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Introduction 

This paper presents in English, develops and generalizes the results of Harin 

(2008) and a part of the results of Harin (2009).  From other works of the item see, 

e.g., Tsay (2008), Kasa (2000).   
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1.  Approaches 

1.1.  The principle of uncertain future 

General principle of uncertain future: 

“A future event contains an uncertainty” 

Specific principle of uncertain future: 

“The estimation of the probability of a future event should (manifestly) 

contain an uncertainty” 

or,  

Pestimated ≈ Pestimated mean ± ΔP 

Development and applications of the principle see in (Harin 2005 – Harin 

2009).   

 

1.1.1.  The first consequence of the principle  

1.1.1.1.  A far analogy.  Vibrations near a rigid wall 

Suppose an electro-drill or any similar device, e.g., sewing-machine, 

vibrosieve, machine-gun, electric hammer etc. which (when working) can vibrate 

quickly.  Presume the device has rigid flank sides and vibrates with the amplitude 

of, say, 1 mm.   

Can we approach a flank side of the non-working drill (or of the device) to a 

rigid wall or ledge:   

A)  as close as at the distance, say, 0.1 mm;   

B)  tightly?   

Certainly.  Both A) and B).   

And now turn the drill (the device) on.  What will be the distance from the 

rigid wall to the working drill?  Vibrations will repulse, shift the drill from the wall.   

Due to the vibrations:   

A)  the distance from the drill to the wall will be more than 0.1 mm;   

B)  the gap, rupture will arise between the drill and the wall.   

 

1.1.1.2.  An example.  Aiming firing at a target 

General conditions 

Suppose a hypothetic transportable testing stand, arrangement for testing the 

quality of rifles, guns, cartridges etc.  To avoid human errors, the arrangement is 

made in the form of a standing man, a rifle is fasten onto the arrangement and the 

aiming is performed automatically.  Suppose firing errors are minimized and are 

much less than one point of the target.   

Suppose the arrangement is placed near a railway or Metro.  The vibrations of 

the ground increase firing errors up to, say, 2 points.  For the sake of simplicity, 

assume the target is strongly elongated in one of directions.  So, the consideration is 

reduced to one-dimensional and uniform (without effects of curvature) case.  

Suppose the points are located in the scale from “0” to “10”:  “9”, “8”, “7” etc. are 

located after “10”.  Before “0” there is the blank space which is equivalent to “0”.   

Suppose following dispersion takes place: one shot =exact; one shot =+2 

points; one shot =-2 points.   

If the aiming is performed at, say, “7”, the mean result is the same as the 

aiming value.  The result is (7+9+5)/3=7.   
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A)  The shift from the bounds to the middle of the target scale 

If the aiming is performed at “9”, one bullet should hit beyond the bound “10” 

at “11”, but really hits at “9”.  The result is (9+9+7)/3=25/3=8⅓.  One bullet, 

instead of “11”, hits “9”, i.e. 2 less than the aiming value.  The mean result is 

shifted from the bound (from “10”) to the middle (to ~“5”) of the scale by 2/3 

points.   

If the aiming is performed at “1”, one bullet should hit beyond the bound “0” 

at “-1”, but really hits at the blank space which is equivalent to “0”.  The result is 

(1+3+0)/3=1⅓.  One bullet, instead of “-1”, hits “0”, i.e. 1 more than the aiming 

value.  The mean result is shifted from the bound (from “0”) to the middle (to ~“5”) 

of the scale by 1/3 points.   

A)  The dispersion causes the shifts of the mean results from the bounds 

to the middle of the target scale.   

 

B)  The ruptures in the target scale 

If the aiming is performed at the bound of the target scale “10”, one bullet 

should hit beyond the bound “10” at “12”, but really hits at “8”.  The result is 

(10+8+8)/3=26/3=8⅔.  One bullet, instead of “12”, hits “8”, i.e. 4 less than the 

aiming value.  The rupture between the mean result and the bound “10” of the scale 

is 1⅓ points.   

If the aiming is performed at the bound of the scale “0”, one bullet should hit 

beyond the bound “0” at “-2”, but really hits at the blank space which is equivalent 

to “0”.  The result is (0+2+0)/3=2/3.  One bullet, instead of “-2”, hits “0”, i.e. 2 

more than the aiming value.  The rupture between the mean result and the bound 

“0” of the scale is 2/3 points.   

B)  The dispersion causes the ruptures near the bounds of the target 

scale.   

 

1.1.1.3.  The first consequence of the principle 

Suppose we wish to test a probability value  P, which is very close (but not 

equal) to the bound  Pbound  of the probability scale, i.e. to 0% or 100%.  The mean-

square error, the uncertainty value of the estimation of  P  is  ΔP (taking into 

account Novosyolov 2009).  Let us examine two cases.  Name them conditionally:  

certain (P=Pcertain  and  ΔP=ΔPcertain) and uncertain (P=Puncertain  and  

ΔP=ΔPuncertain).  Suppose the certain case is an initial one and the uncertain case is a 

final one.  Suppose for both cases the number of trials, tests, outcomes etc. is the 

same.  So, the difference, change  ΔPuncertain-ΔPcertain  is defined only by the 

difference, change of noises, disturbances etc.   

Suppose in the certain case the uncertainty value of the probability estimation 

is equal to 0 or is much less than the difference between the initial probability  

Pcertain  and the bound of the probability scale  Pbound   

ΔPcertain << |Pbound - Pcertain| 

Suppose in the uncertain case the uncertainty value of the probability 

estimation is more than the difference between the initial probability  Pcertain  and 

the bound of the probability scale  Pbound   

ΔPuncertain > |Pbound - Pcertain|  
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A)  Shifts in the probability scale 

If, due to increasing of noises, the uncertainty  ΔP  of the probability 

estimation increases from initial  ΔPcertain<<|Pbound-Pcertain|  to final  

ΔPuncertain>|Pbound-Pcertain|,  then the probability will be shifted, “pushed away” by 

the noises from the bound to the middle of the probability scale.   

Indeed, if, e.g., for initial  Pcertain=99%,  the uncertainty of the probability 

estimation increases from initial  ΔPcertain<<1%  to final  ΔPuncertain=5%,  then, 

evidently, the probability will be shifted from initial  Pcertain=99%  to final  

Puncertain<99%.  Similarly, if for initial  Pcertain=1%,  the uncertainty of the 

probability estimation increases from initial  ΔPcertain<<1%  to final  ΔPuncertain=5%,  

then, evidently, the probability will be shifted from initial  Pcertain=1%  to final  

Puncertain>1%.   

A)  The increasing of the probability estimation uncertainty (caused by 

the increasing of the noises) shifts the probability from the bounds to the middle of 

the probability scale.  At high probabilities, the final probability  Puncertain  will be 

lower than the initial  Pcertain.  At low probabilities, the final probability  Puncertain  

will be higher (*without the influence of the second consequence of the principle) 

than the initial  Pcertain.   

Phigh uncertain < Phigh certain  

*Plow uncertain > Plow certain  

 

B)  Ruptures in the probability scale 

If the mean-square error, the uncertainty value  ΔPcertain  of the estimation of 

the probability  P  is equal to zero, then the probability  Pcertain  can be arbitrarily 

close to the bound  Pbound  of the probability scale.  If, due to noises, the uncertainty 

value  ΔPuncertain  of the estimation of the probability  P  is finite, then the 

probability  Puncertain  can not be closer to the bound  Pbound  of the probability scale 

than the finite quantity  δPuncertain  (see Harin 2009-2).   

Indeed, if the uncertainty of the probability estimation increases from initial 

value  ΔPcertain<<1%  to final value, e.g.,  ΔPuncertain=5%,  then, evidently, the 

probability  Puncertain  can not be closer to the bound  Pbound  of the probability scale 

than  δPuncertain=0.5%.  So, the probability can not be more than  99.5%.  It can not 

be (*see the second consequence below) less than 0.5% also.   

B)  Due to noises, there will exist ruptures, gaps, forbidden bands in the 

probability scale.  Or   

*|Pbound - Puncertain| ≥ δPuncertain 

where  

ΔPuncertain ≥ δPuncertain ≥ O(ΔPuncertain) ≥ const > 0.   

 

Evidently, the statements A) and B) of the first consequence of the principle 

are true both for the present and future.   
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1.1.2.  The second consequence of the principle.   

Incompleteness of the present probability system of future events 

The probability of an event, which is not forbidden by objective laws, is more 

than zero (in the microcosm even virtual events can occur that infringe the laws of 

conservation).  Hence, at any real number of foreseen events, an unforeseen event 

with the probability more than zero will occur in any forecast or plan.  Or   

∑ Pforeseen + ∑ Punforeseen  =  100%  

∑ Punforeseen > 0%  

Hence 

∑ Pforeseen   <  100%  

where and further  

∑ Pforeseen   - the sum of estimates of probabilities of all foreseen events; 

∑ Punforeseen  - the sum of estimates of probabilities of all unforeseen events; 

 

1.1.3.  Examples of applications of the principle  

In the probability theory the principle provides the statement of existence of 

ruptures in the probability scale near 0% and 100% due to noises and uncertainties 

(Harin 2009-2).   

In economics for the Allais paradox (Allais 1953), the “fourfold pattern” 

paradox, risk aversion, loss aversion, overweighting of low probabilities, uniform 

explanation of choices for both gains and losses, the equity premium puzzle, etc 

(see, e.g., Di Mauro and Maffioletti 2004) the principle (Formation of ruptures in 

the probability scale) provides an uniform solution (Harin 2007).  For the problems 

of the incompleteness of systems of preferences, ambiguity aversion, the Ellsberg 

paradox (Ellsberg 1961), etc the principle (Incompleteness of the probability 

system) provides uniform solution also (Harin 2007).   

In the theory of complex systems the principle provides a possibility of 

infringement of division into groups of inconsistent events for future events 

(Karassev 2007).   

 

1.2.  Optimal frames of reference 

From physics it is well known an event may be described in various frames of 

reference.  Optimal choice of frame of reference is well known to be valuable.  

When one use various frames of reference, the expressions of transmission between 

various frames of reference are necessary.   

 

1.3.  Formula of forecasting as a framework for forecasts 

An unforeseen event can modify an ideally forecasted phenomenon.  Hence if 

a forecast is used after such unforeseen event the forecast should be corrected.   

The correcting formula of forecasting represents the correction (in a sense, a 

framework for forecasts) which should be done for the forecast to be true after 

unforeseen events have been occurred.  In general, corrections may involve 

corrections of errors and functions.   

The correcting formula of forecasting may be also used as an adapting tool in 

addition to unified and standardized forecasts to take into account distinctive 

features of specific situations.   
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1.4.  New forecasting resources and areas of application 

At present a high-quality forecasting is an expensive work.  In addition, in the 

case of unforeseen events, the forecast can considerably loose its value.  Therefore 

at present, only government and large-size firms may order a high-quality 

forecasting.   

Using the formula of forecasting may considerably increase the time of use of 

forecasts and, so, decrease the cost of forecasting for customers.  Using of formula 

of forecasting may increase unification and standardization of forecasting and, so, 

decrease the cost of developing and revisions of forecasts.  Eventually, these 

reasons can lead to wide expansion of forecasting into the areas of municipal needs, 

middle-size and small-size business and, even, to individual forecasting.   

 

 

2.  Development of the formula.  Errors 

2.1.  Ideal initial circumstances 

At ideal initial circumstances (that is at circumstances when foreseen errors 

may be neglected) for a function F(t) at t=t0, taking into account unforeseen events 

that may cause an error ±Δ(t0,t), we obtain the forecast of the function F(t)     

)],(1[),()( 0,0 ttttFtF unforeseenerrorbase Δ±×≈  

or, omitting variables, 

]1[ ,unforeseenerrorbaseFF Δ±×≈  

where and further  

F(t)    - the corrected forecast for the moment  t:  t>tcorr>t0;   

t0      - the moment, the time when the forecast was created; 

tcorr     - the moment, the time when the forecast is corrected; 

Fbase(t0,t)   - the base forecast; 

Δerror,unforeseen(t0,t)  - the forecast error which is caused by unforeseen events: 

Δ(t0,t)=0 at t≤t0  and  Δ(t0,t)>0 at t>t0.   

An averaged example:  For an averaged case when  F(t)~Const  and for  

Δerror,unforeseen(t0,t)~θ(t-tpossible)   –  step-function  of  an  unforeseen  event  which  

can occur at a possible moment tpossible>t0  with the probability  Punforeseen:   

Punforeseen×(t-t0)<<1  we have:  

)](1[),( 0,,0 ttttFF linearunforeseenerrorbase −×Δ±×≈  

- a linear (at the initial stage) increase of the error with the factor linear of the 

increase  Δerror,unforeseen,linear.   

It should be noted, in general case even at ideal initial circumstances, a 

relative error, caused by unforeseen events, can be considerably more than 1.   
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Example.  Hiroshima 1945 

Suppose, in 1930-35 safety’s calculation for underground factory, government 

bomb-proof shelter, etc was needed for the year 1945.  The calculation should be 

based, e.g., on the forecast of maximal power of aircraft bomb for 1945.   

Suppose, in 1930-35 the ideal forecast was made.  The forecast should be 

based on maximal weight that bombing aircraft can lift.  To 1945, due to the most 

optimistic forecasts, a bombing aircraft could lift a bombing weight much less than 

20 tons and even less in trotyl equivalent.  In 1945 Hiroshima was bombed by the 4-

tons atomic bomb.  But it was 20000 tons in trotyl equivalent.   

The prerequisite of an atomic bomb (the division of uranium) was discovered 

in 1938.  Naturally, in 1930-35 it was the unforeseen event.   

So, in this case the relative error, caused by unforeseen event, is more than 

1000 (more than 100000%).   

 

2.2.  Non-ideal initial circumstances 

In a general case errors may be taken into account as  

)),(),,(( ,0,, tttt corrunforeseenerrorforeseenerrorerrorerrortotalerror ΔΔ=Δ≡Δ δ  

where and further  

Δerror,total≡Δerror    - the total relative error; 

δerror,foreseen(t0,t)    - the foreseen relative error; 

Δerror,unforeseen(tcorr,t)  - the foreseen relative error; 

tcorr     - the moment of correction of forecast; 

 

 

3.  Development of the formula.  Functions 

3.1.  Additive and multiplicative functions 

Corrections may be expressed in a form of additive functions: 

)},{,( , erroriadditbasecorr FFF ΔΦ≈  

]1[][
1

, error

I

i

iadditbaseFF Δ±×Φ+≈ ∑
=

 

where and further  

Fcorr   - the correcting function; 

{Фaddit,i}   - the set of additive functions; 

∑Фaddit,i   - the sum of additive functions; 

i,l,m,…   - indices in sets, sums and products; 

I,L,M,…   - maximal values of indices in sets, sums and products. 

In a number of cases a form of multiplicative functions may be a more optimal 

choice of frame of reference such as:  

)},{,( , errormtmultiplicabasecorr FFF ΔΦ≈  

]1[][
1

, error

M

m

mtmultiplicabase KFF Δ±××≈ ∏
=

 

where and further  

{Фmultiplicat,m}   - the set of multiplicative functions; 

∏Kmultiplicat,m  - the product of multiplicative functions. 
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3.2.  Other functions 

In a number of cases a form of other functions may be a more optimal choice 

of frame of reference such as:  

)},{},{},{,( ,,, errorlunforeseenkforeseenispecialbasecorr FFFFF ΔΦ≈  

or 

)},{},{},{},{,( ,,int,, errorrexternalnernalmperiodicispecialbasecorr FFFF ΔΦΦΦ≈  

and so on,   

where and further  

{Fspecial,i}    - the set of specializing, specifying, adapting, concretizing 

functions to specialize, specify unified and standardized forecasts 

to special, specific forecasting objects and situations; 

{Fforeseen,k}    - the set of functions for foreseen corrections; 

{Фunforeseen,l}  - the set of functions for unforeseen corrections; 

{Фperiodic,m}   - the set of periodic functions; 

{Фinternal,n}  - the set of internal (relative to the object) functions; 

{Фexternal,r}   - the set of external (relative to the object) functions. 

 

3.3.  Versions of the formula.  Transformations 

Versions of the formula 

The most general form of the formula may be written, e.g., as: 

})),,({),,(()( 00 icorrerrorbasecorr tttttFFtF Δ≈  

or, omitting variables and index, 

}){,( errorbasecorr FFF Δ≈  

More detailed (and on several lines) 

)}),({)},,({

)})},({,,({

},)})({)},({,,({

},)})({,,({)}),({,,(()(

,,0,,

,,

,0,0,

0,0,0,0

tttt

tXtt

tXtXttF

tXttFtXttFFtF

corrtunforeseenerrorsforeseenerror

corrrinputcorrqunforeseen

corrpinputninputmforeseen

linputkspecialiinputbasecorr

Δ

Φ

≈

δ

 

where and further  

{Xinput,i(t0)}   - the set of input data at the moment t0; 

{Xinput,p(tcorr)}   - the set of input data at the moment tcorr; 

or, omitting variables and indexes, 

}){},{},{},{,( errorunforeseenforeseenspecialbasecorr FFFFF ΔΦ≈  

For simple cases, when the sets may be substituted by their leading terms, or 

for cases, when a simplified description is needed, the formula may be written as 

),,,,( errorunforeseenforeseenspecialbasecorr FFFFF ΔΦ≈  

For a sufficiently general case 

)},{},{},{},{},{,( errortmultiplicaaddittmultiplicaadditspecialbasecorr FFFFFF ΔΦΦ≈  

a particular form of the formula may be written 

]1[][
1 1

,, error

I

i

L

l

laddiitmultiplicabase KFF Δ±×Φ+×≈ ∏ ∑
= =

 

where and further  
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{Fmultiplicat}   - the set of multiplicative foreseen functions; 

{Faddit}    - the set of additive foreseen functions; 

∏Kmultiplicat,m  - the product of multiplicative functions for specializing, foreseen 

and unforeseen corrections (coefficients); 

∑Фaddit,i   - the sum of additive functions for specializing, foreseen and 

unforeseen (absolute) corrections 

(the proportions between specializing, foreseen, unforeseen, 

multiplicative and additive functions are determined by the 

optimal choice of frame of reference);   

or, if  Fbase×∏Kmultiplicat,i≠0,  preferentially for F~Fbase,  this may be written as 

]1[]1[)]1([
1

,

1

, error

L

l

laddi

I

i

itmultiplicabase kFF Δ±×+×+×≈ ∑∏
==

ϕ  

where and further  

1+kmultiplicat,i   - the multiplicative function for specializing, foreseen and 

unforeseen corrections; 

φaddit,l   - the additive function for specializing, foreseen and unforeseen 

(relative) corrections (normalized on  Fbase×∏Kmultiplicat,i). 

 

Transformations 

Let us write transformations between versions 

]1[][
1 1

,, error

I

i

L

l

laddititmultiplicabase KFF Δ±×Φ+×≈ ∏ ∑
= =

 

and  

]1[]1[)]1([
1

,

1

, error

L

l

laddit

I

i

itmultiplicabase kFF Δ±×+×+×≈ ∑∏
==

ϕ . 

For multiplicative functions 

itmultiplicaitmultiplica kK ,, 1+= . 

For additive functions 

∏
=

+××=Φ
I

i

itmultiplicabaseladditladdit kF
1

,,, )]1([ϕ . 
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Conclusions 

It follows from the principle of uncertain future: 

1)  A forecast should manifestly contain errors’ terms.  A long-term 

forecast should manifestly contain unforeseen errors’ terms (because the relative 

error, caused by an unforeseen event, can be much more than 100%).   

2)  A long-use forecast should contain correcting terms.  These 

correcting terms may have the form of a framework for forecasts – a general 

correcting formula of forecasting.   

The general correcting formula of forecasting may be used as a correcting tool 

for long-use forecasts and as an adapting tool in addition to unified and 

standardized forecasts to apply them to special objects or in special situations.   

Using of the correcting formula can provide new forecasting resources and 

areas of application, including economic forecasting, wide expansion of forecasting 

into the areas of municipal needs, middle-size and small-size business and, even, to 

individual forecasting.   

The most general form of the formula may be written, e.g., as (omitting 

indices everywhere): 

)}),,({),,(()( 00 tttttFFtF correrrorbasecorr Δ≈  

or, omitting variables, 

}){,( errorbasecorr FFF Δ≈  

More detailed (and on several lines) 

)}),({)},,({

)})},({,,({

},)})({)},({,,({

},)})({,,({)}),({,,(()(

,0,

00

0000

tttt

tXtt

tXtXttF

tXttFtXttFFtF

corrunforeseenerrorforeseenerror

corrinputcorrunforeseen

corrinputinputforeseen

inputspecialinputbasecorr

Δ

Φ

≈

δ

 

or, omitting variables, 

}){},{},{},{,( errorunforeseenforeseenspecialbasecorr FFFFF ΔΦ≈  

For a sufficiently general case 

)},{},{},{},{},{,( errortmultiplicaaddittmultiplicaadditspecialbasecorr FFFFFF ΔΦΦ≈  

a particular form of the formula may be written 

]1[][ erroraddittmultiplicabase KFF Δ±×Φ+×≈ ∏ ∑  

For cases when  Fbase×∏Kmultiplicat,i≠0,  preferentially for  F~Fbase,  this may be 

written as: 

]1[]1[)]1([ erroraddittmultiplicabase kFF Δ±×+×+×≈ ∑∏ ϕ , 
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