0.118 0.084 0.083 

Logit MLE mean 1.000 0.002 1.010 0.002 0.003 

 std. err 0.000 0.079 0.119 0.084 0.083 

SIR mean 1.000 0.002 1.010 0.002 0.003 

 std. err 0.000 0.081 0.122 0.088 0.086 

 

                                                 

(1)
ˆ3  In index models, one can only identify parameters up to scale. So, we standardize β  to be one and 

divide other estimated parameters by (1)
ˆ

(1)
ˆβ   and report the ratios. Hence, the standard errors of β   

are zeros. 
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4.3 MC Experiment III 
 

 We generate 400n =  observations using the following DGP. 

(a) For , 1,2, , 400i = [ 1 2 3 4 5i i i i i i ]x x x x x x ′=  whose elements are all 

; (0,1)iid N

(b) For the subsample , 1, 2, , 200i = 1D

ix = and *
1( 2)i iy x

3
iβ ε′= + +

[ ]0

, where 

1 1(1) 1(2) 1 1 0β β β β (3) 1(4) 1(5)β β ′ 1 0 ′⎡ ⎤⎣ ⎦= =  ;   

(c) For the subsample  , 201,202, , 400i = 0D

i
x =  and *

22exp( )
i i

y x
i

β ε′= +

[ ]0 1

, where 

2 2(1) 2(2 0β β ) 2(3) 2(4) 2(5)β β β β ′ 1 0 ′⎡ ⎤= =⎣ ⎦ −

0

; 

(d)    For ,  and 1,2, , 400i = *1i iy y⎡ ⎤= >⎣ ⎦ ~ (0,1)
i

iid Nε . 

 In this experiment, the categorical variable D
ix  implies heterogeneity in the 

model itself (i.e., different models for the subsample with 1D

i
x =  and the subsample 

with ).  In Table 3, we show that the estimates are far from the true parameters 

if we naively combine the dummy variable and continuous variables in one index and 

estimate the single equation 

0D

i
x =

( )D
i iF x xβ α′ +  using the full sample ( ). 

The estimate of 

1,2, , 400i =

α  should be around zero, but both Probit and Logit MLE estimates 

for this parameter are around 3.50 and statistically significant. The SIR method does 

suggest 0α = , but it fails to separately identify the vectors 1β  and 2β .  

 When we split the sample according to the categorical variable and run 

separate regressions for each subsample, SIR generates estimates with smaller 

variances and small-sample biases than MLE, as we have seen in the first MC 

experiment.  Note that the signal is much weaker for the subsample with  than 0D

ix =

 14



for the subsample with , due to the fact that 1D

ix = [ ]3
1 2( 2) 2.5 exp( )i iE x E xβ β′ ′⎡ ⎤+ ≈⎣ ⎦

0D

ix

. 

This explains why the estimates from the subsample with =  have larger standard 

errors and small-sample biases. 

Table 3: Probit and Logit MLE v.s. SIR in Experiment III 

True 
model 

True 
parameters (1)β  (2)β  (3)β (4)β (5)β    

(subsample ) 1D
ix = 1β  1 0 1 0 0  

(subsample ) 0D
ix = 2β  1 0 0 0 -1  

Estimates  (full sample) (1)β̂  (2)β̂  (3)β̂  (4)β̂  (5)β̂  α̂  

Probit MLE mean 1.000 0.004 0.606 -0.005 -0.427 3.520 

 std. err 0.000 0.204 0.231 0.190 0.212 0.782 

Logit MLE mean 1.000 0.004 0.583 -0.005 -0.452 3.490 

 std. err 0.000 0.212 0.239 0.196 0.224 0.848 

SIR mean 1.000 0.000 0.575 0.000 -0.441 -0.042 

 std. err 0.000 0.144 0.176 0.144 0.167 0.283 

Estimates (subsample ) 1D
ix = 1(1)β̂  1(2)β̂  1(3)β̂  1(4)β̂  1(5)β̂   

Probit MLE mean 1.000 -0.008 1.130 -0.002 0.000  

 std. err 0.000 0.327 0.624 0.311 0.347  

Logit MLE mean 1.000 -0.007 1.130 -0.002 0.000  

 std. err 0.000 0.331 0.627 0.315 0.352  

SIR mean 1.000 0.001 1.030 0.002 -0.007  

 std. err 0.000 0.175 0.254 0.173 0.178  

Estimates (subsample ) 0D
ix = 2(1)β̂  2(2)β̂  2(3)β̂  2(4)β̂

  

 2(5)β̂   

Probit MLE mean 1.000 0.050 -0.035 0.038 -1.250  

 std. err 0.000 1.160 0.910 0.982 1.750  

Logit MLE mean 1.000 0.049 -0.041 0.042 -1.260  

 std. err 0.000 1.190 1.080 1.040 1.860  

SIR mean 1.000 -0.004 -0.013 0.000 -1.050  

  std. err 0.000 0.255 0.263 0.243 0.387  

4.4 MC Experiment IV 

 We use the same DGP as in the third experiment except that the errors are now 

drawn from a uniform distribution with mean zero and variance one, i.e., 

~ ( 12 2,
i

iid unifε − 12 2) . The non-normal errors make the Probit and Logit 

specifications more problematic. In Table 4, Probit and Logit MLE exhibit large 

standard errors (e.g., 15.90 and 3.99 for 2(5)β̂ ) in the subsample with  (i.e., the 

weak signal case).  

0D

i
x =

 15



Table 4: Probit and Logit MLE v.s. SIR in Experiment IV 

True 
model 

True 
parameters (1)β  (2)β  (3)β  (4)β  (5)β   

(subsample ) 1D
ix = 1β  1 0 1 0 0  

(subsample ) 0D
ix = 2β  1 0 0 0 -1  

Estimates  (full sample) (1)β̂  (2)β̂  (3)β̂  (4)β̂  (5)β̂  α̂  

Probit MLE mean 1.000 -0.006 0.589 0.000 -0.458 3.350 

 std. err 0.000 0.186 0.219 0.185 0.200 0.757 

Logit MLE mean 1.000 -0.006 0.565 0.000 -0.484 3.310 

 std. err 0.000 0.193 0.225 0.191 0.212 0.811 

SIR mean 1.000 -0.002 0.555 -0.001 -0.468 0.050 

 std. err 0.000 0.138 0.167 0.141 0.158 0.281 

Estimates (subsample ) 1D
ix = 1(1)β̂  1(2)β̂  1(3)β̂  1(4)β̂  1(5)β̂   

Probit MLE mean 1.000 -0.005 1.110 0.000 0.008  

 std. err 0.000 0.318 0.608 0.335 0.327  

Logit MLE mean 1.000 -0.005 1.110 0.000 0.008  

 std. err 0.000 0.322 0.603 0.336 0.330  

SIR mean 1.000 -0.007 1.030 0.002 -0.004  

 std. err 0.000 0.173 0.269 0.172 0.174  

Estimates (subsample ) 0D
ix = 2(1)β̂  2(2)β̂  2(3)β̂  2(4)β̂  2(5)β̂   

Probit MLE mean 1.000 0.027 0.238 0.007 -1.720  

 std. err 0.000 1.900 7.610 0.900 15.90  

Logit MLE mean 1.000 -0.017 -0.053 0.024 -1.330  

 std. err 0.000 0.809 1.830 0.627 3.990  

SIR mean 1.000 -0.002 0.000 -0.005 -1.060  

  std. err 0.000 0.258 0.232 0.232 0.361  

 

 This experiment shows that Probit and Logit MLE are very sensitive to 

incorrect error distribution assumptions when *( | )i iE y x  is nonlinear in
i

x β′ , the 

sample size is small, and the data is noisy. SIR, however, works well under such 

circumstances (e.g., a small standard error of 0.361 for 2(5)β̂ ) because it imposes no 

restrictions on the error term 
i
ε   and the latent model *( |i )iE y x .   

 Together, the MC experiments suggest that SIR can estimate coefficients of 

single-index, binary choice models better than parametric MLE in general settings 

where both the latent model and its error distribution are unknown. Given the 

technical difficulties of semiparametric methods discussed in Section 1, we foresee 

that the SIR-Nonparametric two-step method will become popular among applied 
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researchers. In the next section, we give an example to demonstrate this new 

estimation method. 

 

5. Application to Treatment Evaluation 

 There is an extensive literature devoted to evaluating the impact of social 

programs on program participants. The assignment of individuals to these programs is 

often non-random as social assistance is generally targeted towards those most in 

need.  For this reason, the difference in average outcomes of participants and non-

participants is a biased estimate for the causal impact of program intervention. 

Various quasi-experimental methods have been proposed to reduce the selection bias 

due to non-random assignment and recover the true treatment effect. For a detailed 

overview of these methods, see Heckman et.al. (1998a and 1998b), Cameron and 

Trivedi (2005), and Imbens and Wooldrige (2008).  In this application, we revisit the 

propensity score matching method, and we compare the estimated propensity scores 

and treatment effects using the SIR-Nonparametric method, Probit and Logit MLE.  

 To proceed, we introduce the following notations and definitions. Let 

{ }, , ; 1, ,i i im x D i n=  be the vector of observations on a scalar-valued outcome 

variable m, a vector of observable variables x, and a binary indicator of treatment D. 

The primary interest of this application is to identify the population average treatment 

effect on the treated (ATET), defined as 

(7)   1 0 1i i iATET E m m D⎡ ⎤= − =⎣ ⎦ . 

Here,  and  denote the outcomes of an individual i when  and , 

respectively.  The ATET can be identified under the ignorability assumption of 

Rubin (1978)  

1i
m 0i

m 1
i

D = 0
i

D =

 17



(8)   0m D⊥ x , 

which implies that 

(9)   { }1 0 , 1X i i i i iATET E E m m x D D⎡ ⎤= − =⎣ ⎦ 1=  

              { }1 0, 1 , 0 1
X i i i i i i i

E E m x D E m x D D⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦ = . 

The problem is that one cannot observe 0 , 0i i iE m x D⎡ ⎤=⎣ ⎦  when . One may use 

matching methods to approximate

1
i

D =

0 , 0i i iE m x D⎡ ⎤=⎣ ⎦  based on observable x covariates. 

However, if the x covariates are of high dimension, the matching method becomes 

impractical. Rosenbaum and Rubin (1983) proposed using propensity scores, i.e., 

( ) Pr( 1 )p x D X= = = x , to facilitate matching under the conditional independence 

assumption  

(10)   0 1,m m D x⊥ , 

which in turn implies  

(11)   0 1, (m m D p x⊥ ) . 

Given condition (11), the ATET derived in (9) can be rewritten as 

(12)  { }1 0( ), 1 ( ), 0 1X i i i i i i iATET E E m p x D E m p x D D⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦ =  

              { }1 0( ) ( )
X i i i i

E E m p x E m p x⎡ ⎤ ⎡= −⎣ ⎦ ⎣ ⎤⎦ . 

Matching methods pair program participants with non-participants based on the 

degree of similarity in the estimated propensity scores. Exact matching, nearest-

neighbor matching, kernel matching, and local linear matching are some of the 

popular matching methods.  

 For simplicity, we use the nearest-neighbor matching method, which estimates 

ATET using 
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(13)   *

1
1 0

{ 1}
T i i

i D

ATET n m m−

∈ =
⎡ ⎤= −∑ ⎣ ⎦ , 

where  denotes the number of treated units being matched with control units and 
T

n

*0i
y  is the outcome of an untreated unit  satisfying *

i

(14)    { }* min | ( ) ( ) | { 0}j ii j p x p x j D= − ∀ ∈ = . 

The propensity score ( )p x

)

 is usually estimated using parametric single-index, 

binary choice models (p x β′ , such as Probit and Logit. When these models are 

misspecified, ˆ
MLE

β  is inconsistent and the fitted  is an incorrect estimate of 

propensity score. As a result, the propensity score matching method may yield biased 

estimates of the ATET. To demonstrate the advantage of the SIR-Nonparametric 

method over the conventional parametric methods, we use the National Supported 

Work (NSW) data on the treatment group and one of the non-experimental control 

group data sets (PSID-1) constructed by Lalonde (1986) from the Panel Study of 

Income Dynamics.

ˆˆ (
i MLE

p x β′ )

4   

 First, we divide the data into eight sub-groups based on three dummy variables 

--- race, marital status and high-school degree status (see Table 5 for details). 5   

Table 5: Sub-Groups Based on the Three Dummy Variables  

Subgroup# Race Married Nodegree 
#Treated  

units 
#PSID controls 

units 

1 1 1 1 25 291 

2 1 1 0 7 276 

3 1 0 1 97 76 

4 1 0 0 38 62 

5 0 1 1 1 365 

6 0 1 0 2 1225 

7 0 0 1 8 28 

8 0 0 0 7 167 

Total    297 2,490 
 

 

                                                 
4  Data are from Rajeev Dehejia’s website  http://www.nber.org/~rdehejia/nswdata.html.  
5  Race =1 if non-white, 0 if white; Married =1 if married, 0 if single; Nodegree=1 if no high school 

degree/diploma, 0 otherwise. 
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For each sub-group, we allow for a different nonparametric propensity score function 

(15)    ( )
i s s is s

p F x i sβ′= ∀ ∈ ,    

 
where  indexes the eight sub-groups and each 1,2, ,8s =

s
β  represents a column 

vector of index coefficients. The observed x  comprises four continuous variables --- 

age, educ, RE74, and RE75.  ‘Age’ is defined as age in years in 1974, ‘educ’ 

measures number of years of schooling in 1974, and ‘RE74’ and ‘RE75’ are real 

earnings in 1974 and 1975 respectively and measured in thousand of dollars. The 

earnings refer to the pre-intervention period as the NSW program was administered 

between 1975 and 1977.  

We apply SIR to estimate the index coefficients s
β   for each sub-group. In 

Table 6, we report the estimated index coefficients using SIR as well as those using 

Probit and Logit MLE. Cook and Yin’s permutation test following the SIR procedure 

indicates only one significant index for sub-groups 1, 2, 3, 4, 7, and 8 at the 5% 

significance level.  For sub-groups 2 and 5-8, the index coefficients are not estimated 

precisely because of too few treated units.  These sub-groups may be omitted given 

that they are not important sources of variation in the data. A higher level of 

aggregation can be applied, requiring the researcher’s discretion. 

The results in panels A, B, and C indicate that the estimates of index 

coefficients are sensitive to the three methods. For example, the standardized index 

coefficient estimates for sub-group 1 are (1, -2.19, 1.12, -0.11), (1, -2.11, 4.11, -1.14), 

and (1, -1.92, 4.35, -0.96) when using SIR, Probit MLE, and Logit MLE, respectively.  

Different estimates naturally raise the question about which method to use in practice. 

The answer depends on the true data generating process, which is unknown. Given a 

misspecified propensity score function, the MLE of index coefficients is inconsistent, 

and the inconsistency carries through to the estimated treatment effects (Drake 1993). 
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Among the three methods, SIR is least demanding on model specification and its root-

n consistent estimate of index coefficients has more credibility. 

Table 6: Estimated  Index Coefficients ( ˆ
s

β ) Using the Three Methods 

Subgroup# 

 
Age 

 
Education 

 
RE74 

 
RE75 

 
Jointly 

significant? 

A. Estimates Using SIR Method 

1 -0.283 (0.043) 0.621 (0.172) -0.316 (0.080) 0.032 (0.078) Yes 

2 -0.056 (0.200) 0.178 (1.190) -0.055  (0.250) -0.196 (0.228) Yes 

3 -0.225 (0.021) 0.239 (0.099) -0.074 (0.042) -0.320 (0.050) Yes 

4 0.306 (0.029) 0.225 (0.154) -0.086 (0.037) -0.129 (0.034) Yes 

5 -0.342 (0.369) -0.326 (2.150) -0.463 (0.539) -0.012 (0.504) No 

6 -0.061 (0.779) -0.266 (3.920) 0.047 (0.934) -0.211 (0.938) No 

7 -0.067 (0.067) 0.330 (0.398) -0.067 (0.104) -0.513 (0.096) Yes 

8 0.153 (0.089) -1.310 (0.369) -0.192 (0.105) -0.049 (0.101) Yes 

B. Estimates Using Probit MLE 

1 -0.057 (0.018) 0.120 (0.079) -0.234 (0.054) 0.065 (0.041) Yes 

2 -0.020 (0.027) -0.006 (0.178) 0.006 (0.025) -0.097 (0.037) Yes 

3 -0.041 (0.015) 0.061 (0.069) -0.044 (0.028) -0.196 (0.046) Yes 

4 0.097 (0.062) -0.239 (0.218) -0.015 (0.042) -0.382 (0.115) Yes 

5  n/a n/a n/a n/a  

6 -0.060 (0.050) -0.231 (0.260) -0.029 (0.051) -0.242 (0.222) No 

7 n/a n/a n/a n/a  

8 -0.017 (0.033) -0.710 (0.330) -0.197 (0.129) -0.032 (0.098) Yes 

C. Estimates Using Logit MLE 

1 -0.112 (0.035) 0.215 (0.162) -0.487 (0.121) 0.107 (0.094) Yes 

2 -0.044 (0.056) -0.008 (0.361) -0.009 (0.059) -0.196 (0.076) Yes 

3 -0.068 (0.025) 0.112 (0.121) -0.081 (0.054) -0.332 (0.082) Yes 

4 0.168 (0.107) -0.420 (0.38) -0.028 (0.071) -0.643 (0.194)  Yes 

5 n/a n/a n/a n/a  

6 -0.130 (0.108) -0.536 (0.637) -0.067 (0.120) -0.575 (0.525) No 

7 n/a n/a n/a n/a  

8 -0.045 (0.059) -1.362 (0.701) -0.365 (0.244) -0.058 (0.191) Yes 
 

Note: (i) The numbers in parentheses are the estimated standard errors.  
          (ii) For sub-groups 5 and 7, MLE fails to generate estimates for Probit and Logit models.   

 

Next, we estimate the propensity score function using kernel regression of the 

treatment dummy, , on the estimated inverse regression variate, 
i

D ˆ
i s

x β′ , for i  and 

.  Specifically, we calculate 

s∈

1,2, ,8s =

(16)   ( ) ( )1 1

1 1
ˆ ˆ ˆ ˆˆ ( ) ( )s sn n

is i s j s i i s j sj j
p K h x x D K h x xβ β β− −

= =
′ ′ ′ ′= −∑ ∑ β− , 
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where , ,i j s∈
s

n  is the sample size of sub-group s,  h denotes a bandwidth, and ( )K ⋅  

is a user-specified kernel weighting function.  

In Figure 1, we plot the estimated propensity score functions. These graphs 

confirm the two major concerns in this paper. First, parametric specifications may not 

be adequate for capturing the rich patterns of nonlinearity in the data. Clearly, neither 

Probit nor Logit specification fit the data well. Both parametric models impose a 

monotonic relationship between ( )i
p x β′ and

i
x β′ .

)

6  However, the nonparametric 

propensity score functions suggest that this is not the case for most of the sub-groups.  

Second, substantial model heterogeneity exists as indicated by different 

patterns of ˆˆ (
i s s

p x β∈′  across the eight sub-groups. None of the estimated propensity 

score functions of sub-groups 1-7 can be obtained by vertically or horizontally 

shifting the estimated propensity score function of sub-group 8 (the benchmark with 

the three dummy variables being zeros). Thus, the common practice of estimating a 

single equation with pooled data from various socio-economic groups may obscure 

treatment heterogeneity in the data. 

Finally, we calculate the ATET for each sub-group using the estimated 

propensity scores. The outcome variable is RE78, the real earnings in 1978 (a year 

after the NSW project was completed) measured in thousand of dollars. Within each 

sub-group, we calculate the differences in RE78 between individuals in the treatment 

group and their matched counterparts in the control group.  We average these 

differences to obtain the estimated ATET and report the results in Table 7.  We focus 

on sub-groups 1 (non-white, married, nodegree), 3 (non-white, single, nodegree) and 

                                                 
6  Even some of semiparametric methods have the same monotonicity requirement, such as Han’s 

maximum rank correlation estimator (1987). 
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4 (non-white, single, with degree) because too few matched cases in sub-groups 2 and 

4-8 may introduce bias to the ATET estimates. 7 

Figure 1: Nonparametric Propensity Score Function Using the SIR Variate 

 

                                                 
7  There are seven matches in sub-group 2, only one match in sub-groups 5-7, and four matches in sub-
group 8. 
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 Table 7: Estimates of the ATET Based on the Three Methods 

 SIR-Nonparametric Probit MLE Logit MLE 

Subgroup# # Matches ATET # Matches ATET # Matches ATET 

1 25 -4.41 (3.60) 11 -2.76 (3.31) 11 -3.21 (3.58) 

3 85  0.84 (1.79) 84   1.50 (1.65) 84  1.39 (1.54) 

4 30 -1.73 (3.70) 30 -1.15 (3.85) 30 -0.62 (3.84) 
 

Note:  (i) ATET is measured in thousand of dollars; 
           (ii) The numbers in round brackets are bootstrapped standard errors with 1000 replications. 
 

 Clearly, there is substantial treatment heterogeneity across the three groups no 

matter which method is applied. All three methods suggest that only sub-group 3 

benefits from the treatment while sub-groups 1 and 4 worse off after the treatment. 

The difference between sub-groups 1 and 3 is caused by marriage status, indicating 

the treatment is more effective on single individuals on average. The difference 

between subgroups 3 and 4 is caused by education, which implies that the NSW 

program may have targeted at those without high school degree.  

 Moreover, the three methods do not result in the same magnitude of estimated 

ATET. When the ATET is positive (e.g., sub-group 3), the SIR-Nonparametric 

method suggests a smaller treatment effect than the parametric MLE methods.  When 

the ATET is negative (e.g., sub-groups 1 and 4), the SIR-Nonparametric method 

suggests a larger negative treatment effect than the parametric MLE methods.  These 

results show that applied researcher should pay attention to model specification as 

well as heterogeneity when using single-index, binary-choice models. 

 

6. Concluding Remarks 

In this paper, we propose a SIR-Nonparametric method for analyzing single-

index, binary-choice models in a general framework. The method does not require 

fully specifying a parametric model but generates root-n consistent index coefficient 
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estimates. In addition, we allow for model heterogeneity, which can better capture 

diverse economic decisions and outcomes across socio-economic groups. Thus, the 

proposed new method enriches the toolkit for econometric modelling and policy 

analysis.  

 There are at least two possible extensions to this modelling exercise. The first 

is to investigate second-moment based dimension reduction techniques, such as SIR-

II (Li 1991) and Sliced Average Variance Estimate (SAVE, Cook and Weisberg 

1991). These methods allow for multiple indices in binary choice models, which can 

potentially capture more information than first-moment based SIR used in this paper. 

The second possibility is to design a more efficient matching method for program 

evaluation. The propensity score matching based on a single-index, binary-choice 

model may suffer information loss and bias the estimated treatment effects. Kernel 

matching using estimated indices from aforementioned second-moment based 

dimension reduction methods may be an interesting direction worth pursuing in the 

future. 
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