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Abstract

We introduce a model of proportional growth to explain the distribution Pg(g) of business firm

growth rates. The model predicts that Pg(g) is exponential in the central part and depicts an

asymptotic power-law behavior in the tails with an exponent ζ = 3. Because of data limitations,

previous studies in this field have been focusing exclusively on the Laplace shape of the body of

the distribution. In this article, we test the model at different levels of aggregation in the economy,

from products to firms to countries, and we find that the model’s predictions agree with empirical

growth distributions and size-variance relationships.

1



I. INTRODUCTION

Gibrat [1, 2], building upon the work of the astronomers Kapteyn [3], assumed the ex-

pected value of the growth rate of a business firm’s size to be proportional to the current

size of the firm, which is called “Law of Proportionate Effect” [4, 5]. Several models of

proportional growth have been subsequently introduced in economics in order to explain the

growth of business firms [6, 7, 8]. Simon and co-authors [9, 10, 11, 12] extended Gibrat’s

model by introducing an entry process according to which the number of firms rise over time.

In Simon’s framework, the market consists of a sequence of many independent “opportuni-

ties” which arise over time, each of size unity. Models in this tradition have been challenged

by many researchers [13, 14, 15, 16, 17] who found that the firm growth distribution is not

Gaussian but displays a tent shape.

Here we introduce a general framework that provides an unifying explanation for the

growth of business firms based on the number and size distribution of their elementary

constituent components [18, 19, 20, 21, 22, 23, 24, 25]. Specifically we present a model of

proportional growth in both the number of units and their size and we draw some general

implications on the mechanisms which sustain business firm growth [7, 11, 21, 26, 27, 28].

According to the model, the probability density function (PDF) of growth rates is Laplace

in the center [13] with power law tails [29, 30] decaying as Pg(g) ∼ g−ζ where ζ = 3.

Because of data limitations, previous studies in this field focus on the Laplace shape of

the body of the distribution [31]. Using a database on the size and growth of firms and

products, we characterize the shape of the whole growth rate distribution.

We test our model by analyzing different levels of aggregation of economic systems,

from the “micro” level of products to the “macro” level of industrial sectors and national

economies. We find that the model accurately predicts the shape of the PDF of growth rate

at all levels of aggregation studied.

II. THE THEORETICAL FRAMEWORK

We model business firms as classes consisting of a random number of units. Accord-

ing to this view, a firm is represented as the aggregation of its constituent units such

as divisions [22], businesses [20], or products [21]. Accordingly, on a different level of
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coarse-graining, a class can represent a national economy composed by economic units such

as firms. In this article we study the logarithm of the one-year growth rate of classes

g ≡ log(S(t+1)/S(t)) where S(t) and S(t+1) are the sizes of classes in the year t and t+1

measured in monetary values (GDP for countries, sales for firms and products). Our model

is illustrated in Fig. 1. Two key sets of assumptions in the model are (A) the number of

units in a class grows in proportion to the existing number of units and (B) the size of each

unit fluctuates in proportion to its size.

The first set of assumptions is:

(A1) Each class α consists of Kα(t) number of units. At time t = 0, time step measured

by year generally, there are N(0) classes consisting of n(0) total number of units. The

initial average number of units in a class is thus n(0)/N(0).

(A2) At each time step a new unit is created. Thus the number of units at time t is

n(t) = n(0) + t.

(A3) With birth probability b, this new unit is assigned to a new class, so that the average

number of classes at time t is N(t) = N(0) + bt.

(A4) With probability 1 − b, a new unit is assigned to an existing class α with probability

Pα = (1 − b)Kα(t)/n(t), so Kα(t + 1) = Kα(t) + 1.

For simplicity, we do not consider the decrease of the number of units in a class. In

reality, elementary units enter and exit. Because we are considering the case of a growing

economy, it is legitimate to assume the entry rate being higher than the exit rate. On the

average, the net entry rate of units can be simplified as a positive constant. In the model,

the net entry rate of units is fixed at 1. Thus, at large t, it gives results equivalent to the

ones that would have been obtained considering a value for the exit rate of units.

Our goal is to find P (K), the probability distribution of the number of units in the classes

at large t. This model in two limiting cases (i) b = 0, Kα = 1 (α = 1, 2 . . .N(0)) and (ii)

b 6= 0, N(0) = 1, n(0) = 1 has exact analytical solutions P (K) = N(0)/t(t/(t+N(0)))K(1+

O(1/t)) [32, 33] and lim
t→∞

P (K) = (1 + b)Γ(K)Γ(2 + b)/Γ(K + 2 + b) [34] respectively.

In the general case, the exact analytical solution is not known and we obtain a numerical

solution by computer simulations and compare it with the approximate mean field solution.

(see, e.g., Chapter 6 of [35] and Appendix A)
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Our results are consistent with the exactly solvable limiting cases as well as with the

empirical data on the number of products in the pharmaceutical firms and can summarized

as follows. In the limit of large t, the distribution of K in the old classes that existed at

t = 0 converges to an exponential distribution [36]

Pold(K) = λK 1

K(t) − 1
≈ 1

K(t)
exp(−K/K(t)), (1)

where λ = 1 − 1/K(t) and K(t) is the average number of units in the old classes at time t,

K(t) = [(n(0)+ t)/n(0)]1−b ·n(0)b/N(0). The distribution of units in the new classes created

at t > 0 converges to a power law with an exponential cutoff

Pnew(K) ∼ K−ϕf(K), (2)

where ϕ ≈ 2 + b for small b, and f(K) decays for K → ∞ faster than Pold(K). The

distribution of units in all classes is given by

P (K) =
N(0)

N(0) + bt
Pold(K) +

bt

N(0) + bt
Pnew(K). (3)

The mean field approximation for Pnew(K) is given by

Pnew(K) ≈ n(0)/t + 1

1 − b
K(−1/(1−b)−1)

∫ K

K ′

e−y y
1

1−b dy. (4)

where K ′ = K[n(0)/(n(0) + t)]1−b.

The second set of assumptions is:

(B1) At time t, each class α has Kα(t) units of size ξi(t), i = 1, 2, ...Kα(t) where Kα and

ξi > 0 are independent random variables taken from the distributions P (Kα) and

Pξ(ξi) respectively. P (Kα) is defined by Eq. (3) and Pξ(ξi) is a given distribution with

finite mean and standard deviation and ln ξi has finite mean µξ = 〈ln ξi〉 and variance

Vξ = 〈(ln ξi)
2〉 − µ2

ξ. The size of a class is defined as Sα(t) ≡
∑Kα

i=1 ξi(t).

(B2) At time t + 1, the size of each unit is decreased or increased by a random factor

ηi(t) > 0 so that

ξi(t + 1) = ξi(t) ηi(t), (5)

where ηi(t), the growth rate of unit i, is independent random variable taken from a

distribution Pη(ηi), which has a finite mean. We also assume that ln ηi has finite mean

µη ≡ 〈ln ηi〉 and variance Vη ≡ 〈(ln ηi)
2〉 − µ2

η.
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The growth rate of each class is defined as

gα ≡ log

(

Sα(t + 1)

Sα(t)

)

= log

Kα
∑

i=1

ξi(t + 1) − log

Kα
∑

i=1

ξi(t). (6)

Here we neglect the influx of the new units, so Kα = Kα(t + 1) = Kα(t). The resulting

distribution of the growth rates of all classes is determined by

Pg(g) ≡
∞
∑

K=1

P (K)Pg(g|K), (7)

where P (K) is the distribution of the number of units in the classes, computed in the

previous stage of the model and Pg(g|K) is the conditional distribution of growth rates of

classes with given number of units determined by the distribution Pξ(ξ) and Pη(η).

The analytical solution of this model can be obtained only for certain limiting cases but

a numerical solution can be easily computed for any set of assumptions. We investigate the

model numerically and analytically (see Appendix B) and find:

(1) The conditional distribution of the logarithmic growth rates Pg(g|K) for the firms

consisting of a fixed number of units converges to a Gaussian distribution for K → ∞:

Pg(g|K) ≈
√

K
√

2πVg

exp
(

(g − ḡ)2K/2Vg

)

, (8)

where Vg is a function of parameters of the distribution Pξ(ξ) and Pη(η), and ḡ is mean

logarithmic growth rate of a unit, ḡ = 〈ln ηi〉.

Thus the width of this distribution decreases as 1/
√

K. This result is consistent with

the observation that large firms with many production units fluctuate less than small

firms [7, 18, 22, 37].

(2) For g ≫ Vη, the distribution Pg(g) coincides with the distribution of the logarithms of

the growth rates of the units:

Pg(g) ≈ Pη(ln η). (9)

In the case of power law distribution P (K) ∼ K−ϕ which dramatically increases for

K → 1, the distribution Pg(g) is dominated by the growth rates of classes consisting

of a single unit K = 1, thus the distribution Pg(g) practically coincides with Pη(ln ηi)

for all g. Indeed, our empirical observations confirm this result.
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(3) If the distribution P (K) ∼ K−ϕ, ϕ > 2 for K → ∞, as happens in the presence of the

influx of new units b 6= 0, Pg(g) = C1 −C2|g|2ϕ−3, for g → 0 which in the limiting case

b → 0, ϕ → 2 gives the cusp Pg(g) ∼ C1 − C2|g| (C1 and C2 are positive constants),

similar to the behavior of the Laplace distribution PL(g) ∼ exp(−|g|C2) for g → 0.

(4) If the distribution P (K) weakly depends on K for K → 1, the distribution of Pg(g)

can be approximated by a power law of g: Pg(g) ∼ |g|−3 in wide range
√

Vg/K(t) ≪
g ≪

√
V , where K(t) is the average number of units in a class. This case is realized

for b = 0, t → ∞ when the distribution of P (K) is dominated by the exponential

distribution and K(t) → ∞ as defined by Eq. (1). In this particular case, Pg(g) for

g ≪
√

Vg can be approximated by

Pg(g) ≈
√

K(t)

2
√

2Vg

(

1 +
K(t)

2Vg

g2

)−3/2

. (10)

(5) In the case in which the distribution P (K) is not dominated by one-unit classes but

for K → ∞ behaves as a power law, which is the result of the mean field solution for

our model when t → ∞, the resulting distribution Pg(g) has three regimes, Pg(g) ∼
C1 − C2|g|2ϕ−3 for small g, Pg(g) ∼ |g|−3 for intermediate g, and Pg(g) ∼ P (ln η) for

g → ∞. The approximate solution of Pg(g) is obtained by using Eq. (8) for Pg(g|K)

for finite K, mean field solution Eq. (4) in the limit t → ∞ for P (K) and replacing

summation by integration in Eq. (7):

Pg(g) =
1

1 − b

1√
2πV

∫ ∞

0

exp(−y) y
1

1−b dy

∫ ∞

y

exp(−g2 K/2V ) K(− 1
2
− 1

1−b
) dK. (11)

For b 6= 0 the integral above can be expressed in elementary functions. In the b → 0

case, Eq. (11) yields the main result

Pg(g) ≈ 2Vg
√

g2 + 2Vg (|g| +
√

g2 + 2Vg)2
, (b → 0) (12)

which combines the Laplace cusp for g → 0 and the power law decay |g|−3 for g → ∞.

Note that due to replacement of summation by integration in Eq. (7), the approxima-

tion Eq. (12) holds only for g <
√

Vη.

In Fig. 2a we compare the distributions given by Eq. (10), the mean field approximation

Eq. (11) for b = 0.1 and Eq. (12) for b → 0. We find that all three distributions have very
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similar tent shape behavior in the central part. In Fig. 2b we also compare the distribution

Eq. (12) with its asymptotic behaviors for g → 0 (Laplace cusp) and g → ∞ (power law),

and find the crossover region between these two regimes.

III. THE EMPIRICAL EVIDENCE

To test our model, we analyze different levels of aggregation of economic systems, from

the micro level of products to the macro level of industrial sectors and national economies.

First, we analyze a new and unique database, the pharmaceutical industry database

(PHID), which records sales figures of the 189,303 products commercialized by 7,184 phar-

maceutical firms in 21 countries from 1994 to 2004, covering the whole size distribution for

products and firms and monitoring the flows of entry and exit at both levels kindly pro-

vided by the EPRIS program. Then, we study the growth rates of all U.S. publicly-traded

firms from 1973 to 2004 in all industries, based on Security Exchange Commission filings

(Compustat). Finally, at the macro level, we study the growth rates of the gross domestic

product (GDP) of 195 countries from 1960 to 2004 (World Bank).

Fig. 3 shows that the growth distributions of countries, firms, and products are well fitted

by the distribution in Eq. (12) with different values of Vg. Indeed, growth distributions at

any level of aggregation depict marked departures from a Gaussian shape. Moreover, even

if the Pg(g) of GDP can be approximated by a Laplace distribution, the Pg(g) of firms

and products are clearly more leptokurtic than Laplace. Based on our model, the growth

distribution is Laplace in the body, with power-law tails. In fact, Fig. 4 show that the central

body part of the growth rate distributions at any level of aggregation is well approximated

by a double exponential fit. Fig. 5 reveals that the asymptotic behaviors of g at any level

of aggregation can be well fitted by power-law with an exponent ζ = 3.

Our analysis in Sec. II predicts that the power law regime of Pg(g) may vary depending

on the behavior of P (K) for K → 1, and the distribution of the growth rates of units. In

case of PHID, for which P (1) ≫ P (2) ≫ P (3) . . . the growth rate distribution of firms must

be almost the same as the growth rate distribution of products, as we stated in Sec. II. Hence

the power law wings of Pg(g) for firms originate on the level of products. Because PHID

does not contain information on the subunits of products we can not test our prediction

directly, but we can hypothesize that the distribution of the product subunits (number
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of customers or shipping ways) is less dominated by small K, but has a sufficiently wide

power law regime due to the influx of new products. These rather plausible assumptions are

sufficient to explain the shape of the distribution of the product growth rates, which is well

described by Eq. (12).

The PHID database allows us to test the empirical conditional distribution Pg(g|K) and

the dependence of its variance σ2 on K, where K is the number of products. We find that

σ ∼ K−0.28, which is significantly smaller than 1/
√

K behavior. This result does not imply

correlations among product growth rates on the firm level [21], but can be explained by

the fact that for skewed distributions of product sizes Pξ(ξ) characterized by large Vξ, the

convergence of Pg(g|K) to its Gaussian limit Eq. (8) is slow and the growth rates of the

firms are determined by the growth of the few large products. Using the empirical values

for the PHID µξ = 3.44, Vξ = 5.13, µη = 0.016, Vη = 0.36 and assuming lognormality of the

distributions Pξ(ξ) and Pη(η) we find that the behavior of σ can be well approximated by a

power law σ ∼ K−0.20 for K < 103. For this set of parameters, the convergence of Pg(g|K)

to a Gaussian distribution takes place only for K > 105. This result is consistent with

the observations of the power law relationship between firm size and growth rate variance

reported earlier [13, 18, 19, 38].

IV. DISCUSSION

Business firms grow by increasing their scale and scope. The scope of a firm is given

by the number of its products. The scale of a firm is given by the size of its products. A

firm like Microsoft gets few big products while Amazon sells a huge variety of goods, each

of small size in terms of sales. In this article we argue that both mechanisms of growth are

proportional. The number of products a firm can successfully launch is proportional to the

number of products it has already commercialized. Once a product has been launched its

success depends on the number of customers who buy it and the price they are willing to pay.

To a large extent, if products are different enough, the success of a product is independent

from other products commercialized by the same company. Hence, the sales of products

can be modeled as independent stochastic processes. Moreover, sometimes, new products

are commercialized by new companies. As a result, small companies with few products can

experience sudden jerks of growth due to the successful launch of a new product.
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In this article, we find that the empirical distribution of firm growth rates exhibits a

central part which is distributed according to a Laplace distribution and power-law wings

Pg(g) ∼ g−ζ where ζ = 3. If the distribution of number of units K is dominated by single

unit classes, the tails of firm growth rate are primarily due to smaller firms composed of one

or few products. The Laplace center of the distribution is shaped by big multiproduct firms.

We find that the shape of the distribution of firm growth is almost the same in presence of a

small entry rate and with zero entry. We also find that the model’s predictions are accurate

also in the case of product growth rates, which implies that products can be considered

as composed by elementary sale units, which evolve according to a random multiplicative

process [6]. Although there are several plausible explanations for the Laplace body of the

distribution [18, 31], the power law decay of the tails has not previously been observed.

We introduce a simple and general model that accounts for both the central part and the

tails of the distribution. The shape of the business growth rate distribution is due to the

proportional growth of both the number and the size of the constituent units in the class.

This result holds in the case of an open economy (with entry of new firms) as well as in the

case of a closed economy (with no entry of new firms).
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Appendix A: The distribution of units in old and new classes

Assume that at the beginning there are N(0) classes with n(0) units. Because at every

time step one unit is added to the system and a new class is added with probability b,

at moment t there are n(t) = n(0) + t units and N(t) = N(0) + bt classes, among which

there are bt new classes with nnew units and N(0) old classes with nold units, such that

nold + nnew = n(0) + t.

Because of the preferential attachment assumption, we have

dnnew

dt
= b + (1 − b)

nnew

n(0) + t
, (A1)

dnold

dt
= (1 − b)

nold

n(0) + t
. (A2)

Solving the second differential equation and taking into account initial condition nold(0) =

n(0), we obtain

nold(t) = (n(0) + t)1−b n(0)b. (A3)

Analogously, the number of units at time t in the classes existing at time t0 is

ne(t0, t) = (n(0) + t)1−b(n(0) + t0)
b,

where the subscript ‘e’ means “existing”. The average number of units in old classes is

K(t) =
nold(t)

N(0)
=

(n(0) + t)1−b

N(0)
n(0)b. (A4)

It is known that [36] for t → ∞ the preferential attachment model converges to the

exponential distribution:

Papp(K) ≈ exp(−K/K(t))/K(t). (A5)

Thus, we obtain

Pold(K) ≈ N(0)

(n(0) + t)1−bn(0)b
exp

(

− K N(0)

(n(0) + t)1−bn(0)b

)

, (A6)

and the part of P (K) of old classes is

P̃old(K) ≈ Pold(K)
N(0)

N(0) + t
. (A7)

The number of units in the classes that appear at t0 is b dt and the number of these

classes is b dt. Because the probability that a class captures a new unit is proportional to
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the number of units it has already gotten at time t, the number of units in the classes that

appear at time t0 is

nnew(t0, t) = ne(t0, t) ·
bdt

n(0) + t0
.

The average number of units in these classes is K(t0, t) = nnew(t0, t)/b dt = (n(0) +

t)1−b/(n(0) + t0)
1−b. Assuming that the distribution of units in these classes is given by a

continuous approximation in Eq. (A5):

Pnew(K) ≈ 1

K(t0, t)
exp (−K/K(t0, t)) (A8)

Thus, their contribution to the total distribution is

b dt0
N(0) + b t

1

K(t0, t)
exp (−K/K(t0, t))

The contribution of all new classes to the distribution P (K) is

P̃new(K) ≈ b

N(0) + b t

∫ t

0

1

K(t0, t)
exp (−K/K(t0, t)) dt0. (A9)

If we let y = K/K(t0, t), then

P̃new(K) ≈ b

1 − b
K(− 1

1−b
−1) n(0) + t

N(0) + bt

∫ K

K( n(0)
n(0)+t

)
1−b

e−y y
1

1−b dy. (A10)

Note that Eq. (A7) and Eq. (A10) are not exact solutions but continuous approximations

which assume K is a real number. Now we investigate the distribution in Eq. (A10).

1. At fixed K when t → ∞, the low limit of integration in Eq. (A10) goes to zero and

we have

Pnew(K) =
K−1− 1

1−b

1 − b

∫ K

0

e−yy
1

1−b dy. (A11)

As K → ∞,

Pnew(K) = K−1− 1
b

(

1

1 − b

)

Γ

(

1 +
1

1 − b

)

. (A12)

As K → 0,

Pnew(K) =
1

1 − b
K(− 1

1−b
−1) K(1+ 1

1−b
)

1 + 1
1−b

=
1

2 − b
. (A13)
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2. At fixed t when K → ∞, we use the partial integration to evaluate the incomplete Γ

function:
∫ ∞

x

e−y yα dy = −e−y yα|∞x + α

∫ ∞

x

e−y yα−1 dy ≈ e−x xα.

Therefore, from Eq. (A10) we obtain

Pnew(K) ≈ n(0) + t

N(0) + bt

b

1 − b
K− 1

1−b
−1

∫ ∞

K( n(0)
n(0)+t

)
1−b

e−y y
1

1−b dy,

=
n(0)

N(0) + bt

b

1 − b

1

K
exp

(

−K

(

n(0)

n(0) + t

)1−b
)

, (A14)

which always decays faster than Eq. (A6).

Appendix B: Calculation of the growth distribution of classes P (g)

Let us assume both the size and growth of units (ξi and ηi respectively) are distributed

lognormally

p(ξi) =
1

√

2πVξ

1

ξi
exp

(

−(ln ξi − mξ)
2/2Vξ

)

, (A15)

p(ηi) =
1

√

2πVη

1

ηi

exp
(

−(ln ηi − mη)
2/2Vη

)

. (A16)

If units grow according to a multiplicative process, the size of units ξ′i = ξiηi is distributed

lognormally with Vξ′ = Vξ + Vη and mξ′ = mξ + mη.

The nth moment of the variable x distributed lognormally is given by

µx(n) =

∫ ∞

0

1√
2πV

xn

x
dx exp

(

−(ln x − m)2/2V
)

= exp
(

nmx + n2Vx/2
)

. (A17)

Thus, its mean is µx ≡ µx(n = 1) = exp(mx + Vx/2) and its variance is σ2
x ≡ µ2 − µ2

1 =

µ2
1 (exp(Vx) − 1).

Let us now find the distribution of g growth rate of classes. It is defined as

g ≡ ln
S(t + 1)

S(t)
= ln

K
∑

i=1

ξ′i − ln

K
∑

i=1

ξi. (A18)

Here we neglect the influx of new units. According to the central limit theorem, the sum of

K independent random variables with mean µξ ≡ µξ(1) and finite variance σ2
ξ is

K
∑

i=1

ξi = Kµξ +
√

KνK , (A19)

14



where νK is the random variable with the distribution converging to Gaussian

lim
K→∞

P (νK) → 1
√

2πσ2
ξ

exp
(

−ν2
K/2σ2

ξ

)

. (A20)

Because ln µη = mη + Vη/2 and ln µξ′ = ln µξ + ln µη we have

g ≡ ln S(t + 1) − ln S(t) = ln(Kµξ′) +
ν ′

K√
Kµξ′

− ln(Kµξ) −
νK√
Kµξ

,

= mη +
Vη

2
+

ν ′
Kµξ − νKµξ′√

Kµξµξ′
. (A21)

For large K the last term in Eq. (A21) is the difference of two Gaussian variables and that

is a Gaussian variable itself.

lnµξ′ = mξ′ + Vξ′/2 = ln µξ + ln µη, (A22)

where ln µη = mη + Vη/2 is the average growth rate. To find the distribution of g we must

find its mean and variance. In order to do this, we rewrite

ν ′
K√

K µξ′
=

∑K
i=1(ξ

′
i − µξ′)

K µξ′
,

and
νK√
K µξ

=

∑K
i=1(ξi − µξ)

K µξ

.

Thus

g = mη +
Vη

2
+

∑K
i=1 ξi(ηiµξ − µξ′)

Kµξµξ′
,

= mη +
Vη

2
+

∑K
i=1 ξi(ηi − µη)

Kµξ′
. (A23)

Because µξ′ = µξµη, the average of each term in the sum is µξ′−µξ µη = 0. The variance of

each term in the sum is 〈(ξi ηi)
2〉−〈2ξ2

i ηi µη〉+〈ξ2
i µ2

η〉 where ξiηi, ξ2
i ηi and ξ2

i are all lognormal

independent random variables. Particularly, (ξiηi)
2 is lognormal with V = 4Vη + 4Vξ and

m = 2mη + 2mξ; ξ2
i ηi is lognormal with V = 4Vξ + Vη and m = 2mξ + mη; ξ2

i is lognormal

with V = 4Vξ and m = 2mξ. Using Eq. (A17) and Eq. (A23)

〈(ξiηi)
2〉 = exp(2mη + 2mξ + 2Vη + 2Vξ), (A24a)

〈ξ2
i ηi〉 = exp(mη + 2mξ + 2Vξ + Vη/2), (A24b)

〈ξ2
i 〉 = exp(2mξ + 2Vξ). (A24c)
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Collecting all terms in Eqs. (A24a-A24c) together and using Eq. (A23) we can find the

variance of g:

σ2
g =

K exp(2mξ + 2Vξ + 2mη + Vη)(exp(Vη) − 1)

K2 exp(2mξ + Vξ + 2mη + Vη)
,

=
1

K
exp(Vξ) (exp(Vη) − 1). (A25)

Therefore, for large K, g has a Gaussian distribution

P (g|K) =

√
K√

2πV
exp

(

−(g − m)2K

2V

)

, (A26)

where m = mη + Vη/2, V = exp(Vξ)(exp(Vη) − 1) and µη = exp(mη + Vη/2).

The distribution of the growth rate of the old classes can be found by Eq. (7) in the

text. In order to find a close form approximation, we replace the summation in Eq. (7)

by integration and replace the distributions P (K) by Eq. (A6) and P (g) by the Eq. (A26)

assuming m = 0:

Pold(g) ≈ 1√
2πV

∫ ∞

0

1

K(t)
exp(

−K

K(t)
) exp(−g2 K

2 V
)
√

K dK,

=

√

K(t)

2
√

2 V

(

1 +
K(t)

2V
g2

)− 3
2

, (A27)

where K(t) is the average number of units in the old classes (see Eq. (A4)). This distribution

decays as 1/g3 and thus does not have finite variance. In fact, we approximate the distri-

bution of number of units in the old classes by a continuous function exp(−K/K(t))/K(t),

while in reality it is a discrete distribution

Pold(K) = λK

(

1

λ
− 1

)

, (A28)

where λ = exp(−1/K(t)). The corrected distribution of growth rates is then given by the

sum

Pold(g) ≈ 1√
2πV

1 − λ

λ

∞
∑

K=1

λK
√

K exp(−g2K/2V ). (A29)

The slowest decaying term is

1√
2πV

(1 − λ) exp(−g2/2V ), (A30)

which describes the behavior of the distribution when g → ∞. Thus there is a crossover

from Eq. (A27) to Eq. (A30) when g ≈
√

2V .
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For the new classes, when t → ∞ the distribution of number of units is approximated by

Pnew(K) ≈ 1

1 − b
K−1− 1

1−b

∫ K

0

y
1

1−b e−y dy. (A31)

Again replacing summation in Eq. (7) in the text by integration and P (g|K) by Eq. (A26)

and after the switching the order of integration we have:

Pnew(g) ≈ 1

1 − b

1√
2πV

∫ ∞

0

exp(−y) y
1

1−b dy

∫ ∞

y

exp(−g2 K/2V ) K(− 1
2
− 1

1−b
) dK. (A32)

As g → ∞, we can evaluate the second integral in Eq. (A32) by partial integration:

Pnew(g) ≈ 1

1 − b

∫ ∞

0

1√
2πV

2V

g2
y− 1

1−b
− 1

2 y
1

1−b exp(−y) exp(−y g2/2V ) dy,

=
1

1 − b

1√
2πV

2V

g2

1
√

g2/2V + 1

√
π ∼ 1

g3
. (A33)

We compute the first derivative of the distribution (A32) by differentiating the integrand

in the second integral with respect to g. The second integral converges as y → 0, and

we find the behavior of the derivative for g → 0 by the substitution K ′ = Kg2/(2V ). As

g → 0, the derivative behaves as g · g2[−(3/2)+1/(1−b)] ∼ g1/(1−b)−2, which means that the

function itself behaves as C2 − C1|g|2b/(1−b)+1, where C2 and C1 are positive constants. For

small b this behavior is similar to the behavior of a Laplace distribution with variance V :

exp(−
√

2|g|/
√

V )/
√

2V = 1/
√

2V − |g|/V .

When b → 0, Eq. (A32) can be simplified:

Pnew(g)|b→0 ≈ 1√
2πV

∫ ∞

0

K−3/2 exp(−K g2/2 V ) dK

∫ K

0

exp(−y) y dy,

≈ 1√
2 V

(

− 1
√

1 + g2/2 V
+

2

|g|/
√

2 V +
√

g2/2 V + 1

)

.

Finally we find

Pnew(g)|b→0 ≈
2V

√

g2 + 2V (|g|+
√

g2 + 2V )2
. (A34)

which behaves for g → 0 as 1/
√

2V −|g|/V and for g → ∞ as V/(2g3). Thus the distribution

is well approximated by a Laplace distribution in the body with power-law tails.

Because of the discrete nature of the distribution of the number of units, when g ≫
√

2V

the behavior for g → ∞ is dominated by const · exp(−g2/2V ).
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t = 0

t = 1

1 2

3

or

1 2

3

1
2

1
2

1 2

3

2
1

new

``Old" ``New"

Probability b

Probability 1-b

Class 1 Class 2

Class 3

new

FIG. 1: Schematic representation of the model of proportional growth. At time t = 0, there

are N(0) = 2 classes (�) and n(0) = 5 units (©) (Assumption A1). The area of each circle

is proportional to the size ξ of the unit, and the size of each class is the sum of the areas of

its constituent units (see Assumption B1). At the next time step, t = 1, a new unit is created

(Assumption A2). With probability b the new unit is assigned to a new class (class 3 in this

example) (Assumption A3). With probability 1 − b the new unit is assigned to an existing class

with probability proportional to the number of units in the class (Assumption A4). In this example,

a new unit is assigned to class 1 with probability 3/5 or to class 2 with probability 2/5. Finally,

at each time step, each circle i grows or shrinks by a random factor ηi (Assumption B2).
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FIG. 2: (a) Comparison of three different approximations for the growth rate PDF, Pg(g), given by

Eq. (10), mean field approximation Eq. (11) for b = 0.1 and Eq. (12). Each Pg(g) shows similar tent

shape behavior in the central part. We see there is little difference between the three cases, b = 0

(no entry), b = 0.1 (with entry) and the mean field approximation. This means that entry of new

classes (b > 0) does not perceptibly change the shape of Pg(g). Note that we use K(t)/Vg = 2.16

for Eq. (10) and Vg = 1 for Eq. (12). (b) The crossover of Pg(g) given by Eq. (12) between the

Laplace distribution in the center and power law in the tails. For small g, Pg(g) follows a Laplace

distribution Pg(g) ∼ exp(−|g|), and for large g, Pg(g) asymptotically follows an inverse cubic power

law Pg(g) ∼ g−3.
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FIG. 3: Empirical tests of Eq. (12) for the probability density function (PDF) Pg(g) of growth rates

rescaled by
√

Vg. Shown are country GDP (©), pharmaceutical firms (�), manufacturing firms

(✸), and pharmaceutical products (△). The shapes of Pg(g) for all four levels of aggregation are

well approximated by the PDF predicted by the model (dashed lines). Dashed lines are obtained

based on Eq. (12) with Vg ≈ 4×10−4 for GDP, Vg ≈ 0.014 for pharmaceutical firms, Vg ≈ 0.019 for

manufacturing firms, and Vg ≈ 0.01 for products. After rescaling, the four PDFs can be fit by the

same function. For clarity, the pharmaceutical firms are offset by a factor of 102, manufacturing

firms by a factor of 104 and the pharmaceutical products by a factor of 106. Note that the data

for pharmaceutical products extend from Pg(g) = 1 to Pg(g) ≈ 10−4 and the mismatch in the tail

parts is because Pg(g) for large g is mainly determined by the logarithmic growth rates of units

ln η.
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FIG. 4: Empirical tests of Eq. (12) for the central part in the PDF P (g) of growth rates rescaled

by
√

Vg. Shown are 4 symbols: country GDP (©), pharmaceutical firms (�), manufacturing firms

(✸), and pharmaceutical products (△). The shape of central parts for all four levels of aggregation

can be well fit by a Laplace distribution (dashed lines). Note that Laplace distribution can fit

Pg(g) only over a restricted range, from Pg(g) = 1 to Pg(g) ≈ 10−1.
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FIG. 5: Empirical tests of Eq. (12) for the tail parts of the PDF of growth rates rescaled by
√

Vg.

The asymptotic behavior of g at any level of aggregation can be well approximated by power laws

with exponents ζ ≈ 3 (dashed lines). The symbols are as follows: Country GDP (left tail: ©, right

tail: •), pharmaceutical firms (left tail: �, right tail: �), manufacturing firms (left tail: ✸, right

tail: �), pharmaceutical products (left tail: △, right tail: N).
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