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Abstract:

In this paper we ask how technological differences in manufacturing production across

countries can best be modeled when using a standard production function approach. We

emphasise the importance of allowing for differences in the impact of observables and
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account for these matters. Empirical results and diagnostic testing provide strong sup-

port for technology heterogeneity. Results are supported when we adopt an econometric
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“As a careful reading of Solow (1956, 1970) makes clear, the stylized facts for which this

model was developed were not interpreted as universal properties for every country in the

world. In contrast, the current literature imposes very strong homogeneity assumptions on

the cross-country growth process as each country is assumed to have an identical . . . aggregate

production function.”

Durlauf, Kourtellos, and Minkin (2001, p.929)

“In some panel data sets like the Penn-World Table, the time series components have strongly

evident nonstationarity, a feature which received virtually no attention in traditional panel

regression analysis.”

Phillips and Moon (2000, p.264)

“Most of the work carried out on panel data has usually assumed some form of cross sectional

independence to derive the theoretical properties of various inferential procedures. However,

such assumptions are often suspect . . . ”

Kapetanios, Pesaran, and Yamagata (2008, p.2)

Why do we observe such dramatic differences in labour productivity across countries in

the macro data? This question has been central to the empirical investigation of growth

and development over the past decades. As the above quotes indicate the importance of

parameter heterogeneity and variable nonstationarity, as well as cross-section dependence,

have not been major concerns in this empirical investigation. In this paper we argue that

all of these issues are important for understanding cross-country differences in labour pro-

ductivity and their causes.

The possibility that technology differences across countries, in the form of parameter

heterogeneity, may be an important part of the growth process has been recognised in both

the theoretical and empirical literature. There is a strand of the ‘new growth’ literature

which argues that production functions differ across countries and seeks to determine the

sources of this heterogeneity (Durlauf et al., 2001). The model by Azariadis and Drazen

(1990) can be seen as the ‘grandfather’ for many of the theoretical attempts to allow for

countries to possess different technologies from each other (and/or at different points in

time).1 The empirical implementation of parameter heterogeneity has primarily occurred

in the empirical convergence literature, with factor parameters initially assumed group-

specific (e.g. Durlauf & Johnson, 1995; Caselli, Esquivel, & Lefort, 1996; Liu & Stengos,

1999) and more recently country-specific (Durlauf et al., 2001).

1Examples of theoretical papers on factor parameter heterogeneity in the production function are Mur-
phy, Shleifer, and Vishny (1989), Durlauf (1993) and Banerjee and Newman (1993).
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The second feature on which we will focus in the empirical analysis is the time-series prop-

erties of the macro panel data investigated. In the long-run, macro variable series such as

gross output or capital stock often display high levels of persistence, such that it is not

unreasonable to suggest for these series to be nonstationary processes (Nelson & Plosser,

1982; Granger, 1997; Lee, Pesaran, & Smith, 1997; Pedroni, 2007; Canning & Pedroni,

2008). In addition, a number of empirical papers report nonstationary evolvement of To-

tal Factor Productivity (TFP), whether analysed at the economy (Coe & Helpman, 1995;

Kao, Chiang, & Chen, 1999; Bond, Leblebicioglu, & Schiantarelli, 2004) or the sectoral

level (Bernard & Jones, 1996; Funk & Strauss, 2003).

Standard empirical growth studies at the macro level abstract from interdependencies

across countries resulting from common shocks to these economies. In the context of

cross-country growth and development analysis, the potential for this type of data depen-

dency is particularly salient, given the interconnectedness of countries through history,

geography and trade relations. Recent work in the panel time-series literature has aimed

to relax the standard assumption of cross-section independence. This has led to the devel-

opment of analytical methods robust to the impact of correlation across panel units (Bai &

Ng, 2004; Pesaran, 2006, 2007; Kapetanios et al., 2008). Empirical work which allows for

cross-section dependence in panel data is still relatively limited, e.g. production functions

for Italian regions (Costantini & Destefanis, 2009) or Chinese provinces (Fleisher, Li, &

Zhao, 2009).

In this paper we argue that many of the empirical puzzles created in this literature (e.g.

an excessively large capital coefficient) can be resolved once we allow for parameter hetero-

geneity, the nonstationary evolution of most macro data and the role of common factors

in inducing cross-section dependence. Our empirical analysis uses panel data for manufac-

turing from 48 developing and developed countries to show that the technology parameter

estimates differ significantly, depending on whether we do or do not allow for heterogene-

ity and cross-section dependence. Our choice of sectoral data is driven by the notion

that it may be inappropriate to view the aggregate economy as basic unit of analysis
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when investigating growth and development against the background of structural change

(Temple, 2005; Vollrath, 2009): sectors as diverse as manufacturing, services and agricul-

ture are likely to be characterised by different production technologies, such that separate

estimation is desirable. With regard to our analysis of technology heterogeneity, the man-

ufacturing sector can be argued to be more homogeneous in its production technology

across diverse sets of countries than a representative production technology for the aggre-

gate economy.

The remainder of this study is structured as follows: in the next section we set out a

model which is sufficiently general to encompass the issues raised above. Section two

discusses the empirical implementation of this general framework, presenting a number

of standard and novel estimation strategies. In section three we apply our model to

an unbalanced panel dataset for manufacturing (UNIDO, 2004) to estimate production

functions for 48 countries over the period from 1970 to 2002. Section four discusses formal

parameter heterogeneity tests, while Section five tests the robustness of our findings to

reverse causality. Section six introduces a new methodology for TFP level estimates valid

in the heterogeneous technology case. Section seven concludes.

1 A general empirical framework for production analysis

with cross-country panel data

We adopt a common factor representation for the production function model with assump-

tions as detailed below: for i = 1, . . . , N and t = 1, . . . , T , let

yit = β′
i xit + uit uit = αi + λ′

i ft + εit (1)

xmit = πmi + δ′
mi gmt + ρ1mi f1mt + . . . + ρnmi fnmt + vmit (2)

where m = 1, . . . , k and f ·mt ⊂ ft

ft = ̺′ft−1 + ǫt and gt = κ′gt−1 + ǫt (3)

3



where yit represents gross output or value-added and xit is a vector of observable factor-

inputs including labour, capital stock and in the gross-output specification materials (all

in logarithms).2 For unobserved TFP we employ the combination of a country-specific

TFP level αi and a set of common factors ft with country-specific factor loadings λi —

TFP is thus in the spirit of a ‘measure of our ignorance’ (Abramowitz, 1956) and oper-

ationalised via an unobserved common factor representation. In equation (2) we further

add an empirical representation of the k observable input variables, which are modelled

as linear functions of unobserved common factors ft and gt, with country-specific factor

loadings respectively. The model setup thus introduces cross-section dependence in the

observables and unobservables. As can be seen, some of the unobserved common factors

driving the variation in yit in equation (1) also drive the regressors in (2). This setup leads

to endogeneity whereby the regressors are correlated with the unobservables of the pro-

duction function equation (uit), making it difficult to identify βi separately from λi and

ρi (Kapetanios et al., 2008). Equation (3) specifies the evolution of the unobserved factors.

We maintain the following assumptions for the empirical model and the data:

A.1 The βi parameters are unknown random coefficients with fixed means and finite

variances. Similarly for the factor loadings, i.e. λi = λ + ηi where ηi ∼ iid(0,Ωη).
3

A.2 Error terms εit ∼ N(0, σ2), where σ2 is finite. Similarly for vmit and ǫt.

A.3 λ′
ift captures time-varying unobservables (TFP) and can contain elements which are

common across countries as well as elements which are country-specific.

A.4 The unobserved common factors ft and gmt and therefore the observable inputs xit

and output yit are not a priori assumed to be stationary processes/variables.

A.5 There is an overlap between the unobserved common factors driving output and the

regressors (f ·mt ⊂ ft), creating difficulties for the identification of the technology

parameters βi.

2Parameter estimates and interpretation will differ between a value-added based and gross-output based
empirical specification, but if we assume constancy of the material-output ratio we can transform results
to make them directly comparable: βva

i = βi/(1 − γi) (Söderbom & Teal, 2004).
3The assumption of random coefficients is for convenience. Based on the findings by Pesaran and Smith

(1995, footnote 2, p.81) the coefficients could alternatively be fixed but differing across groups.
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The two most important features of the above setup are the potential nonstationarity

of observables and unobservables (yit, xit, ft, gmt), as well as the potential heterogeneity

in the impact of observables and unobservables on output across countries (αi, βi, λi).

Taken together these properties have important bearings on estimation and inference in

macro panel data which are at the heart of this paper.

2 Empirical implementation

In this Section we first discuss the investigation of variable time-series and cross-section

correlation properties in macro panel datasets. The following subsection then introduces

our novel estimation approach which allows for heterogeneity in the impact of observables

and unobservables, and compares it to the Pesaran (2006) CCE approach.

2.1 Data time-series and cross-section correlation properties

A panel of considerable time-series dimension T opens up the opportunity to use both

country-specific tests from the time-series literature as well as panel-based tests — see

Enders (2004), Hamilton (1994) or Maddala and Kim (1998) for a discussion of the for-

mer, and Choi (2007), Basile, Costantini, and Destefanis (2005) or Smith and Fuertes

(2004, 2007) for a discussion of the latter. Standard time-series unit root tests are well-

known to have low power, such that as the autoregressive parameter approaches unity the

test is less and less able to distinguish between a true unit root (the null hypothesis of the

test) and a false null. “One of the primary reasons behind the application of unit root

tests . . . to a panel of cross-section units was to gain statistical power and to improve on

the poor power of their univariate counterparts” (Breitung & Pesaran, 2005, p.2). Many

panel unit root and cointegration tests discussed in the literature however cannot shake

off an inherent difficulty in terms of interpretation, whereby the null of nonstationarity

(or stationarity or cointegration or noncointegration) for all countries in the panel is con-

trasted with an alternative that at least one country is stationary (or nonstationary or

noncointegrated or cointegrated). Panel unit root test results are often highly sensitive to

the number of lags included and it is unclear whether the lag structure should be the same
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across countries or whether information criteria should inform on individual countries’

‘ideal’ lag structure. More recently it was also suggested that correlation across units of

the panel may bias results from ‘first generation’ panel unit root tests (Pesaran, 2007).

Since the seminal contribution by Bai and Ng (2004) the ‘second generation’ literature for

these tests which allows for cross-section dependence has been developing rapidly, with

recent contributions integrating the impact of structural breaks (Westerlund, 2006) and

changes in the volatility of innovations (Hanck, 2008).

In Pedroni (2007) empirical analysis is confined to countries where the data is argued to be

I(1) and cointegrated. In this paper we propose using estimation methods that are robust

to the potential for nonstationarity and cointegration within some, but not all countries

in the panel. This approach is less dependent on making assumptions about the data

which are difficult to test in relatively short panels.4 Further note that unit root evolution

should not be seen as continuing indefinitely (‘global’ property) but represents a ‘local’

behaviour of variables within-sample as suggested by Pedroni (2007).

Panel data econometrics over the recent years has seen a rising interest in models with

unobserved time-varying heterogeneity induced by unobserved common shocks that affect

all units (in our present interest: countries), but perhaps to a different degree (Coakley,

Fuertes, & Smith, 2006). This type of heterogeneity introduces cross-section correlation or

dependence between the regression error terms, which can lead to inconsistency and incor-

rect inference in standard panel econometric approaches (Phillips & Sul, 2003; Pesaran,

2006; Pesaran & Tosetti, 2007). The latter typically assume ‘cross-section independence’,

not necessarily because this feature is particularly intuitive given real-world circumstances,

but “in part because of the difficulties characterizing and modelling cross-section depen-

dence” (Phillips & Moon, 1999, p.1092). In the context of cross-country productivity

analysis, the presence of correlation between macro variable series across countries seems

particularly salient.

4Here and in the following we judge the length of a panel with the eyes of a time-series econometrician,
for whom annual data for, say, 25 to 35 years represents a relatively short T -dimension.
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If we assume factors ft (and gmt) in our general model above are stationary, the consis-

tency of standard panel estimators such as a pooled fixed effect regression or a Pesaran

and Smith (1995) Mean Group regression with country-specific intercepts rests on the pa-

rameter values (factor loadings) of the unobserved common factors contained in both the

y and x-equations: if their averages are jointly non-zero (λ̄i 6= 0 and ρ̄i 6= 0) a regression

of y on x and N intercepts (in the pooled fixed effects regression case) will be subject to

the omitted variable problem and hence misspecified, since regression error terms will be

correlated with the regressor, leading to biased estimates and incorrect inference (Coakley

et al., 2006; Pesaran, 2006). In the case of nonstationary factors the consistency issues

in the same framework is altogether more complex and will depend on the exact overall

specification of the model. However, regardless of their order of integration, standard

estimation approaches neglecting common factors will not yield an estimate of β or the

mean of βi, but of βi +λiρ
−1

i , as shown by Kapetanios et al. (2008) — βi is unidentified.

Under the specification described, a standard pooled fixed effects or Pesaran and Smith

(1995) Mean Group estimator will therefore likely yield an inconsistent estimator (due to

residual nonstationarity) of a parameter we are not interested in (due to the identification

problem).

2.2 Empirical estimators

Our empirical approach emphasises the importance of parameter and factor loading het-

erogeneity across countries. The following 2×2 matrix indicates how the various estimators

implemented below account for these matters.5 We abstract from discussing the standard

panel estimators here in great detail and refer to the overview article by Coakley et al.

(2006), as well as the papers by Pedroni (2000, 2001) (GM-FMOLS) and Pesaran (2006)

(CCEP/CCEMG) for more details.

5Abbreviations are as follows: POLS — Pooled OLS, FE — Fixed Effects, FD-OLS — OLS with vari-
ables in first differences, MG — Pesaran and Smith (1995) Mean Group, RCM — Swamy (1970) Random
Coefficient Model, GM-FMOLS — Pedroni (2000) Group-Mean Fully Modified OLS, CCEP/CCEMG —
Pesaran (2006) Common Correlated Effects estimators, and AMG/ARCM — Augmented MG and RCM,
described in detail below. Note that our FE estimator (like the OLS and FD-OLS) is augmented with
T − 1 year dummies such that it is in effect a ‘Two-Way Fixed Effects’ (2FE) estimator.
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Factor loadings:

homogeneous heterogeneous

Technology parameters: homogeneous POLS, FE, FD-OLS CCEP

heterogeneous MG, RCM, GM-FMOLS AMG, ARCM, CCEMG

Essentially, in our model setup all estimators neglecting the heterogeneity in unobserv-

ables (left column) suffer from an identification problem described above. In addition,

the time-series properties of both observable and unobservable processes create further

difficulties for estimation and inference in these empirical approaches: misspecification of

the empirical equation can lead to nonstationary error terms, inducing the breakdown of

any cointegrating relationship in the data.6 Inference is problematic in this case since

conventional standard errors will be invalid, and the associated standard t-statistics will

diverge away from zero with unit probability asymptotically (Kao, 1999). Among the es-

timators neglecting heterogeneity in unobservables the Pedroni (2000) GM-FMOLS is the

only approach to avoid this issue by adopting a nonstationary panel econometric approach

relying on cointegrated variables.

The estimators allowing for heterogeneity in factor loadings adopted here (right column)

operate through augmenting the regression equation(s) with ‘proxies’ or estimates for the

unobserved common factors. This augmentation avoids the identification problem and is

also an appropriate strategy to account for cross-section dependence in the presence of

nonstationary variables (Kapetanios et al., 2008). It is in this context that we introduce

our own estimators, namely the Augmented Mean Group (AMG) and Swamy Random

Coefficient Model (ARCM) estimators which are the focus of the following discussion.

The Augmented Mean Group (AMG) estimator accounts for cross-section dependence

by inclusion of a ‘common dynamic process’ in the country regression. This process is

6As developed by Phillips and Moon (1999, p.1091) estimation equations which result in nonstationary
errors may be consistent estimators of “some interesting long-run relationship” in the data, however inef-
ficiency (see Coakley et al., 2006) and difficulty to interpret economically makes this important result less
useful for applied empirics.
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extracted from the year dummy coefficients of a pooled regression in first differences (FD-

OLS) and represents the levels-equivalent mean evolution of unobserved common factors

across all countries. Provided the unobserved common factors form part of the country-

specific cointegrating relation (Pedroni, 2007), the augmented country regression model en-

compasses the cointegrating relationship, which is allowed to differ across countries:

Stage (i) ∆yit = b′∆xit +
T∑

t=2

ct∆Dt + eit ⇒ ĉt ≡ µ̂•
t (4)

Stage (ii) yit = ai + b′

ixit + cit + diµ̂
•
t + eit b̂AMG = N−1

∑

i

b̂i (5)

The first stage represents a standard FD-OLS regression with T − 1 year dummies in first

differences,7 from which we collect the year dummy coefficients which are relabelled as

µ̂•
t . This process is extracted from the pooled regression in first differences since non-

stationary variables and unobservables are believed to bias the estimates in the pooled

levels regressions. There is also some evidence (Monte Carlo results available on request)

that the identification problem for βi we discussed earlier is addressed successfully in the

FD-OLS approach. FD-OLS yields an estimate of the common technology parameters or

an unweighted mean of the country-specific cointegrating coefficients (Smith & Fuertes,

2007), depending on the assumptions about the underlying technology parameters βi. The

underlying common factors (in the levels equation) can be stationary or nonstationary.

In the second stage this estimate µ̂•
t is included in each of the N standard country re-

gressions which also include linear trend terms to capture omitted idiosyncratic processes

evolving in a linear fashion over time. Alternatively we can subtract µ̂•
t from the depen-

dent variable, which implies the common process is imposed on each country with unit

coefficient (not shown).8 In either case the AMG estimates are then derived as averages of

the individual country estimates, following the Pesaran and Smith (1995) MG approach.

Based on the results of Monte Carlo simulations (available on request) we posit that the

7Year dummies in first differences result in a levels series for the unobserved average/common factors,
rather than the annual growth rates as would be the case for levels year dummies in a model where inputs
and output are in first differences.

8Note further that unity is also the cross-country average parameter expected for the coefficients on µ̂•
t :

d̄ = N−1 ∑
i di = 1.
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inclusion of µ̂•
t allows for the separate identification of βi or E[βi] and the unobserved com-

mon factors driving output and inputs, like in the Pesaran (2006) CCE case. In analogy to

applying µ̂•
t in the country equations in levels, we can use ∆µ̂•

t in the country equations in

first differences. Similarly we can augment the Swamy (1970) RCM estimator in a similar

fashion to yield the Augmented Random Coefficient Model (ARCM) estimators in levels

and first differences.

The focus of the CCE estimators is the estimation of consistent b̂ and not the nature of the

unobserved common factors or their factor loadings: we cannot obtain an explicit estimate

for the unobserved factors ft or the factor loadings λi, since the average impact of the

factors (λ̄) is unknown. Our augmented estimators use an explicit rather than implicit

estimate for ft from the pooled first stage regression in first differences. Compared with

the CCE approach we can obtain an economically meaningful construct from the AMG

setup: the common dynamic process µ̂•
t = h(λ̄ft) represents common TFP evolution over

time, whereby common is defined either in the literal sense, or as the sample mean of

country-specific TFP evolution. The country-specific coefficient on the common dynamic

process, d̂i from equation (5), represents the implicit factor loading on common TFP.

3 Data and main empirical results

3.1 Data

For our empirical analysis we concentrate on aggregate sectoral data for manufacturing

from developed and developing countries for 1970 to 2002 (UNIDO, 2004). Our sample

represents an unbalanced panel of 48 countries with an average of 24 time-series obser-

vations (1,162 observations in levels, 1,094 in first difference regressions — gross output

based sample; for the value-added based sample we have slightly more observations, 1,194

and 1,128 for levels and first difference regressions respectively). For a detailed discussion

and descriptive statistics see Appendix A. Note that all of the results presented are strik-

ingly robust to the use of a reduced sample constructed with application of a set of rigid

‘cleaning’ rules.
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3.2 Time-series properties of the data

We carry out a range of stationarity and nonstationarity tests for individual country time-

series as well as the panel as a whole, results for which are presented in Appendix B.9 The

tests conducted include country-specific unit root tests and panel unit root tests of the first

and second generation. In case of the present data dimensions and characteristics, and

given all the problems and caveats of individual country unit root tests as well as panel

unit root tests, we can suggest most conservatively that nonstationarity cannot be ruled

out in this dataset. Investigation of the time-series properties of the data was not intended

to select a subset of countries which we can be reasonably certain display nonstationary

variable series as in Pedroni (2007); instead, our aim was to indicate that the sample

(possibly due to the limited time-series dimension) is likely to be made up of a mixture of

some countries with stationary and others with nonstationary variables.

3.3 Pooled regressions

We estimate pooled models with variables in levels or first differences, including T −1 year

dummies or country-specific period-averages à la Pesaran (2006) to account for unobserved

common factors. In all pooled regressions the slope coefficients on the factor-inputs and

the year dummies are restricted to be the same across all countries. Our results presented

in Tables 1 and 2, in each case for a gross output and value-added specification in the upper

and lower panels respectively, are for the following estimators: for the data in levels we

apply [1] the pooled OLS estimator (POLS); [2] the pooled fixed effects estimator (FE);

[3] the Pesaran (2006) common correlated effects estimator in its pooled version (CCEP);

and [4] the pooled OLS estimator for data in first differences (FD-OLS) — additional

information is contained in the notes to the table. Estimation equations in columns [1],

[2], and [4] of both tables include sets of (T − 1) year dummies.

[Table 1 about here]

We first discuss the results for the empirical specification without any restrictions on the

returns to scale — Table 1. Estimates for the factor input parameters in all regressions are

9Empirical analysis in this paper is carried out using Stata 9 and 10, GAUSS 9 and WinRATS 6.2.
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statistically significant at the 5% level or 1% level. The POLS results in column [1] sug-

gest that failure to account for time-invariant heterogeneity across countries (fixed effects)

yields severely biased results: the VA-equivalent capital coefficient from the gross-output

specification in the upper panel at .9 is considerably inflated, with the capital coefficient

from the VA specification in the lower panel somewhat more moderate at .8. Inclusion of

country intercepts in [2] reduces these coefficient estimates somewhat. The same param-

eter in the CCEP results in [3] is yet lower still, around .6. In both the FE and CCEP

estimators the fixed effects are highly significant (F -tests are reported in Table footnote).

For all three estimators in levels the regression diagnostics suggest serial correlation in the

error terms, while constant returns to scale are rejected at the 1% level of significance in

all cases except POLS in the value-added specification. Note that for the FE estimator

the data rejects CRS in favour of increasing returns — an unusual finding. The OLS

regressions in first differences in [4] yields somewhat different technology estimates: the

capital coefficient is now around .3 in both specifications (VA-equivalent), thus in line

with observed macro data on factor share in income (Mankiw, Romer, & Weil, 1992).

CRS cannot be rejected, the AR(1) tests show serial correlation for this model, which is

to be expected given that errors are now in first differences. There is however evidence

of some higher order autocorrelation, especially in the VA-specification. Note that we

obtain identical results for models in [1], [2] and [4] if we use data in deviation from the

cross-sectional mean (results not presented) instead of using a set of year dummies. Re-

placing year dummies with cross-sectionally demeaned data is only valid if parameters are

homogeneous across countries (Pedroni, 1999, 2000) — in the pooled regressions we force

this homogeneity onto the data, such that identical results are to be expected.

Under intercept and technology parameter heterogeneity, given nonstationarity in (some

of) the country variable series the pooled FE estimates in column [3] asypmtotically con-

verge to the ‘long-run average’ relation at speed
√

N (Phillips & Moon, 1999) provided

T/N → 0 (joint asymptotics) and cross-section independence. In the present sample,

however, nonstationary error terms and unobserved common factors seem to influence the

results considerably: a capital coefficient of around .7 (in VA-equivalent terms) is more
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than twice the magnitude of the macro data on factor shares in income (Mankiw et al.,

1992; Gomme & Rupert, 2004), a common finding in the literature (Islam, 2003; Pedroni,

2007). Further recall that t-values are invalid for the estimations in levels if error terms

are nonstationary (Coakley, Fuertes, & Smith, 2001; Kao, 1999). The CCEP estima-

tor accounts for cross-section dependence and yields, as the residual analysis in Section

3.6 below suggests, stationary errors terms. The difference estimator in [4] converges to

the common cointegrating vector β or the mean of the individual country cointegrating

relations, E(βi), at speed
√

TN (Smith & Fuertes, 2007). Further investigation regard-

ing alternative specification with parameter heterogeneity (CCEMG estimator) as well as

residual diagnostics will be necessary to judge the bias of the present CCEP results.

As the model in first differences does not reject constant returns to scale (CRS), we impose

CRS on all models and investigate the outcome — given that we are analysing a ‘global’

production function, the assumption of constant returns should be far from controversial

and may help the data to differentiate between capital and material inputs more readily

than is evidenced in the previous results. Table 2 presents the results for the pooled

regression models with CRS imposed.

[Table 2 about here]

The imposition of CRS does not alter the pooled regression results in levels to a great ex-

tent: POLS in [1], FE in [2] and CCEP in [3] yield capital coefficient estimates of around

.9, .7 and .6 respectively; in the gross output specification our preferred ∆OLS estima-

tor in [4] now has a slightly less precisely identified capital coefficient, which is however

within the 95% confidence intervals of the estimate in the unrestricted equation.10 The

VA-equivalent capital coefficient as a result has dropped to around .23. In the value-added

specification, the ∆OLS estimates show very similar results for the unrestricted and re-

stricted returns to scale models.

10We also carry out a Wald test for parameter equality and cannot reject the null that they are the
same: χ2(1) = 0.00, p = .98.
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Our pooled regression analysis suggests that time-series properties of the data play an

important role in estimation: the pooled OLS and FE levels regressions, where some or

all country variable series may be I(1), yield very high parameter coefficients on capital,

which translate into VA-equivalent capital coefficients of between .6 to .9. We suggest

that the bias is the result of nonstationary errors, which are introduced into the pooled

equation by the imposition of parameter homogeneity on heterogeneous country equations

— we investigate both matters in more detail below. In contrast, the OLS regressions

where variables are in first differences and thus stationary (FD-OLS) yielded more sensible

capital parameters. This pattern of results fits the case of level-series being integrated of

order one in at least some of the countries in our sample. The results for the CCEP are

somewhat surprising, given our findings when we relax parameter homogeneity.

3.4 Common TFP

Following our argument above, the FD-OLS regression represents the only pooled re-

gression model which estimates a cross-country average relationship safe from difficulties

introduced by nonstationarity. We therefore make use of the year dummy coefficients de-

rived from our preferred pooled regressions with CRS imposed (FD-OLS, column [4] in

Table 2) to obtain an estimate of the common dynamic process µ̂•
t , which represents an

estimate of the common TFP evolvement (mean of the unobserved common factors eval-

uated at the average impact across countries). Figure 1 illustrates the evolvement path of

this common dynamic process for the gross-output based model.11

[Figure 1 about here]

The graph shows severe slumps following the two oil shocks in the 1970s, while the 1980s

and 1990s indicate considerable upward movement.12 The version of this graph for results

from the VA-specification shows the same patterns over time (not reported). Recall that

we favour the ‘measure of ignorance’ interpretation of TFP, such that a decline in global

11In the graph we omit the data-point for 2002 for which there are only two observations. This implied
‘globally common evolution’ is for a gross-output specification. In order to provide a graph translated into
a VA specification, we first need to scale the year dummy coefficients by 1/(1− γ̂) to account for material
inputs. The resulting TFP evolution (not presented) is very similar to that for the VA specification.

12Note that these graphs are ‘data-specific’: for years where data coverage is good, this can be interpreted
as ‘global’, whereas for years from 2000 (only 10 countries have data for 2001, only 2 for 2002 which is
omitted from the graph) this interpretation collapses.
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manufacturing TFP as evidenced in the 1970s should not be interpreted as a decline in

knowledge, but a worsening of the global manufacturing environment. A simpler explana-

tion may be that our variable deflation13 does not adequately capture all the price changes

in general, and material input price changes vis-à-vis output prices in particular, occurring

in the post-oil shock periods.

3.5 Country regressions

In the following we relax the assumption implicit in the pooled regressions that all countries

possess the same production technology, and allow for country-specific slope coefficients on

factor inputs. At the same time, we maintain that common shocks and/or cross-sectional

dependence have to be accounted for in some fashion. We contrast models that allow for

unobserved common factors in different ways, with models which ignore these matters. A

total of four specifications are investigated:

(a) yit = ai + b′i xit + cit + eit (6)

(b) yit − µ̂•
t = ai + b′i xit + cit + eit (7)

(c) yit = ai + b′i xit + cit + diµ̂
•
t + eit (8)

(d) yit = ai + b′i xit + d′
1i ȳt + d′

2i x̄t {+cit} + eit (9)

In specification (a) we do not account for any cross-section dependence and/or common

TFP — this represents standard country regressions augmented with linear country-trends

(trend coefficient ci. Our novel augmented estimator has two variants: in (b) the com-

mon dynamic process µ̂•
t is imposed with a unit coefficient, whereas in (c) it is included

as additional regressor. The augmentation with cross-section averages is represented by

option (d).

These four specifications are implemented as follows: [1] the standard Pesaran and Smith

(1995) Mean Group (MG) and [2] the Swamy (1970) Random Coefficient Model (RCM)

13Country deflators for monetary values in local currency units [LCU], which are subsequently translated
into US$ at 1990 value by using the LCU-US$ exchange rate for that specific year.
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estimators are representatives of option (a); the Augmented Mean Group (AMG) estimator

can either [3] have the common dynamic process (µ̂•
t ) imposed with unit coefficient like in

option (b), or [4] have it included as additional regressor like in option (c). Similarly for the

Augmented RCM (ARCM) [7], [8]. The Mean Group version of the Common Correlated

Effects estimator (CCEMG) represents option (d). We test two alternative specifications,

namely [5] as defined by Pesaran (2006), and [6] augmented with a country-specific linear

trend term.14

Unweighted averages of country parameter estimates are presented for regressions in lev-

els and first differences in Tables 3 and 4 respectively, with gross-output models in the

upper panel and value-added models in the lower panel of each table. In all cases we

have imposed constant returns to scale on the country regression equation, in line with

the findings from our preferred pooled model in first differences — this decision and its

implications are discussed in more detail below.

The concept of ‘mean-group’ estimates — be they from MG, CCEMG or the weighted

variant of the Swamy RCM — suggests that while individual country regression estimates

may be unreliable, by averaging across the estimates we obtain a more reliable measure of

the average relationship across groups/countries (Pesaran & Smith, 1995). The t-statistics

for the country-regression averages reported in all tables for country regression results are

measures of dispersion for the sample of country-specific estimates.15 We further provide

the Pedroni (1999) ‘panel t-statistic’ (1/
√

N)
∑

i ti, constructed from the country-specific

t-statistics (ti) of the parameter estimates, which indicates the precision of the individual

country estimates for capital, materials and country-specific linear trend terms. From our

results we can see that the individual country estimates for the levels specification are on

average more precisely estimated than those in the specifications in first differences. This

pattern is repeated in the results for the value-added regressions.

14In the first instance we deliberately do not use ‘demeaned’ data, since cross-sectional demeaning is
only valid if all model parameters are homogeneous across countries, but creates bias in case of parameter
heterogeneity (Pedroni, 2000; Smith & Fuertes, 2007). We briefly discuss the results for ‘demeaned’ data
at the end of this section, referring to Table C-1 in Appendix D.

15In case of the MG-type estimators these are computed from the standard errors se(β̂MG) = [
∑

i(β̂i −

β̂MG)2]−1/2. For the Swamy estimators, see the footnote of the table for details.
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[Tables 3 and 4 about here]

We begin our discussion with the averaged estimates in the levels specification in Table 3.

Our first observation regarding these results is that across all specifications the means of

the capital coefficients are considerably lower than in the pooled levels models: between

.2 and .5 (VA-equivalent) rather than between .6 and .9 in the pooled levels models in

Table 2. Comparing results for the levels specification with those for the specification in

first differences in Table 4 reveals that estimates from the heterogeneous models in levels

and first differences follow very similar patterns. Recall that for the pooled models esti-

mates for technology parameters in levels and first differences showed radically different

results. Parameter estimates are thus similar in all specifications, gross-output or value-

added, levels or first-differences.

In all cases it seems that the technology parameters are estimated reasonably precisely,

suggested by the reported t-statistic and the Pedroni (1999) panel t-test. A considerable

number of country trends/drifts are significant at the 10% level, although much more so for

the levels than for the first difference specifications — the statistically insignificant mean

in all of the ‘augmented’ regressions (AMG, ARCM) is easily explained: these country-

specific trends have positive and negative magnitudes for different countries. Coefficients

on the common dynamic process µ̂•
t in models [4] and [8] for all specifications are uniformly

high and close to their theoretical value of unity.

Closer inspection of the VA-equivalent capital coefficients suggests the following patterns:

firstly, estimation approaches that do not account for unobserved common factors or cross-

section dependence have parameter estimates around .2. Secondly, for the ‘augmented’

estimators which include a common dynamic process in the estimation equation (either

explicitly or implicitly with unit coefficient) the capital coefficients are around .3. Thirdly,

the results for the CCEMG with and without additional country trend differ considerably,

with the former close to all other augmented regression results and the latter slightly

larger, around .45.
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In Figures D-1 and D-2 in Appendix D we plot the density estimates for the sample of

country-specific technology parameters estimated in the levels regressions presented in

Table 3, using standard kernel methods with automatic bandwidth selection. Both sets

of plots indicate that the distribution of these parameter estimates is fairly symmetric

around their respective means, such that no significant outliers drive our results.

We also briefly review the results for country regressions where the data was first trans-

formed into deviations from the cross-sectional mean to account for any common dynamic

processes. As was noted previously, this transformation is only valid if the parameters are

homogeneous across countries (Pedroni, 2000). The averaged results for this exercise are

presented in Table C-1 in Appendix C. Here, the gross output specifications (levels, FD)

yield capital coefficients of between .44 and .48 (VA-equivalent). In stark contrast, the

value-added specifications yield capital coefficients between .13 and .20. We take these

results as an indication of technology parameter heterogeneity in the production func-

tion, since as was discussed above the transformation of variables into deviations from the

cross-section mean introduces nonstationarity into the errors if the underlying production

technology differs across countries.

3.6 Residual diagnostics

The nature of our data prevents us from implementing a number of specification tests

from the nonstationary panel econometric literature: first of all, existing procedures used

to investigate cross-section dependence (PCA, mean absolute correlation, Pesaran (2004)

CD statistic for residual diagnostics) rely on fairly balanced panels without missing ob-

servations. Secondly, panel cointegration tests which allow for cross-section dependence

(Westerlund & Edgerton, 2008) perform poorly in moderate T panels, while first gener-

ation test routines are developed with balanced panels of full time-series in mind. It is

unclear how these can be implemented for a macro panel which includes data from devel-

oping countries and thus missing observations and considerable unbalance. We therefore

need to resort to a mix of diagnostic tests for pooled regressions and averaged test statistics

following the Fisher (1932) combination principle.
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We begin with normality and homoskedasticity tests for regression residuals in Table 5.

Using the D’Agostino, Balanger, and D’Agostino Jr. (1990) and Cameron and Trivedi

(1990) tests virtually all of our pooled regression results reject the joint null hypothesis

of normal, and normal and homoskedastic residuals respectively. In contrast the country

regression residuals can be assumed as jointly normal or jointly normal and homoskedastic,

based on the Fisher statistics (pλ) constructed from these two testing procedures.

[Table 5 about here]

Tables 6 and 7 present panel unit root test results for pooled regression and country

regression errors respectively. This analysis broadly suggests that residuals from from

POLS and FE are likely to be nonstationary. Country regression residuals are more likely

to be stationary across all specifications: nonstationarity is rejected for up to 4 lags in

the first generation Maddala and Wu (1999) test, and still for up to 3 lags in the Pesaran

(2007) CIPS test (CIPS∗), where residuals are not ‘demeaned’ prior to testing.

[Tables 6 and 7 about here]

A cautious conclusion from these diagnostic tests would be that we are more confident

about the country regression residuals possessing desirable properties (stationarity, nor-

mality, homoskedasticity) than we are for their pooled counterparts.

3.7 The importance of constant returns to scale

Further investigation reveals that the imposition of constant returns to scale, justified by

the CRS test for the pooled regression with variables in first differences, plays an impor-

tant role in our story. We repeat all country regressions in levels, but with all variables

‘levels’ form, rather than in per worker terms. Results are presented in Table C-2 below.

The failure to impose constant returns to scale leads to a loss of precision in the capital es-

timates in virtually all specifications, for the regressions in levels and first differences. The

labour coefficients are however around .7 in all cases and only one out of 16 levels models

rejects a parameter test for constant returns to scale — the latter result is not surprising

given the sizeable standard errors on the capital coefficients. In the first difference models

in the Appendix CRS is never rejected. Despite these reaffirming diagnostics, the sharp
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difference between the impact of imposing CRS in the country regressions (considerable

loss of precision) and the pooled regressions (limited change) is somewhat puzzling and

merits further investigation in the future.

3.8 Discussion of main empirical results

Our analysis investigated the changing parameter estimates across a number of empirical

specifications and estimators. Our pooled estimators in levels are suggested to be severely

biased, given the diagnostic tests and the fact that their capital coefficients range from

.6 to .8 (VA-equivalent), far in excess of the macro evidence of around 1/3. There may

be a number of possible sources for this bias: firstly, if parameter heterogeneity prevails

and variable series are indeed nonstationary the imposition of common technology across

countries leads to nonstationary errors and thus noncointegration. Secondly, the results

may be the outcome of an identification problem, which arises if the same unobserved

common factors drive both output and inputs. In this case the pooled estimates (with the

exception of the CCEP) cannot identify the technology parameters β separately from the

impact of unobserved factors λi. The fact that CCEP yields very similar results to POLS

and FE suggests that interplay of parameter heterogeneity and variable stationarity plays

an important role.

The first difference estimator (FD-OLS) in contrast has rather sound diagnostics and yields

sensible parameter coefficients. The empirical properties of this estimator are somewhat

unclear, especially with regard to the identification issue.

The heterogeneous parameter estimators uniformly yield lower implied capital coefficients

more in line with the aggregate economy factor income share data. Across levels and

first difference, gross-output and value-added specifications there seems to be a consistent

pattern emerging whereby the standard heterogeneous estimators (MG, RCM) obtain qual-

itatively different results from the augmented heterogeneous estimators (AMG, ARCM,

CCEMG). Diagnostic tests cannot differentiate between these two groups of estimators,
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however we can argue that the MG and RCM estimators are likely to be biased for two rea-

sons: firstly, they use an overly simplified representation for TFP evolution (linear trend)

which requires stationarity. Secondly, as was discussed above, these estimators are argued

to suffer from an identification problem whereby the technology parameters βi cannot be

identified separately from the impact of unobserved common factors on output λi in the

case where the same unobserved common factors drive output and inputs (Kapetanios et

al., 2008).

Turning to the augmented estimators, we suggest that the combination of a common dy-

namic process and a linear country trend is confirmed by the data: a considerable number

of country trends are statistically significant, while the cross-country average coefficient for

µ̂•
t is close to unity in the model where it is included as additional regressor. The CCEMG

estimator provides results broadly in line with those for the AMG and ARCM, with the

latter two on the whole more consistent across specifications. The comparison between

the country regression results presented above and the results for ‘demeaned’ variables

in the Appendix indicate that the unobserved common factors exert differential impact

across countries, thus meriting the adoption of approaches which allow for heterogeneous

factor loadings (and thus TFP).

The estimate for globally common or mean TFP evolution µ̂•
t shows serious dips following

the two oil crisis shocks in 1973 and 1979, with almost continuous growth thereafter from

the mid-1980s to the late 1990s — this development path is arguably in line with historical

events and anecdotal evidence regarding the global evolution of manufacturing over the

thirty-three-year sample period.

As a further robustness test we also carry out pooled and country regressions adopting

a dynamic empirical specification — results do not change considerably in comparison to

the static analysis presented here (results available on request).
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4 Testing parameter heterogeneity

The individual country coefficients emerging from the regressions in the previous section

imply considerable parameter heterogeneity across countries. This apparent heterogeneity

may however be due to sampling variation and the relatively limited number of time-series

observations in each country individually (Pedroni, 2007). We therefore carried out a num-

ber of formal parameter heterogeneity tests for the results from the AMG, ARCM and

CCEMG estimations in levels and first difference: firstly, we constructed predicted val-

ues based on the mean parameter estimates of our heterogeneous parameter models, and

regressed these on input variables, a common trend and country intercepts in a pooled

regression. The rationale of this test is that if parameter estimates were truly hetero-

geneous we would not expect significant coefficients on the input variables. Secondly, we

obtained Swamy (1970) Ŝ statistics for levels and first difference specifications. Thirdly, we

constructed Wald statistics following Canning and Pedroni (2008), and fourthly, we pro-

duced F -statistics for standard and augmented MG estimators following Pedroni (2007).16

Taken together the results for these various tests (available on request) do give a strong

indication that parameter homogeneity is rejected in this dataset. Systematic differences

in the test statistics for levels and first difference specifications indicate that nonstation-

arity may drive some of these results. Nevertheless, even if heterogeneity were not very

significant in qualitative terms, our contrasting of pooled and country regression results

has shown that it nevertheless matters greatly for correct empirical analysis in the presence

of nonstationary variables.

5 Reverse causality

In the analysis of empirical production functions the issue of variable endogeneity is typ-

ically of great concern, requiring means and ways to instrument for factor inputs. A

popular approach to address this problem is to convert macro-panel data into a short

16Further tests for parameter heterogeneity (Phillips & Sul, 2003; Pesaran, Smith, & Yamagata, 2008)
were considered but not pursued due to their low power in the present panel dimensions.
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panel of typically 5-year averages and to employ empirical estimators originally developed

for large N , small T micro-panels (Arellano & Bond, 1991; Blundell & Bond, 1998), e.g.

Islam (1995) and Caselli et al. (1996) for Penn World Table data. For analysis of other

macroeconomic relationships it is also not uncommon to see these estimators used for

annual data where T becomes moderate to large, despite the difficulties arising from over-

fitting (Bowsher, 2002; Roodman, 2009). When model parameters differ across countries

the instrumentation strategy in these GMM-type estimators (and any other IV strategies

for pooled regressions) however breaks down since informative instruments are invalid by

construction (Pesaran & Smith, 1995). In the following we therefore adopt the empiri-

cal approach by Pedroni (2000, 2007) and estimate country regressions by Fully-Modified

OLS, whereupon parameter estimates are averaged across countries (Group-Mean FM-

OLS). Provided the variables are nonstationary and cointegrated the individual FMOLS

estimates are super-consistent.

[Table 8 about here]

In the upper panel of Table 8 we present averaged parameter estimates for the full sample

value-added-based FMOLS regressions, where column [1] represents the standard Group-

Mean FMOLS, and columns [2] and [3] augment the country FMOLS equation with the

common dynamic process µ̂•,va
t . Columns [4] and [5] apply FMOLS to a country regression

with the CCE-augmentation before averaging the parameter estimates. In the lower panel

of the same table our sample only includes 26 countries which ‘pass’ two nonstationarity

test (KPSS, ADF) for value-added per worker and capital stock per worker respectively.

Due to the unbalanced nature of our panel we are prevented from testing for cointegration

between these two variables.

The standard Pedroni (2000) approach yields insignificant capital estimates, whereas aug-

mentation with the common dynamic process yields statistically significant estimates very

close to those arising from our previous AMG regressions. Once we include µ̂•,va
t we thus

obtain the same empirical results in the Group-Mean Fully-Modified OLS and Mean Group

OLS approaches. Similar to the results in Table 3 the CCE-augmented average estimate

is somewhat larger at .55, although inclusion of a linear country-trend yields an average
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estimate for capital of around .3.

These results are robust to a restriction of the sample to countries for which value-added

and capital stock per worker ‘pass’ the nonstationarity tests: for the Pedroni (2000) esti-

mator capital stock is insignficant, whereas the inclusion of the common dynamic process

replicates our earlier findings. We take these results as a vindication that the produc-

tion process represents a three-way cointegration between output, factor-inputs and some

unobserved common factors.

6 Estimating TFP in a heterogeneous parameter world

In most applications in the literature the estimation of production functions is just the

first step in an empirical analysis that concentrates on the magnitudes and determinants

of Total Factor Productivity (TFP). In our analysis we have thus far focused on the factor

parameter estimates and their magnitudes and robustness across specifications. We do

however also want to provide some estimates for TFP and its evolution. From the country

regressions we can obtain estimates for the intercept, technology parameters, idiosyncratic

and common trend coefficients or the parameters on the cross-section averages for AMG

and CCEMG specification respectively. One could be tempted to view the coefficients

on the intercepts as TFP level estimates, just like in the pooled fixed effects case. How-

ever, once we allow for heterogeneity in the slope coefficients, the interpretation of the

intercept as estimate for base-year TFP level is no longer valid. Consider the example in

Figure 2.

[Figure 2 about here]

We provide scatter plots for ‘adjusted’ log value-added per worker (y-axis) against log

capital per worker (x-axis) as well as a fitted regression line for these observations in each

of the following four countries: in the left panel France (circles) and Belgium (triangles),

in the right panel South Korea (circles) and Malaysia (triangles). The ‘adjustment’ is

based on the country-specific estimates from the AMG regression (value-added version) in
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specification (c) and constructed in the following steps:17 we begin with the fitted values

of this estimation

ŷit = âi + b̂i log(K/L)it + ĉit + d̂iµ̂
•
t (10)

where âi, b̂i, ĉi and d̂i are country-specific estimates for the intercept, log capital per

worker, the common dynamic process and a linear trend term. In order to illustrate our

case, we want to obtain a simple linear relationship between value-added and capital where

the contribution of TFP growth has already been accounted for. We compute

yadj
it = yit − ĉit − d̂iµ̂

•
t (11)

We then plot this variable against log capital per worker for each country separately.

This procedure in essence provides a two-dimensional visual equivalent of the estimates

for the capital coefficient (slope) and the TFP level (intercept) in the augmented country

regression. The left panel of Figure 2 shows two countries (France, Belgium) with vir-

tually identical capital coefficient estimates (slopes). The in-sample fitted regression line

is plotted as a solid line, the out-of-sample extrapolation toward the y-axis is plotted in

dashes. The country-estimates for the intercepts can be interpreted as TFP levels, since

these countries have very similar capital coefficient estimates (b̂i ≈ b̂j). In this case, the

graph represents the linear model yadj
it = âi + b̂ log(K/L)it, where âi possesses the ceteris

paribus property. In contrast, the right panel shows two countries which exhibit very

different capital coefficient estimates (slopes). In this case âi cannot be interpreted as

possessing the ceteris paribus quality since b̂i 6= b̂: ceteris non paribus! In the graph we

can see that Malaysia has a considerably higher intercept term than South Korea, even

though the latter’s observations lie above those of the former at any given point in time.

This illustrates that once technology parameters in the production function differ across

countries the regression intercept can no longer be interpreted as a TFP-level estimate.

We now want to suggest an alternative measure for TFP-level which is robust to parameter

heterogeneity. Referring back to the scatter plots in Figure 2, we marked the base-year

17The results applied are those presented in the lower panel of Table 3, column [4].
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level of log capital per worker by vertical lines for each of the four countries. We suggest to

use the locus where the solid (in-sample) regression line hits the vertical base-year capital

stock level as an indicator of TFP-level in the base year. In the value-added specification

these adjusted base-year and final-year TFP-levels are thus

âi + b̂i log(K/L)
0,i and âi + b̂i log(K/L)

0,i + ĉiτ + d̂iµ̂
•
τ (12)

respectively, where log(K/L)0,i is the country-specific base-year value for capital per

worker (in logs), τ is the total period for which country i is in the sample and µ̂•
τ is

the accumulated common TFP growth for this period τ with the country-specific param-

eter d̂i. It is easy to see that the intercept-problem discussed above only has bearings on

TFP-level estimates. A similar formula applies for the CCEMG estimator.18

Focusing exclusively on the TFP-levels in the base-year, Table C-3 in Appendix D presents

the rank (by magnitude) for adjusted TFP levels derived from the AMG estimator in

specification (c), i.e. with µ̂•
t included as additional regressor, and the standard CCEMG

estimator (in specification (d)). We further show the country ranking based on a pooled

fixed effects estimation, such as that presented in Table 3, column [2]. As can be seen in

the right half of the table, the rankings differ considerably between the AMG or CCEMG

results on the one hand and standard fixed effects results on the other (median absolute

rank difference (MARD): 10, respectively), but not between the results for AMG and

CCEMG (MARD: 1).

We present adjusted TFP base-year and final-year levels for these AMG and CCEMG

models in Figure D-3 in Appendix D. Note that in our sample base- and final-year differ

across countries (see Table A-2 in Appendix A). The countries in both charts are arranged

in order of magnitude of their final-year adjusted TFP levels in the AMG(ii) model, for

which results are shown in the left bar-chart. With exception of a small number of countries

(e.g. MLT — Malta, SGP — Singapore) the general ordering of countries by final-year

18This adjustment is somewhat more complex, involving the base-year values of cross-section averages
and country-specific coefficients on these averages instead of µ̂•

τ , but the same logic applies.
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TFP levels is very similar in the two specifications: countries such as Finland, Canada,

the United States or Ireland can be found toward the top of the ranking, with Bangladesh,

India, Sri Lanka and Poland closer to the bottom.

7 Overview and conclusions

In this paper we have investigated how technology differences in manufacturing across

countries should be modeled. We began by presenting an encompassing empirical frame-

work which allowed for the possibility that the impact of observable and unobservable

inputs on output differ across countries, as well as for nonstationary observables and un-

observables. We introduced our novel Augmented Mean Group estimator (AMG), which

is conceptually close to the Mean Group version of the Pesaran (2006) Common Corre-

lated Effects estimator (CCEMG). Both of these approaches allow for a globally common,

unobserved factor (or factors) interpreted either as common TFP or an average of country-

specific TFP evolution. While in the CCEMG this common dynamic process is only im-

plicit, the AMG approach uses an explicit estimate for this process in the augmentation

of country-regressions.

We have shown that the adoption of a heterogeneous technology model in combination

with a common factor representation for TFP and for the evolution of observable input

variables enables us to conceptualise and model a number of characteristics which are

likely to be prevalent in manufacturing data from a diverse sample of countries:

• Firstly, we allowed for parameter heterogeneity across countries. Empirical results

are confirmed by formal testing procedures to suggest that ‘technology parameters’

in manufacturing production indeed differ across countries. This result is in sup-

port of the earlier findings by Durlauf (2001) and Pedroni (2007) using aggregate

economy data: if production technology differs in cross-country manufacturing, ag-

gregate economy technology is unlikely to be homogeneous. The result of production

technology heterogeneity across countries has immediate implications for standard

empirical approaches to TFP analysis: it leads to the breakdown of the interpretation
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of regression intercept terms as TFP-levels estimates, as we have shown in Section

6. We therefore introduce a new procedure to compute ‘adjusted’ TFP-level esti-

mates which is robust to parameter heterogeneity and can thus be compared across

countries and between pooled and heterogeneous parameter models. Further anal-

ysis highlighted the significant differences between ‘adjusted’ TFP-level estimates

derived from our preferred heterogeneous parameter estimators on the one hand and

the standard pooled fixed effects estimator on the other. Finally, the finding of cross-

country technology heterogeneity further questions the validity of standard growth

and development accounting practices which impose common coefficients on capital

stock to extract country-specific measures of TFP.

• Secondly, we allowed for unobserved common factors to drive output, but with dif-

ferential impact across countries, thus inducing cross-section dependence. These

common factors are visualised by our common dynamic process, which follows pat-

terns over the 1970-2002 sample period that match historical events of the global

developments in manufacturing. The interpretation of this common dynamic pro-

cess µ̂•
t would be that for the manufacturing sector similar factors drive production

in all countries, albeit to a different extent. This is equivalent to suggesting that

the ‘global tide’ of innovation can ‘lift all boats’, and that technology transfer from

developed to developing countries is possible but dependent on the country’s pro-

duction technology and absorptive capacity, among other things.

• Thirdly, our empirical setup allows for a type of endogeneity which is arguably very

intuitive, namely that some of the unobservables driving output are also driving the

evolution of inputs. This leads to an identification problem, whereby standard panel

estimators cannot identify the parameters on the observable inputs as distinct from

the impact of unobservables. Our discussion has highlighted the ability of the Pe-

saran (2006) CCE estimators and our own AMG approach to deal with this problem

successfully. Furthermore, our additional analysis in Section 5 confirms that the

empirical results are robust to the use of a panel time-series econometric approach.
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The Pedroni (2000) Group-Mean FMOLS approach suggests that failure to account

for unobserved common factors when analysing cross-country manufacturing pro-

duction leads to the breakdown of the empirical estimates, whereas the inclusion of

the common dynamic process yields results very close to those from the AMG and

CCEMG.
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Table 1: Pooled regressions (unrestricted returns to scale)

Static pooled regressions (unrestricted)
regression equations augmented with year dummies or cross-section means (Pesaran, 2006)

(i) Gross output regressions

[1] [2] [3] [4]
estimator POLS FE♮ CCEP♮ estimator FD-OLS

dependent variable lO lO lO dependent variable ∆lO

regressors regressors
labour 0.0106 0.1209 0.1757 ∆labour 0.1662

[2.09]∗ [12.83]∗∗ [14.61]∗∗ [4.40]∗∗

capital 0.0452 0.1923 0.1720 ∆capital 0.0675
[6.15]∗∗ [21.08]∗∗ [15.13]∗∗ [2.17]∗

materials 0.9500 0.7356 0.7228 ∆materials 0.7879
[101.69]∗∗ [81.17]∗∗ [65.11]∗∗ [30.86]∗∗

intercept 0.4157 0.4883 -0.5225
[9.45]∗∗ [3.86]∗∗ [2.68]∗∗

returns to scale returns to scale
F -Test for CRS (p) 8.0 (.01) 65.3 (.00) 53.1 (.00) F -Test for CRS (p) 0.7 (.42)

VA-equivalent† VA-equivalent†
labour (VA) 0.213 0.457 0.637 labour (VA) 0.784

[2.47]∗ [14.27]∗∗ [16.50]∗∗ [5.62]∗∗

capital (VA) 0.904 0.727 0.620 capital (VA) 0.318
[12.70]∗∗ [25.01]∗∗ [19.84]∗∗ [2.09]∗∗

AR tests‡ AR tests‡
AR(1) (p) 18.2 (.00) 12.8 (.00) 5.1 (.00) AR(1) (p) -2.8 (.00)
AR(2) (p) 18.1 (.00) 7.9 (.00) 0.4 (.70) AR(2) (p) -2.1 (.04)
AR(3) (p) 17.9 (.00) 10.5 (.00) -0.5 (.60) AR(3) (p) 0.9 (.35)

obs (countries) 1,162 (48) 1,162 (48) 1,162 (48) obs (countries) 1,094 (94)

(ii) Value-added regressions

[1] [2] [3] [4]
estimator POLS FE♮ CCEP♮ estimator FD-OLS

dependent variable lY lY lY dependent variable ∆lY

regressors regressors
labour 0.2100 0.4402 0.6009 ∆labour 0.6849

[12.08]∗∗ [17.43]∗∗ [19.48]∗∗ [7.43]∗∗

capital 0.7896 0.7174 0.6144 ∆capital 0.3463
[67.34]∗∗ [32.17]∗∗ [22.76]∗∗ [3.40]∗∗

intercept 1.1510 -0.0470 -0.5160
[7.99]∗∗ [0.13] [0.98]

returns to scale returns to scale
F -Test for CRS (p) 0.0 (.96) 82.2 (.00) 57.3 (.00) F -Test for CRS (p) 0.1 (.72)

AR tests‡ AR tests‡
AR(1) (p) 18.5 (.00) 12.9 (.00) 8.9 (.00) AR(1) (p) -3.3 (.00)
AR(2) (p) 18.0 (.00) 9.4 (.00) 4.4 (.00) AR(2) (p) -2.7 (.01)
AR(3) (p) 17.6 (.00) 8.0 (.00) 3.7 (.00) AR(3) (p) 1.2 (.25)

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) obs (countries) 1,128 (94)

Notes: Values in parentheses are absolute t-statistics, based on White heteroskedasticity-consistent standard
errors. We indicate statistical significance at the 5% and 1% level by ∗ and ∗∗ respectively.
For the CCEP estimator we include sets of cross-section period averages of gross output (lO) [or value-added
(lY)], labour (lL), capital stock (lK) and materials (lM), all in logs (estimates not reported) — see main text
for description of this estimator. All other models include T − 1 year dummies in levels or FD (estimates not
reported).

The null hypotheses for the CRS tests are α̂ + β̂ + γ̂ = 1 and α̂va + β̂va = 1 for gross output and value-added
specifications respectively.
♮ The F -tests in the FE and CCEP regressions reject the null that fixed effects do not differ across countries.
F (47, 1079) = 118.57 (p = .00) (GO), F (47, 1112) = 274.48 (p = .00) (VA) for FE; F (47, 919) = 8.96 (p = .00)
(GO), F (47, 1000) = 4.38 (p = .00) (VA) for CCEP.
† These can be derived as α̂/(1 − γ̂) for labour and in analogy for capital (Söderbom & Teal, 2004).
‡ Arellano and Bond (1991) AR test on the regression residuals. H0: no serial correlation in the residuals.
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Table 2: Pooled regressions (CRS)

Static pooled regressions (CRS imposed)
regression equations augmented with year dummies or cross-section (Pesaran, 2006)

(i) Gross output regressions

[1] [2] [3] [4]
estimator POLS FE♮ CCEP♮ estimator FD-OLS

dependent variable lo lo lo dependent variable ∆lo

regressors regressors
capital pw 0.0478 0.1765 0.1640 ∆capital pw 0.0491

[6.56]∗∗ [19.24]∗∗ [15.56]∗∗ [1.74]

materials pw 0.9493 0.7380 0.7401 ∆materials pw 0.7875
[102.18]∗∗ [79.15]∗∗ [67.29]∗∗ [30.75]∗∗

intercept 0.4695 1.2411 -0.3355
[11.19]∗∗ [14.05]∗∗ [1.78]

VA-equivalent† VA-equivalent†
capital pw (VA) 0.942 0.673 0.631 capital pw (VA) 0.231

[13.44]∗∗ [23.15]∗∗ [21.03]∗∗ [1.72]

AR tests‡ AR tests‡
AR(1) (p) 18.7 (.00) 10.9 (.00) 6.8 (.00) AR(1) (p) -2.8 (.00)
AR(2) (p) 18.7 (.00) 8.4 (.00) 2.1 (.03) AR(2) (p) -2.1 (.04)
AR(3) (p) 18.6 (.00) 7.1 (.00) 1.0 (.34) AR(3) (p) 1.0 (.33)

obs (countries) 1,162 (48) 1,162 (48) 1,162 (48) obs (countries) 1,094 (48)

(ii) Value-added regressions

[1] [2] [3] [4]
estimator POLS FE♮ CCEP♮ estimator FD-OLS

dependent variable ly ly ly dependent variable ∆ly

regressors regressors
capital pw 0.7895 0.6752 0.5823 ∆capital pw 0.3195

[72.97]∗∗ [29.89]∗∗ [23.38]∗∗ [3.61]∗∗

intercept 1.1474 2.3786 0.2489
[8.47]∗∗ [9.98]∗∗ [0.63]

AR tests‡ AR tests‡
AR(1) (p) 18.5 (.00) 13.0 (.00) 9.6 (.00) AR(1) (p) -3.3 (.00)
AR(2) (p) 18.0 (.00) 9.6 (.00) 4.7 (.00) AR(2) (p) -2.7 (.01)
AR(3) (p) 17.5 (.00) 8.2 (.00) 3.4 (.00) AR(3) (p) 1.2 (.24)

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) obs (countries) 1,128 (48)

Notes: Values in parentheses are absolute t-statistics, based on White heteroskedasticity-consistent standard
errors. For the CCEP estimator we include sets of cross-section period-averages of gross output per worker (lo)
[or value-added per worker (ly)], capital stock per worker (lk) and materials per worker (lm), all in logs
(estimates not reported) — see text for description of this estimator. All other models include T − 1 year
dummies (estimates not reported). We indicate statistical significance at the 5% and 1% level by ∗ and ∗∗

respectively.
♮ The F -tests in the FE and CCEP regressions reject the null that fixed effects do not differ across countries.
F (47, 1080) = 111.81 (p = .00) (GO), F (47, 1113) = 254.20 (p = .00) (VA) for FE; F (47, 968) = 7.00 (p = .00)
(GO), F (47, 1049) = 5.35 (p = .00) (VA) for CCEP.
† These can be derived as α̂(VA) = α̂/(1 − γ̂) for labour and in analogy for capital (Söderbom & Teal, 2004).
‡ Arellano and Bond (1991) AR test on the regression residuals. H0: no serial correlation in the residuals.
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Table 3: Country regression averages (levels, CRS imposed)

Country regressions in levels
static specification with CRS imposed; estimates presented are unweighted means of the country coefficients

(i) Gross output regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator MG RCM AMG AMG CCEMG CCEMG ARCM ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ lo lo lo-µ̂•

t lo lo lo lo-µ̂•
t lo

regressors
capital pw 0.0525 0.0731 0.0695 0.0815 0.1216 0.0839 0.0825 0.0923

[1.85] [2.38]∗ [2.75]∗∗ [3.17]∗∗ [5.25]∗∗ [3.22]∗∗ [3.00]∗∗ [3.31]∗∗

materials pw 0.7090 0.7305 0.7274 0.7303 0.7193 0.7091 0.7487 0.7480
[26.31]∗∗ [25.18]∗∗ [27.32]∗∗ [28.31]∗∗ [22.92]∗∗ [24.96]∗∗ [26.24]∗∗ [26.96]∗∗

common trend 1.0083 0.9464
[4.22]∗∗ [3.63]∗∗

country trend 0.0044 0.0034 0.0008 0.0003 0.0024 -0.0001 -0.0001
[3.97]∗∗ [2.82]∗∗ [0.76] [0.26] [2.17]∗ [0.05] [0.07]

intercept 2.8429 2.4251 2.4713 2.3099 0.8193 1.4514 2.1392 2.0359
[8.61]∗∗ [6.76]∗∗ [8.24]∗∗ [7.38]∗∗ [1.71] [3.02]∗∗ [6.56]∗∗ [6.01]∗∗

Panel t-statistics, trends†
capital pw 8.40 10.59 9.98 11.64 19.02 9.37 12.37 13.48
material pw 103.13 109.32 116.50 114.56 118.90 89.52 121.59 121.65
country trend 20.61 19.57 19.11 12.92 14.06 17.10 12.75
# of sign. trends (at 10%) 30 33 26 24 26 26 23

VA-equivalent coefficients‡
capital/worker (VA) mean 0.180 0.271 0.255 0.302 0.433 0.288 0.328 0.366

[1.95] [2.53]∗ [2.96]∗∗ [3.35]∗∗ [6.14]∗∗ [3.49]∗∗ [3.24]∗∗ [3.49]∗∗

obs (countries) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48)

(ii) Value-added regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator MG RCM AMG AMG CCEMG CCEMG ARCM ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ ly ly ly-µ̂va •

t ly ly ly ly-µ̂va •
t ly

regressors
capital pw 0.1789 0.2691 0.2896 0.2982 0.4663 0.3125 0.3557 0.3529

[2.25]∗ [3.13]∗∗ [3.95]∗∗ [3.70]∗∗ [6.76]∗∗ [3.72]∗∗ [4.49]∗∗ [4.08]∗∗

common trend 0.8787 0.8751
[4.39]∗∗ [3.88]∗∗

country trend 0.0174 0.0148 0.0001 0.0023 0.0108 -0.0018 0.0003
[5.95]∗∗ [4.77]∗∗ [0.04] [0.56] [3.09]∗∗ [0.66] [0.06]

intercept 7.6528 6.7191 6.3823 6.2431 0.8961 4.7860 5.7380 5.7620
[9.05]∗∗ [7.35]∗∗ [8.42]∗∗ [7.40]∗∗ [0.89] [3.66]∗∗ [6.98]∗∗ [6.34]∗∗

Panel t-statistics, trends†
capital pw 12.42 15.45 16.55 17.43 31.86 16.15 20.34 19.68
country trend 27.65 26.65 20.40 12.12 16.08 19.14 10.99
# of sign. trends (at 10%) 39 36 28 19 24 27 19

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48)

Notes: All variables are in logs. lo — log output per worker, ly — log value-added per worker. µ̂•

t and µ̂va •

t are derived from
the year dummy coefficients of a pooled regression (CRS imposed) in first differences (FD-OLS) as described in the text.
We omit reporting the parameters on the cross-section averages for the CCEMG estimators (columns [5] and [6]) to save space.
Values in parentheses are absolute t-statistics. These were obtained by regressing the N country estimates on an intercept term,
except for the Swamy t-stats, which are provided by xtrc in Stata and represent

∑
i(Σ̂ + V̂i) where Σ̂ is a measure of dispersion

of the country OLS estimates and V̂ is the variance of the N OLS estimates scaled by
∑

x2

i .
‘Specification’ refers to equations (6) to (9). We indicate statistical significance at the 5% and 1% level by ∗ and ∗∗ respectively.
♯ We subtract the common dynamic process µ̂•

t from log output (log value-added) per worker for country i in models [3] and [7].

† We report the Pedroni (2000) panel-t statistics (1/
√

N)
∑

i ti where ti is the country-specific t-statistic of the parameter
estimate.
‡ This is obtained using a non-linear combination of the capital and materials coefficients accounting for the precision of these
estimates.
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Table 4: Country regression averages (FD, CRS imposed)

Country regressions in first differences
static specification with CRS imposed; estimates presented are unweighted means of the country coefficients

(i) Gross output regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator ∆MG ∆RCM ∆AMG ∆AMG ∆CCEMG ∆CCEMG ∆ARCM ∆ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ ∆lo ∆lo ∆lo-∆µ̂•

t ∆lo ∆lo ∆lo ∆lo-∆µ̂•
t ∆lo

regressors
∆capital pw 0.0476 0.0544 0.0659 0.0763 0.0836 0.0547 0.0675 0.0667

[2.01]∗ [1.92] [2.85]∗∗ [3.31]∗∗ [3.98]∗∗ [2.30]∗ [2.45]∗ [2.43]∗

∆materials pw 0.7634 0.7736 0.7744 0.7672 0.7579 0.7575 0.7834 0.7779
[42.75]∗∗ [37.14]∗∗ [41.69]∗∗ [40.19]∗∗ [36.21]∗∗ [39.46]∗∗ [36.63]∗∗ [35.67]∗∗

common drift - - - 1.0363 - - - 0.8633
- - - [4.93]∗∗ - - - [3.64]∗∗

country drift 0.0020 0.0028 -0.0014 -0.0016 - 0.0013 -0.0003 0.0001
[1.67] [1.85] [1.17] [1.42] - [0.93] [0.23] [0.04]

Panel t-statistics, trends†
capital pw 4.6 5.8 6.3 5.8 7.8 4.5 7.5 7.3
materials pw 90.8 114.8 102.6 99.8 86.6 86.2 118.0 119.0
country trends 7.3 8.0 6.3 6.3 - 7.9 6.4 5.9
# of sign. trends (at 10%) 8 13 6 7 - 12 6 6

VA-equivalent coefficients‡
capital/worker (VA) mean 0.201 0.240 0.292 0.328 0.345 0.226 0.312 0.300

[2.03]∗ [1.92] [2.90]∗∗ [3.30]∗∗ [3.97]∗∗ [2.30]∗ [2.47]∗ [2.43]∗

obs (countries) 1,094 (48) 1,094 (48) 1,094 (48) 1,094 (48) 1,094 (48) 1,094 (48) 1,094 (48) 1,094 (48)

(ii) Value-added regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator ∆MG ∆RCM ∆AMG ∆AMG ∆CCEMG ∆CCEMG ∆ARCM ∆ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ ∆ly ∆ly ∆ly-∆µ̂va •

t ∆ly ∆ly ∆ly ∆ly-∆µ̂va •
t ∆ly

regressors
∆capital pw 0.1642 0.2085 0.2734 0.2834 0.3837 0.2577 0.3053 0.2969

[1.91] [2.13]∗ [3.48]∗∗ [3.77]∗∗ [5.62]∗∗ [3.48]∗∗ [3.37]∗∗ [3.38]∗∗

common drift - - - 1.0497 - - - 0.8938
- - - [5.71]∗∗ - - - [4.21]∗∗

country drift 0.0161 0.0171 -0.0011 -0.0020 - 0.0123 -0.0001 0.0017
[5.54]∗∗ [4.42]∗∗ [0.44] [0.50] - [3.76]∗∗ [0.03] [0.34]

Panel t-statistics, trends†
capital pw 4.8 6.9 8.3 7.7 12.0 7.2 10.7 10.4
country trends 9.53 13.95 5.77 7.46 - 7.68 6.18 7.26
# of sign. trends (at 10%) 14 24 6 10 - 11 7 10

obs (countries) 1,128 (48) 1,128 (48) 1,128 (48) 1,128 (48) 1,128 (48) 1,128 (48) 1,128 (48) 1,128 (48)

Notes: Variables are in first differences of logs. ∆lo — output per worker growth rate, ∆ly — value-added per worker growth
rate.
See Table 3 for further information.
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Table 5: Testing Residuals for Normality and Homoskedasticity

Regression residuals — normality, homoskedasticity♯

H0 for respective test statistics: no heteroskedasticity, regular skewness, regular kurtosis;♭

we report the χ2 or the Fisher pλ statistic and corresponding p-values

Cameron & Trivedi tests D’Agostino et al normality test

Pooled regression residuals: Gross output specifications (CRS)†
Joint test Heterosked. Skewness Kurtosis Joint test Skewness Kurtosis

χ2 p χ2 p χ2 p χ2 p χ2 p p p

POLS 176.1 .01 139.5 .01 36.4 .36 0.2 .64 33.6 .00 .04 .00
FE 1355.6 .01 1162.0 .49 180.2 .00 13.4 .00 69.2 .00 .00 .00
CCEP - - - - - - - - 106.2 .00 .12 .00
FD-OLS 541.3 .00 491.9 .00 43.1 .11 6.3 .01 214.2 .00 .00 .00

Pooled regression residuals: Value-added specifications (CRS)†
Joint test Heterosked. Skewness Kurtosis Joint test Skewness Kurtosis

χ2 p χ2 p χ2 p χ2 p χ2 p p p

POLS 194.3 .00 95.4 .01 95.3 .00 3.6 .06 51.2 .00 .00 .16
FE 1324.2 .16 1194.0 .49 98.1 .08 32.2 .00 53.0 .00 .00 .00
CCEP - - - - - - - - 84.7 .00 .12 .00
FD-OLS 281.7 .00 237.2 .00 36.8 .26 7.8 .01 279.4 .00 .00 .00

Cameron & Trivedi tests D’Agostino et al normality test

Country regression residuals: Gross output specifications (CRS)†
Joint test Heterosked. Skewness Kurtosis Joint test Skewness Kurtosis

pλ p pλ p pλ p pλ p pλ p pλ p pλ p

MG 80.0 .88 70.4 .98 69.0 .98 39.7 1.00 51.0 1.00 55.4 1.00 43.2 1.00
AMG(i) 81.7 .85 70.9 .97 67.5 .99 41.8 1.00 46.0 1.00 47.7 1.00 41.8 1.00
AMG(ii) 64.7 .99 56.7 1.00 59.0 1.00 42.9 1.00 48.7 1.00 50.6 1.00 43.9 1.00
CCEMG(i) 46.5 1.00 44.5 1.00 42.3 1.00 50.7 1.00 45.2 1.00 41.0 1.00 46.5 1.00
CCEMG(ii) 41.7 1.00 39.0 1.00 47.7 1.00 43.9 1.00 34.4 1.00 32.4 1.00 39.8 1.00

Country regression residuals: Value-added specifications (CRS)†
Joint test Heterosked. Skewness Kurtosis Joint test Skewness Kurtosis

pλ p pλ p pλ p pλ p pλ p pλ p pλ p

MG 93.6 .55 83.8 .81 72.3 .97 43.5 1.00 56.2 1.00 57.6 1.00 47.2 1.00
AMG(i) 97.3 .44 80.1 .88 81.9 .85 46.6 1.00 56.0 1.00 57.0 1.00 47.2 1.00
AMG(ii) 81.4 .86 71.9 .97 63.8 1.00 50.0 1.00 52.4 1.00 54.2 1.00 46.7 1.00
CCEMG(i) 96.8 .46 71.8 .97 86.1 .76 43.0 1.00 58.7 1.00 63.4 1.00 45.3 1.00
CCEMG(ii) 65.7 .99 59.4 1.00 56.1 1.00 43.9 1.00 51.6 1.00 51.0 1.00 47.6 1.00

Notes: ♯ We report heteroskedasticity and normality test statistics for residual series from
(a) pooled estimators: POLS — pooled OLS, FE — pooled OLS with N country dummies, CCEP — Pesaran (2006) common
correlated effects estimator (pooled version), FD-OLS — pooled OLS with variables in first differences; POLS, FE and FD-OLS
are augmented with T − 1 year dummies; the regression results from which these residuals are taken are presented in Table 2; and
(b) heterogeneous parameter estimators: MG — Pesaran and Smith (1995) Mean Group estimator, AMG(i) — Augmented Mean
Group estimator (µ̂•

t imposed with unit coefficient), AMG(ii) — dto. (µ̂•

t included as additional regressor), CCEMG(i) —
Pesaran (2006) common correlated effects estimator (mean group version), CCEMG(ii) — dto. with additional country trend;
MG, AMG(i), AMG(ii), and CCEMG(ii) contain country-specific trend terms; the regression results from which these residuals
are taken are presented in Table 3.
The Cameron and Trivedi (1990) decomposition test analyses residual heteroskedasticity, skewness and kurtosis. The D’Agostino
et al. (1990) test investigates skewness and kurtosis. Both tests provide joint hypothesis tests. If a test rejects skewness or
kurtosis we can no longer assume normality for the residual distribution.
♭ ‘Regular’ in this case is taken to mean in line with the normal distribution.
† For the pooled regressions we report χ2 statistics and corresponding p-values. For the country regression we compute the
Fisher statistic pλ = −2

∑
i log(pi), where pi is the p-value of the country-specific test statistic. The Fisher statistic pλ is

distributed χ2(2N).

36



Table 6: Testing Residuals for Stationarity (i)

Pooled regression residuals — stationarity tests♯

H0 for each test: nonstationary residual series;♭

Maddala and Wu (1999) (MW) and Pesaran (2007) (CIPS) test results;
CIPS∗ does not apply cross-sectional demeaning prior to the testing procedure

Residuals from gross output specifications (CRS imposed)†
lags: 0 lags: 1 lags: 2 lags: 3 lags: 4

MW pλ p pλ p pλ p pλ p pλ p

POLS 193.16 .00 169.00 .00 91.82 .60 105.65 .24 110.42 .15
FE 188.54 .00 216.55 .00 127.73 .02 129.72 .01 98.44 .41
CCEP 397.64 .00 370.93 .00 203.45 .00 148.20 .00 155.512 .00
FD-OLS 1164.92 .00 632.24 .00 393.81 .00 297.95 .00 140.95 .00

CIPS Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

POLS -1.88 .03 -0.36 .36 1.27 .90 4.22 1.00 6.33 1.00
FE -1.49 .07 -0.61 .27 1.65 .95 3.98 1.00 6.80 1.00
CCEP -10.08 .00 -8.23 .00 -4.12 .00 2.40 1.00 7.08 1.00
FD-OLS -20.88 .00 -10.26 .00 -1.47 .07 3.97 1.00 8.89 1.00

CIPS∗ Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

POLS -2.32 .01 -1.41 .08 1.51 .93 1.19 .88 3.09 1.00
FE -1.98 .02 -2.00 .02 1.39 .92 2.86 1.00 4.21 1.00
CCEP -10.08 .00 -8.23 .00 -4.12 .00 2.40 .99 7.08 1.00
FD-OLS -22.28 .00 -14.19 .00 -8.51 .00 -5.00 .00 1.72 .96

Residuals from value-added specifications (CRS imposed)†
lags: 0 lags: 1 lags: 2 lags: 3 lags: 4

MW pλ p pλ p pλ p pλ p pλ p

POLS 151.96 .00 176.19 .00 108.60 .18 74.32 .95 72.70 .96
FE 146.64 .00 140.02 .00 94.70 .52 72.66 .96 92.21 .59
CCEP 323.84 .00 306.74 .00 196.42 .00 136.74 .00 127.54 .02
FD-OLS 2033.95 .00 1142.64 .00 580.42 .00 455.09 .00 314.48 .00

CIPS Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

POLS -0.96 .17 0.52 .70 3.59 1.00 8.14 1.00 9.82 1.00
FE -1.76 .04 -1.13 .13 0.78 .78 5.17 1.00 6.53 1.00
CCEP -8.32 .00 -7.53 .00 -2.74 .00 1.41 .92 8.26 1.00
FD-OLS -27.11 .00 -20.16 .00 -6.73 .00 -1.17 .12 4.23 1.00

CIPS∗ Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

POLS -1.34 .09 -1.53 .06 1.67 .95 3.81 1.00 4.81 1.00
FE -1.18 .12 -0.44 .33 2.28 .99 4.40 1.00 4.96 1.00
CCEP -8.32 .00 -7.53 .00 -2.74 .00 1.41 .92 8.26 1.00
FD-OLS -28.18 .00 -20.99 .00 -12.63 .00 -8.92 .00 -1.35 .09

Notes: † We apply the Pesaran (2007) (CIPS) and Maddala and Wu (1999) (MW) panel unit root tests; the
former accounts for possible cross-section dependence in the variable tested (here: regression residuals). We also
present the results for the CIPS where cross-sectional demeaning of the data prior to the testing procedure is
prevented (marked as CIPS∗).
See Table 5 for a description of the regressions from which these residuals are taken.
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Table 7: Testing Residuals for Stationarity (ii)

Country regression residuals — stationarity tests♯

H0 for each test: stationary residual series;♭

Maddala and Wu (1999) (MW) and Pesaran (2007) (CIPS) test results;
CIPS∗ does not apply cross-sectional demeaning prior to the testing procedure

Gross output specifications (CRS)†
lags: 0 lags: 1 lags: 2 lags: 3 lags: 4

MW pλ p pλ p pλ p pλ p pλ p

MG 429.01 .00 386.48 .00 227.16 .00 166.57 .00 138.59 .00
RCM 384.54 .00 359.93 .00 211.93 .00 154.20 .00 127.73 .02
AMG(i) 444.71 .00 388.14 .00 251.08 .00 168.88 .00 132.25 .01
AMG(ii) 551.52 .00 468.54 .00 299.32 .00 195.87 .00 145.25 .00
CCEMG(i) 581.95 .00 585.88 .00 329.75 .00 285.80 .00 201.71 .00
CCEMG(ii) 699.77 .00 624.26 .00 330.92 .00 242.79 .00 177.41 .00
ARCM(i) 397.22 .00 355.32 .00 226.16 .00 145.11 .00 127.07 .02
ARCM(ii) 485.06 .00 444.00 .00 275.65 .00 176.20 .00 132.18 .01

CIPS Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

MG -9.63 .00 -9.28 .00 -2.65 .00 0.96 .83 8.05 1.00
RCM -9.07 .00 -8.99 .00 -1.85 .03 1.10 .86 7.25 1.00
AMG(i) -10.15 .00 -9.94 .00 -5.18 .00 1.62 .95 7.69 1.00
AMG(ii) -12.23 .00 -11.32 .00 -5.62 .00 0.14 .56 5.63 1.00
CCEMG(i) -12.88 .00 -11.18 .00 -5.61 .00 0.37 .65 8.03 1.00
CCEMG(ii) -15.28 .00 -11.66 .00 -4.62 .00 0.49 .69 7.45 1.00
ARCM(i) -9.35 .00 -8.20 .00 -4.37 .00 2.61 1.00 7.74 1.00
ARCM(ii) -11.39 .00 -10.98 .00 -6.10 .00 0.66 .74 5.72 1.00

CIPS∗ Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

MG -10.17 .00 -8.95 .00 -4.76 .00 -2.47 .01 0.42 .66
RCM -9.18 .00 -8.31 .00 -4.25 .00 -2.07 .02 0.76 .78
AMG(i) -10.69 .00 -9.09 .00 -5.48 .00 -2.79 .00 -0.14 .45
AMG(ii) -13.35 .00 -11.26 .00 -7.05 .00 -3.66 .00 -0.35 .36
CCEMG(i) -14.15 .00 -13.28 .00 -7.93 .00 -6.08 .00 -2.25 .01
CCEMG(ii) -16.60 .00 -14.48 .00 -8.23 .00 -5.37 .00 -1.67 .05
ARCM(i) -9.73 .00 -8.22 .00 -4.62 .00 -1.80 .04 0.25 .60
ARCM(ii) -11.98 .00 -10.61 .00 -6.22 .00 -2.82 .00 0.21 .58

Value-added specifications (CRS)†
lags: 0 lags: 1 lags: 2 lags: 3 lags: 4

MW pλ p pλ p pλ p pλ p pλ p

MG 360.10 .00 365.52 .00 236.82 .00 274.77 .00 136.90 .00
RCM 336.11 .00 349.73 .00 227.42 .00 285.17 .00 132.23 .01
AMG(i) 351.49 .00 347.73 .00 234.17 .00 160.73 .00 134.66 .01
AMG(ii) 434.12 .00 403.79 .00 254.07 .00 172.11 .00 137.53 .00
CCEMG(i) 399.32 .00 393.45 .00 270.81 .00 176.23 .00 149.47 .00
CCEMG(ii) 482.29 .00 440.86 .00 271.00 .00 184.36 .00 165.30 .00
ARCM(i) 330.71 .00 327.87 .00 217.22 .00 148.04 .00 176.24 .00
ARCM(ii) 384.88 .00 362.08 .00 224.68 .00 159.38 .00 162.32 .00

CIPS Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

MG -8.22 .00 -7.64 .00 -3.90 .00 0.56 .71 7.78 1.00
RCM -7.83 .00 -6.98 .00 -3.72 .00 0.50 .69 7.56 1.00
AMG(i) -8.97 .00 -7.19 .00 -2.90 .00 2.59 1.00 7.90 1.00
AMG(ii) -10.98 .00 -9.86 .00 -4.77 .00 1.25 .89 7.60 1.00
CCEMG(i) -9.20 .00 -9.08 .00 -3.90 .00 1.96 .97 8.62 1.00
CCEMG(ii) -11.78 .00 -9.57 .00 -4.05 .00 1.54 .94 6.26 1.00
ARCM(i) -8.55 .00 -7.32 .00 -2.93 .00 1.50 .93 6.98 1.00
ARCM(ii) -10.35 .00 -9.13 .00 -4.72 .00 2.43 .99 7.35 1.00

CIPS∗ Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p Z[t-bar] p

MG -8.72 .00 -8.50 .00 -5.12 .00 -3.31 .00 0.01 .50
RCM -8.18 .00 -8.07 .00 -4.82 .00 -2.91 .00 0.40 .65
AMG(i) -8.72 .00 -8.13 .00 -4.87 .00 -2.14 .02 -0.12 .45
AMG(ii) -10.60 .00 -9.76 .00 -5.83 .00 -2.45 .01 0.20 .58
CCEMG(i) -9.59 .00 -8.97 .00 -5.96 .00 -2.35 .01 -0.03 .49
CCEMG(ii) -11.78 .00 -10.45 .00 -6.26 .00 -3.35 .00 -1.21 .11
ARCM(i) -8.23 .00 -7.55 .00 -4.35 .00 -1.48 .07 -0.14 .44
ARCM(ii) -9.59 .00 -8.61 .00 -4.78 .00 -1.68 .05 0.16 .57
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Table 8: Country regressions using FMOLS

Averaged Fully Modified OLS estimates
We apply the Phillips and Hansen (1990) FM-OLS estimator to each country;

estimates reported are unweighted means of country estimates

Value-added specification: Full sample

estimator : FMOLS- MG AMG AMG CCEMG CCEMG
dependent variable ly ly-µ̂•,va

t ly ly ly
[1] [2] [3] [4] [5]

regressors
capital pw 0.1663 0.2659 0.2937 0.5544 0.3042

[1.99] [3.32]∗∗ [3.18]∗∗ [8.05]∗∗ [3.33]∗∗

common process 0.8977
[3.49]∗∗

country trends 0.0171 0.0004 0.0014 0.0108
[5.50]∗∗ [0.12] [0.29] [2.95]∗∗

intercept -4.6095 6.5985 7.1405 5.6737 -1.6007
[1.63] [2.69]∗∗ [1.52] [5.57]∗∗ [0.57]

Panel-t statistics, trends†
capital pw 18.29 14.73 15.36 40.59 15.88
trends 24.94 18.93 12.71 20.70
# of sign. trends (at 10%) 37 25 23 28

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48)

Value-added specification: I(1) sample

estimator : FM- MG AMG AMG CCEMG CCEMG
dependent variable ly ly-µ̂•,va

t ly ly ly
[1] [2] [3] [4] [5]

regressors
capital pw 0.0816 0.2675 0.2784 0.5528 0.2485

[1.27] [4.11]∗∗ [3.08]∗∗ [7.38]∗∗ [3.13]∗∗

common process 0.8034
[4.61]∗∗

country trends 0.0179 -0.0012 0.0019 0.0108
[5.64]∗∗ [0.40] [0.41] [2.56]∗

intercept -4.9092 6.1012 5.2980 5.3936 -2.3070
[1.59] [2.63]∗ [1.50] [4.60]∗∗ [0.76]

Panel-t statistics, trends†
capital pw 11.45 10.37 9.97 34.96 10.16
trends 23.28 14.63 10.56 17.10
# of sign. trends (at 10%) 23 15 15 16

obs (countries) 561 (26) 561 (26) 561 (26) 561 (26) 561 (26)

Notes: The results in [1] are for the Pedroni (2000) Group-Mean FMOLS estimator; the results in the

remaining columns allow for cross-section dependence using either µ̂
•,va
t or cross-section averages in the

FMOLS country regressions. In all cases the estimates presented are the unweighted means of the FMOLS
country estimates. The lower panel uses observations from only those countries for which variables were
determined to be nonstationary (via ADF and KPSS testing).
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Figure 1: Evolution of the ‘common dynamic process’ µ̂•
t
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Figure 2: Regression intercepts and TFP level estimates
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Appendix

A Data construction and descriptives

Data for output, value-added, material inputs and investment in manufacturing, all in

current local currency units (LCU), are taken from the UNIDO Industrial Statistics 2004

(UNIDO, 2004), where material inputs were derived as the difference between output

and value-added. The labour data series is taken from the same source, which covers

1963-2002. The capital stocks are calculated from investment data in current LCU fol-

lowing the ‘perpetual inventory’ method developed in Klenow and Rodriguez-Clare (1997).

In order to make data in monetary values internationally comparable, it is necessary to

transform all values into a common unit of analysis. We follow the transformations sug-

gested by Martin and Mitra (2002) and derive all values in 1990 US$,a using current LCU

and exchange rate data from UNIDO, and GDP deflators from the UN Common Statistics

database (UN, 2005), for which data are available from 1970-2003. Since our model is for

a small open economy, we prefer using a single market exchange rates (LCU-US$ exchange

rate for 1990) to purchasing-power-parity (PPP) adjusted exchange rates, since the latter

are more appropriate when non-traded services need to be accounted.

The resulting panel is unbalanced and has gaps within individual country time-series. We

have a total of n = 1, 194 observations (n = 1, 162 for the gross-output specification)

from N = 48 countries, which have a time-series dimension between T = 11 and T = 33,

with average T = 24. This is the sample we use in the empirical analysis throughout this

chapter. Table A-1 provides the descriptive statistics for the raw variables and variables in

logs used in our regressions, further country-specific information is contained in Table A-2.

As a robustness check we also produced a ‘cleaned’ dataset where we applied mechanical

‘cleaning rules’ in order to address the most serious issues of measurement error,b which

created a sample of n = 872 observations for N = 38 countries. The empirical results for

this sample are surprisingly close to those from the larger sample (available on request).

aMartin and Mitra (2002) apply a single exchange-rate (that for 1990) to the whole data series, whereas
for instance Larson, Butzer, Mundlak, and Crego (2000) apply the annual exchange rate. The latter
approach is deemed less appropriate, since the variable series would also capture international price and
exchange rate movements.

bWe used the capital-to-materials ratio (K/M) to define a rule, bounded as 0.02 < K/M < 2, and then
dropped countries for which we had less than ten observations.
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Table A-1: Descriptive statistics

Variables in level terms

Variable obs mean median std. dev. min. max.

levels
output 1,162 1.40 E+11 2.41 E+10 4.06 E+11 7.21 E+07 3.15 E+12
value-added 1,194 5.47 E+10 9.04 E+09 1.78 E+11 1.76 E+07 1.50 E+12
labour 1,162 1,442,446 5.02 E+05 2,948,201 5,552 1.97 E+07
capital 1,162 1.31 E+11 2.61 E+10 3.16 E+11 5.78 E+07 2.27 E+12
materials 1,162 8.44 E+10 1.55 E+10 2.27 E+11 5.45 E+07 1.65 E+12

logs
output 1,162 23.74 23.91 2.12 18.09 28.78
value-added 1,194 22.70 22.93 2.15 16.68 28.04
labour 1,162 12.88 13.13 1.79 8.62 16.79
capital 1,162 23.67 23.98 2.22 17.87 28.45
materials 1,162 23.31 23.46 2.11 17.81 28.13

annual growth rate
output 1,094 4.4% 3.9% 9.8% -43.7% 100.1%
value-added 1,128 3.9% 3.5% 12.3% -78.3% 92.7%
labour 1,094 1.7% 0.8% 8.1% -38.8% 78.1%
capital 1,094 4.2% 3.1% 4.4% -2.4% 47.8%
materials 1,094 4.6% 3.7% 10.6% -39.3% 103.1%

Variables in per worker terms

variable obs mean median std. dev. min. max.

levels
output 1,162 71,470 51,673 52,945 4,711 286,509
value-added 1,194 25,305 17,867 19,385 1,660 91,011
capital 1,162 75,522 45,865 71,512 2,007 346,064
materials 1,162 46,261 33,958 34,881 2,596 195,497

logs
output 1,162 10.86 10.85 0.86 8.46 12.57
value-added 1,194 9.78 9.79 0.92 7.41 11.42
capital 1,162 10.79 10.73 1.00 7.60 12.75
materials 1,162 10.42 10.43 0.85 7.86 12.18

annual growth rate
output 1,094 2.6% 2.6% 8.3% -44.5% 85.0%
value-added 1,128 2.2% 2.5% 10.8% -90.3% 74.4%
capital 1,094 2.5% 2.6% 7.9% -68.0% 45.4%
materials 1,094 2.9% 2.7% 9.5% -53.8% 87.9%

Notes: We report the descriptive statistics for output, labour, capital and material inputs for the gross-output
regression sample (n = 1, 162) and value-added for the VA regression sample (n = 1, 194) — descriptive statistics for
capital and labour in the latter specification do not differ noticeably from those reported above and we therefore do
not report them separately. Monetary values are in real US$ (1990). Labour is in number of workers.
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Table A-2: Sample of countries and number of observations

Country Code Gross-output Value-added I(1)∗

levels FD levels FD t = 1 t = T

Australia AUS 20 17 20 17 1970 1993 X

Austria AUT 30 28 30 28 1970 2000 X

Belgium BEL 15 14 28 27 1970 1997 X

Bangladesh BGD 14 12 14 12 1970 1992 X

Bolivia BOL 11 10 11 10 1987 1997
Barbados BRB 26 25 26 25 1970 1995
Canada CAN 21 20 21 20 1970 1990 X

Chile CHL 25 24 25 24 1974 1998 X

Colombia COL 30 29 30 29 1970 1999 X

Cyprus CYP 33 32 33 32 1970 2002 X

Ecuador ECU 30 29 30 29 1970 1999
Egypt EGY 26 25 26 25 1970 1995
Spain ESP 26 25 26 25 1970 1995
Finland FIN 28 26 28 26 1970 2000 X

Fiji FJI 25 24 25 24 1970 1994 X

France FRA 26 25 26 25 1970 1995
United Kingdom GBR 23 22 23 22 1970 1992 X

Guatemala GTM 16 15 16 15 1973 1988 X

Hungary HUN 26 25 26 25 1970 1995
Indonesia IDN 26 25 26 25 1970 1995 X

India IND 32 31 32 31 1970 2001
Ireland IRL 22 21 22 21 1970 1991
Iran IRN 24 22 24 22 1970 2001
Israel ISR 13 12 13 12 1989 2001
Italy ITA 30 28 31 30 1970 2000
Korea KOR 32 31 32 31 1970 2001
Sri Lanka LKA 20 17 20 17 1970 2000 X

Luxembourg LUX 23 22 23 22 1970 1992 X

Morocco MAR 17 16 17 16 1985 2001 X

Mexico MEX 16 14 16 14 1984 2000 X

Malta MLT 32 31 32 31 1970 2001 X

Malaysia MYS 28 25 28 25 1970 2001
Netherlands NLD 24 23 24 23 1970 1993 X

Norway NOR 32 31 32 31 1970 2001 X

New Zealand NZL 21 20 21 20 1970 1990
Panama PAN 30 28 30 28 1970 2000
Philippines PHL 26 25 26 25 1970 1995
Poland POL 14 11 31 30 1970 2000 X

Portugal PRT 31 30 31 30 1970 2000 X

Senegal SEN 16 14 17 14 1970 1990
Singapore SGP 33 32 33 32 1970 2002 X

Sweden SWE 18 17 18 17 1970 1987 X

Swaziland SWZ 24 22 24 22 1970 1995
Tunisia TUN 21 19 21 19 1970 1997
Turkey TUR 27 25 27 25 1970 1997
United States USA 26 25 26 25 1970 1995 X

Venezuela VEN 26 24 26 24 1970 1998 X

Zimbabwe ZWE 27 26 27 26 1970 1996

Obs 1,162 1,094 1,194 1,128 644

Notes:
∗ This refers to the sample used in Section 5 — this includes 26 countries which cannot reject

nonstationarity (for ly, lk) in country ADF regressions and reject stationarity in country KPSS
regressions.
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B Time-series properties of the data

Since the time dimension of the panel is sizeable (T = [11, 33], average T = 24), we

carry out Augmented Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP)

and Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS) tests for the variable series

within each individual country. c We use this combination of tests since the ADF and

PP tests have the null of nonstationary variable series, whereas the KPSS test has the

null of stationary variable series. The PP test uses nonparametric methods to account

for potential serial correlation in the errors and thus does not reduce the number of time-

series observations like the ADF test, which uses lagged differences for the same aim. The

results for variables in levels and in per worker terms are shown in Table B-1: we report

the share of countries (in %) for which the null hypothesis (stationarity or nonstationarity

as indicated) is rejected.

For the majority of countries the ADF and PP tests cannot reject nonstationarity, whereas

the majority of country KPSS tests reject the null of level stationarity — these results are

stronger for variables in per worker terms than for those in levels. The overall pattern of

test results is reversed when we run ADF and KPSS tests on variables in first-difference,

indicating that variable series are indeed ‘difference-stationary’.

Our dataset is an unbalanced panel with missing observations — properties that may

affect the unit root tests. A simulation exercise by Ryan and Giles (1998) suggests that

(with respect to the ADF tests) filling the gaps with the last known observation produces

more powerful unit root tests in comparison with tests where gaps were ignored. They also

point out that regular Dickey-Fuller critical values remain valid for either approach. We

carried out ADF tests for the altered dataset (levels, first differences) and obtained very

similar patterns of rejection as when testing original data with gaps (not reported). Thus

the results from these country unit-root tests are a further indication of the potential for

integrated processes in our data.

Next we applied panel unit root tests to the data. It is important to stress that rejection

of the unit root null hypothesis does not imply that the panel is stationary, but rather that

the variable series does not follow a unit root process in all countries. We first present

the results for a test by Im, Pesaran, and Shin (1997) and the Maddala and Wu (1999)

panel unit root test, both of which do not account for cross-sectional dependence in the

variables. Results in Table B-2 show that for the variable series in ‘levels’ these tests

cannot agree on the level of integration prevalent in the data. For the per worker variable

series, however, neither test can reject the null hypothesis that all countries have I(1)

series.

cWhereas the STATA command for ADF allows us to run country regressions with gaps in the data, this
is not possible for the KPSS tests. This reduces the sample to 1,109 observations (N = 48).
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Over the past decade panel unit root tests which explicitly allow for cross-sectional de-

pendence in the variable series have been developed. These include a simple augmenta-

tion to the Im et al. (1997) panel unit root test (Im, Pesaran, & Shin, 2003) (IPS(ii)),

and the Pesaran (2007) test based on cross-section augmented ADF regressions (CIPS).

For the former we are required to use a balanced panel; we therefore use a balanced

subset of the sample where missing values have been interpolated, which considerably

reduces our sample size (T,N = 26, 29; n = 754) compared to the unbalanced panel

(Tmax = 33, N = 48; n = 1, 162).

We reiterate the difficulties relating to panel unit root tests (Smith & Fuertes, 2004,

2007), in particular in a (relatively) short, unbalanced panel with gaps like in our own

case. In most cases these testing procedures cannot reject the null of nonstationarity. If

we apply the CIPS test to data in first differences, we reject nonstationarity throughout

if we augment with up to two lags (or none); for more lags the p-value for most variable

tests jumps to unity (not reported).
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Table B-1: Time-series unit root tests — rejection frequency

Unit root tests
share of country tests which reject H0 (stationarity or nonstationarity as indicated);

no adjustment for cross-sectional dependence

Testing for levels-stationarity

Test H0 H1 variable output value-added labour capital materials

variables in levels

ADF without trend nonstationary levels-stationary 17% 21% 21% 10% 19%
PP without trend nonstationary levels-stationary 19% 10% 17% 17% 17%
KPSS without trend levels-stationary nonstationary 85% 81% 73% 98% 79%

variables in levels (in per worker terms)

ADF without trend nonstationary levels-stationary 4% 8% 6% 2%
PP without trend nonstationary levels-stationary 8% 17% 8% 10%
KPSS without trend levels-stationary nonstationary 77% 69% 71% 77%

Testing for trend-stationarity

Test H0 H1 variable output value-added labour capital materials

variables in levels

ADF with trend nonstationary trend-stationary 21% 29% 19% 31% 25%
PP with trend nonstationary trend-stationary 15% 10% 10% 4% 10%
KPSS with trend trend-stationary nonstationary 31% 25% 42% 46% 31%

variables in levels (in per worker terms)

ADF with trend nonstationary trend-stationary 23% 25% 31% 25%
PP with trend nonstationary trend-stationary 27% 13% 6% 15%
KPSS with trend trend-stationary nonstationary 31% 23% 31% 27%

Testing for difference-stationarity

Test H0 H1 variable output value-added labour capital materials

variables in first differences

ADF with drift nonstationary stationary 94% 85% 90% 83% 88%
PP with drift nonstationary stationary 90% 94% 71% 29% 90%
KPSS with drift nonstationary stationary 4% 0% 4% 10% 2%

variables in first differences (in per worker terms)

ADF with drift nonstationary stationary 94% 90% 83% 83%
PP with drift nonstationary stationary 96% 94% 75% 94%
KPSS with drift nonstationary stationary 2% 2% 2% 4%

Notes: All variables are in logs. We report the share of countries (out of N = 48) for which the respective unit root test is
rejected at the 5% level of significance. All unit root tests for variables in levels contain an intercept term in the estimating
equation. ADF refers to the augmented Dickey-Fuller test, which has the null of nonstationarity. PP refers to the Phillips and
Perron (1988) unit root test, which has the null of nonstationarity. KPSS refers to the Kwiatkowski et al. (1992) unit root test,
which has the null of (trend-)stationarity. Lag-augmentation or bandwidth selection in these tests to account for serial
correlation in the variables is allowed to vary by country. For the ADF test we determined ‘ideal’ lag-augmentation using the

Akaike Information Criterion (AIC). The PP test uses int(4(T/100)2/9) lags throughout, for the KPSS tests an automated
bandwidth selection following Hobijn et al. (1998) is used. For the latter we use the kpss command in Stata written by Kit Baum.
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Table B-2: First generation panel unit root tests

Im, Pesaran & Shin (1997) panel unit root tests — IPS(i)♯

H0: unit root process (reject reported); augmentation with country-specific lag length (average reported)

output value-added labour capital materials
lags [t-bar] lags [t-bar] lags [t-bar] lags [t-bar] lags [t-bar]

1.42 -1.57 1.96 -1.54 1.48 -1.78 reject 1.50 -1.92 reject 1.65 -1.67

output/worker VA/worker capital/worker materials/worker
lags [t-bar] lags [t-bar] lags [t-bar] lags [t-bar]

1.44 -0.92 1.65 -1.03 1.71 -0.97 1.83 -1.05

Maddala and Wu (1999) panel unit root tests — MW♯

H0: unit root process; augmentation with lags as indicated;

output value-added labour capital materials
lags pλ (p) lags pλ (p) lags pλ (p) lags pλ (p) lags pλ (p)

0 129.37 (.01) 0 125.69 (.02) 0 142.42 (.00) 0 274.01 (.00) 0 126.47 (.02)
1 126.57 (.02) 1 109.99 (.16) 1 141.35 (.00) 1 67.05 (.99) 1 133.62 (.01)
1.42 69.12 (.98) 1.96 85.44 (.77) 1.48 114.54 (.10) 1.50 55.16 (1.00) 1.65 66.65 (.99)
2 114.75 (.09) 2 124.13 (.03) 2 105.34 (.24) 2 80.86 (.87) 2 134.85 (.01)
3 74.36 (.95) 3 56.97 (1.00) 3 88.76 (.69) 3 87.84 (.71) 3 108.31 (.18)

output/worker VA/worker capital/worker materials/worker
lags pλ (p) lags pλ (p) lags pλ (p) lags pλ (p)

0 107.76 (.19) 0 102.23 (.31) 0 54.16 (1.00) 0 102.35 (.31)
1 70.70 (.98) 1 84.92 (.78) 1 60.09 (1.00) 1 77.74 (.91)
1.44 30.08 (1.00) 1.65 63.13 (1.00) 1.71 32.32 (1.00) 1.83 32.45 (1.00)
2 75.85 (.94) 2 65.26 (.99) 2 34.04 (1.00) 2 77.85 (.91)
3 61.41 (1.00) 3 44.65 (1.00) 3 66.85 (.99) 3 87.42 (.72)

Notes: ♯ All variables are in logs. The IPS(i) and MW statistics are constructed as t-bar = N−1
∑

i ti and
pλ = −2

∑
i log(pi) respectively, where ti are the country ADF statistics and pi corresponding p-values. For the

IPS(i) the critical values (-1.73 for 5%, -1.69 for 10% significance level — distribution is approximately t) are

reported in Table 2, Panel A of their paper. For the MW test the critical values are distributed χ2(2N). IPS(i) uses
‘ideal’ lag-length as determined via the AIC (see notes Table B-1).

Table B-3: Second generation panel unit root tests

Im, Pesaran & Shin (2003) panel unit root tests — IPS(ii)♯

H0: unit root process; augmentation with lags as indicated

output value-added labour capital materials
lags W[t-bar] (p) lags W[t-bar] (p) lags W[t-bar] (p) lags W[t-bar] (p) lags W[t-bar] (p)

0 3.88 (1.00) 0 1.73 (.96) 0 1.00 (.84) 0 4.07 (1.00) 0 4.11 (1.00)
1 1.82 (.97) 1 1.51 (.94) 1 -0.68 (.25) 1 2.84 (1.00) 1 2.86 (1.00)
2 2.11 (.98) 2 2.50 (.99) 2 0.43 (.66) 2 2.28 (.99) 2 2.26 (.99)
3 3.13 (1.00) 3 3.23 (1.00) 3 0.96 (.83) 3 1.67 (.95) 3 2.74 (1.00)

output/worker VA/worker capital/worker materials/worker
lags W[t-bar] (p) lags W[t-bar] (p) lags W[t-bar] (p) lags W[t-bar] (p)

0 0.30 (.62) 0 -0.68 (.25) 0 1.23 (.89) 0 0.16 (.56)
1 -0.10 (.46) 1 0.31 (.62) 1 -0.39 (.35) 1 -0.14 (.44)
2 -0.45 (.33) 2 1.30 (.90) 2 1.21 (.89) 2 -0.82 (.21)
3 -0.25 (.40) 3 1.74 (.96) 3 0.65 (.74) 3 -0.93 (.18)

Pesaran (2007) panel unit root tests — CIPS♯

H0: unit root process; augmentation with lags as indicated

output value-added labour capital materials
lags Z[t-bar] (p) lags Z[t-bar] (p) lags Z[t-bar] (p) lags Z[t-bar] (p) lags Z[t-bar] (p)

0 -1.22 (.11) 0 -1.85 (.03) 0 2.39 (.99) 0 5.11 (1.00) 0 0.29 (.62)
1 0.01 (.51) 1 0.06 (.52) 1 1.26 (.90) 1 3.79 (1.00) 1 0.89 (.81)
1.42 1.13 (.87) 1.96 3.54 (1.00) 1.48 3.74 (1.00) 1.50 4.55 (1.00) 1.65 3.68 (1.00)
2 2.65 (1.00) 2 2.30 (.99) 2 4.21 (1.00) 2 3.96 (1.00) 2 1.05 (.85)
3 7.04 (1.00) 3 3.59 (1.00) 3 4.76 (1.00) 3 7.64 (1.00) 3 4.21 (1.00)

output/worker VA/worker capital/worker materials/worker
lags Z[t-bar] (p) lags Z[t-bar] (p) lags Z[t-bar] (p) lags Z[t-bar] (p)

0 -1.08 (.14) 0 -2.55 (.01) 0 1.92 (.97) 0 0.57 (.72)
1 2.91 (1.00) 1 -0.73 (.23) 1 1.33 (.91) 1 3.74 (1.00)
1.44 5.98 (1.00) 1.65 3.77 (1.00) 1.71 5.92 (1.00) 1.83 9.62 (1.00)
2 5.02 (1.00) 2 2.37 (.99) 2 4.60 (1.00) 2 5.96 (1.00)
3 8.73 (1.00) 3 5.48 (1.00) 3 7.34 (1.00) 3 8.08 (1.00)

Notes: ♯ All variables are in logs. For the IPS(ii) tests we were forced to reduce the sample to n = 754 due to the
requirement of a balanced panel (N = 29, T = 26). The data is also interpolated in this case. For the Pesaran
(2006) CIPS tests we can use the original unbalanced panel dataset with missing observations. In the third row for
each variable in the lower panel we present the CIPS test statistic for ‘ideal’ lag augmentation of the underlying
ADF regression (based on information criteria); the value for lags reported here is the average across countries.
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C Additional tables

Table C-1: Country regressions — data in deviation from x-section mean

Country regressions (demeaned data)
static specification with CRS imposed;

estimates presented are unweighted means of the country coefficients

Gross output regressions

[1] [2] [3] [4]
estimator MG RCM estimator MG RCM

dependent variable lŏ lŏ dependent variable ∆lŏ ∆lŏ

regressors regressors
capital pw 0.1125 0.1128 ∆capital pw 0.0989 0.0997

[5.62]∗∗ [5.09]∗∗ [5.51]∗∗ [4.67]∗∗

materials pw 0.7429 0.7616 ∆materials pw 0.7845 0.7902
[26.79]∗∗ [25.83]∗∗ [38.97]∗∗ [34.35]∗∗

trend term 0.0000 0.0000 drift term -0.0008 0.0000
[0.04] [0.00] [1.08] [0.03]

intercept -0.0101 -0.0011
[0.36] [0.04]

Panel -t-statistics, trends† Panel -t-statistics, trends†
capital pw 14.0 17.2 ∆capital pw 10.5 13.4
materials pw 98.8 111.0 ∆materials pw 96.4 108.5
country trends 15.6 14.5 drift terms 4.1 4.0
# of sign. trends (at 10%) 25 26 # of sign. trends (at 10%) 1 2

VA-equivalent‡ VA-equivalent‡
capital-VA 0.437 0.473 capital-VA 0.459 0.475

[6.62]∗∗ [5.90]∗∗ [5.74]∗∗ [4.89]∗∗

obs (countries) 1,162 (48) 1,162 (48) 1,094 (48) 1,094 (48)

Value-added regressions

[1] [2] [3] [4]
estimator MG RCM estimator MG RCM

dependent variable ly̆ ly̆ dependent variable ∆ly̆ ∆ly̆

regressors regressors
capital pw 0.1325 0.2005 ∆capital pw 0.1401 0.1483

[2.30]∗ [3.21]∗∗ [2.33]∗ [2.17]∗

trend term 0.0204 0.0192 drift term 0.0193 0.0214
[9.29]∗∗ [8.33]∗∗ [8.47]∗∗ [6.57]∗∗

intercept 9.5765 9.6035
[79.04]∗∗ [77.55]∗∗

Panel -t-statistics, trends† Panel -t-statistics, trends†
capital pw 10.7 13.17 ∆capital pw 5.96 6.75
country trends 50.7 48.55 drift terms 11.45 20.65
# of sign. trends (at 10%) 43 43 # of sign. trends (at 10%) 18 44

obs (countries) 1,194 (48) 1,194 (48) obs (countries) 1,128 (48) 1,128 (48)

Notes: All variables are in logs and deviation from the cross-section mean. lŏ — log output per worker, ly̆ — log value-added
per worker (in deviation from cross-section mean).
Values in parentheses are absolute t-statistics. These were obtained by regressing the N country estimates on an intercept term,
except for the Swamy t-stats, which are provided by xtrc in Stata and represent

∑
i(Σ̂ + V̂i) where Σ̂ is a measure of dispersion

of the country OLS estimates and V̂ is the variance of the N OLS estimates scaled by
∑

x2

i .
We indicate statistical significance at the 5% and 1% level by ∗ and ∗∗ respectively.
† We report averaged t-statistics for country-specific t-statistics ti of the factor estimates.
‡ This is obtained using a non-linear combination of the capital and materials coefficients accounting for the precision of these
estimates.
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Table C-2: Country regressions (unrestricted returns to scale)

Country regressions in levels
static specification, no restriction on returns to scale; estimates presented are unweighted means of the country coefficients

(i) Gross output regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator MG RCM AMG AMG CCEMG CCEMG ARCM ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ lO lO lO-µ̂•

t lO lO lO lO-µ̂•
t lO

regressors
labour 0.2143 0.1908 0.1815 0.1806 0.2004 0.2226 0.1677 0.1690

[5.54]∗∗ [4.62]∗∗ [5.44]∗∗ [4.80]∗∗ [6.86]∗∗ [6.83]∗∗ [4.67]∗∗ [4.22]∗∗

capital 0.1206 0.0860 0.1794 0.1969 0.0764 -0.0017 0.1361 0.1250
[0.82] [0.57] [1.43] [1.33] [1.11] [0.02] [1.06] [0.82]

materials 0.7315 0.7464 0.7474 0.7380 0.7172 0.7210 0.7627 0.7570
[26.05]∗∗ [24.90]∗∗ [27.95]∗∗ [25.31]∗∗ [24.53]∗∗ [27.93]∗∗ [26.75]∗∗ [24.51]∗∗

common process 0.9259 0.9279
[3.44]∗∗ [3.21]∗∗

country trend 0.0040 0.0024 -0.0004 0.0005 0.0045 -0.0018 -0.0007
[1.36] [0.78] [0.15] [0.16] [1.44] [0.60] [0.20]

intercept 0.9570 1.7807 -0.4315 -0.7703 1.3273 2.7179 0.5327 0.8579
[0.27] [0.48] [0.14] [0.21] [0.81] [1.08] [0.17] [0.23]

Returns to scale
CRS test (p) 0.24 (.63) 0.03 (.87) 0.82 (.36) 0.61 (.43) 0.01 (.92) 0.35 (.55) 0.29 (.59) 0.11 (.74)

Panel t-statistics, trends
labour 19.03 21.05 17.1 16.57 17.09 16.83 19.92 19.33
capital 3.50 4.53 6.76 5.69 13.74 1.75 8.33 6.87
materials 103.31 110.20 111.30 104.13 89.71 80.90 118.91 115.95
country trends 20.60 19.49 18.65 15.16 14.28 17.36 14.60
# of sign. trends (at 10%) 27 27 27 23 26 27 25

VA-equivalent coefficients‡
labour (VA) mean 0.798 0.752 0.719 0.689 0.709 0.798 0.707 0.696

[7.25]∗∗ [5.90]∗∗ [7.51]∗∗ [6.82]∗∗ [7.59]∗∗ [9.35]∗∗ [6.23]∗∗ [5.82]∗∗

capital (VA) mean 0.449 0.339 0.710 0.751 0.270 -0.006 0.574 0.514
[0.84] [0.58] [1.50] [1.43] [1.18] [0.02] [1.09] [0.86]

obs (countries) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48) 1,162 (48)

(ii) Value-added regressions

[1] [2] [3] [4] [5] [6] [7] [8]
estimator MG RCM AMG AMG CCEMG CCEMG ARCM ARCM

specification (a) (a) (b) (c) (d) (d) (b) (c)
dependent variable♯ lY lY lY-µ̂va •

t lY lY lY lY-µ̂va •
t lY

regressors
labour 0.7976 0.7612 0.6789 0.6638 0.6769 0.6793 0.6663 0.6684

[8.80]∗∗ [7.82]∗∗ [8.79]∗∗ [8.70]∗∗ [7.19]∗∗ [8.83]∗∗ [7.93]∗∗ [8.01]∗∗

capital 0.1770 0.3074 0.3216 0.3453 0.5179 0.3144 0.4201 0.4295
[0.68] [1.15] [1.47] [1.52] [5.13]∗∗ [1.18] [1.85] [1.81]

common trend 1.0254 0.9019
[5.27]∗∗ [4.14]∗∗

country trend 0.0105 0.0094 -0.0066 -0.0077 0.0090 -0.0069 -0.0053
[1.53] [1.30] [0.91] [0.96] [0.81] [0.91] [0.62]

intercept 8.5557 5.6880 6.5479 6.0760 -0.0126 4.8980 4.2023 3.9300
[1.48] [0.95] [1.34] [1.19] [0.01] [0.88] [0.83] [0.74]

Returns to scale
CRS test (p) 0.02 (.90) 0.10 (.75) 0.00 (.99) 0.00 (.96) 3.98 (.05) 0.00 (.98) 0.2 (.66) 0.22 (.64)

Panel t-statistics, trends
labour 30.2 34.0 27.2 26.7 26.5 27.0 31.3 31.3
capital 7.2 9.3 10.2 9.7 26.5 9.9 12.2 11.8
country trends 20.2 19.5 16.8 14.9 18.8 16.3 13.6
# of sign. trends (at 10%) 24 28 25 20 30 25 22

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48)

Notes: All variables are in logs. lO — log output, lY — log value-added. µ̂•

t and µ̂
•,va
t are derived from the year dummy

coefficients of a pooled regression (no restriction on returns to scale) in first differences (FD-OLS) as described in the text.
We omit reporting the parameters on the cross-section averages for the CCEMG estimators (columns [5] and [6]) to save space.
Values in parentheses are absolute t-statistics. These were obtained by regressing the N country estimates on an intercept term,
except for the Swamy t-stats, which are provided by xtrc in Stata and represent

∑
i(Σ̂ + V̂i) where Σ̂ is a measure of dispersion

of the country OLS estimates and V̂ is the variance of the N OLS estimates scaled by
∑

x2

i . ‘Specification’ refers to equations
(6) to (9). We indicate statistical significance at the 5% and 1% level by ∗ and ∗∗ respectively.
♯ We subtract the common dynamic process µ̂•

t from log output (log value-added) for country i in models [3] and [7].
† We report averaged t-statistics for country-specific t-statistics ti of the factor estimates.
‡ This is obtained using a non-linear combination of the capital and materials coefficients accounting for the precision of these
estimates.
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Table C-3: Country rankings by TFP-level

TFP-level estimates
Comparison of country ranking (by magnitude) and difference across estimators

Rank Absolute Rank Difference

[1] [2] [3] abs([2]-[1]) abs([3]-[1]) abs([3]-[2])

Country FE AMG† CCE‡ AMG-FE CCE-FE CCE-AMG

AUS 12 14 13 2 1 1
AUT 22 10 10 12 12 0
BEL 24 12 12 12 12 0
BGD 34 45 45 11 11 0
BOL 4 29 23 25 19 6
BRB 33 32 32 1 1 0
CAN 6 5 4 1 2 1
CHL 3 21 19 18 16 2
COL 11 31 31 20 20 0
CYP 20 28 29 8 9 1
ECU 41 34 36 7 5 2
EGY 48 44 44 4 4 0
ESP 5 15 16 10 11 1
FIN 14 7 6 7 8 1
FJI 43 35 34 8 9 1
FRA 18 8 7 10 11 1
GBR 19 13 14 6 5 1
GTM 17 30 30 13 13 0
HUN 45 41 42 4 3 1
IDN 44 47 48 3 4 1
IND 46 48 47 2 1 1
IRL 2 17 20 15 18 3
IRN 23 23 24 0 1 1
ISR 21 2 9 19 12 7
ITA 15 4 3 11 12 1
KOR 13 25 27 12 14 2
LKA 31 46 46 15 15 0
LUX 39 6 5 33 34 1
MAR 32 42 39 10 7 3
MEX 9 19 17 10 8 2
MLT 8 38 38 30 30 0
MYS 35 39 40 4 5 1
NLD 27 9 8 18 19 1
NOR 25 11 11 14 14 0
NZL 29 16 15 13 14 1
PAN 37 22 22 15 15 0
PHL 30 37 35 7 5 2
POL 47 40 41 7 6 1
PRT 36 24 26 12 10 2
SEN 38 27 28 11 10 1
SGP 10 26 25 16 15 1
SWE 16 3 2 13 14 1
SWZ 40 43 43 3 3 0
TUN 42 36 37 6 5 1
TUR 7 18 18 11 11 0
USA 1 1 1 0 0 0
VEN 28 20 21 8 7 1
ZWE 26 33 33 7 7 0

Median 10.3 10.1 1.0

Notes: The table provides the respective TFP level ranking (by magnitude) for each country derived from
the three regression models, as well as the absolute rank differences between them.
† AMG refers to the Augmented Mean Group estimator in specification (c), Table 3 column [4] (value-added
based version), with the TFP-level adjustment detailed in Section 6.
‡ CCE refers to the Pesaran (2006) CCEMG estimator in specification (d), ibid. column [5], with the
TFP-level adjustment detailed in Section 6.
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D Additional graphs

Figure D-1: Kernel densities for technology parameter estimates
(gross-output)
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Notes: Each plot shows the distribution (kernel density) of the capital (β̂i) and material (γ̂i)
coefficients from the country regressions (gross-output based analysis, CRS imposed, numbering
as columns in Table 3 in the main section).
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Figure D-2: Kernel densities for technology parameter estimates
(value-added)
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Notes: Each plot shows the distribution (kernel density) of the capital (β̂va
i ) coefficients from

the country regressions (value-added based analysis, CRS imposed, numbering as columns in
Table 3 in the main section). The dashed line represents the normal distribution, the vertical
line marks the mean of the parameter distribution.
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Figure D-3: TFP levels — adjusted from AMG(ii) and CCE(i) estimates∗
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Notes: VA specification with CRS imposed, ∗ AMG(ii) has µ̂•
t included as additional regressor;

CCE(i) refers to the standard CCEMG estimator; the estimates from which these ‘adjusted’
TFP levels were constructed can be found in Table 3, columns [4] and [5] respectively. Countries
are ranked by final period TFP-level based on the AMG(ii) estimates. Levels adjustment as
described in the main text.
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