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Abstract

Sample selection problems are pervasive when working with micro economic models
and datasets of individuals, households or firms. During the last three decades, there
have been very significant developments in this area of econometrics. Different type of
models have been proposed and used in empirical applications. And new estimation
and inference methods, both parametric and semiparametric, have been developed.
These notes provide a brief introduction to this large literature.
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1 Introduction

Consider the regression model,

Y ∗ = X∗β + ε (1)

where Y ∗ and ε are scalar random variables,X∗ is a 1×K vector of random variables, and β is

a K × 1 vector of parameters. The error term ε is mean independent of X∗, and the matrix

E(X∗0X∗) is full rank. Therefore, given a random sample of the variables {Y ∗,X∗}, the

OLS estimator is consistent and asymptotically normal. The key feature of sample selection

models is that the researcher does not observe a random sample of the variables {Y ∗, X∗}.

Instead, the researcher observes a random sample of variables {Y,X} which are related to

but they are different to {Y ∗, X∗}. The variables {Y ∗,X∗} are called latent variables. Given
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a random sample of {Y,X}, we are interested in the consistent estimation of β.1 We have

different classes of sample selection models depending on the relationship between the latent

variables and the observed variables

(a) Truncated Regression Model. Let c be a known constant. If Y is truncated to the left at

c:

(Y,X) = { (Y ∗,X∗) | Y ∗ > c } (2)

If Y is truncated to the right at c:

(Y,X) = { (Y ∗,X∗) | Y ∗ > c } (3)

Then, a random sample of (Y,X) is not random sample neither of Y ∗ nor of X∗.2

Example 1: Consider the log-wage equation, W ∗ = X∗β + ε, where W ∗ is the logarithm of

an individual’s wage, and X∗ is a vector of observed human capital characteristics. Suppose

that, for reasons of confidentiality, our data set does not report any information (neither

of wages nor of individual characteristics) for individuals with an hourly wage greater than

$800/hour. Therefore, we observe the variables (W,X) such that (W,X) = {(W ∗,X∗) |

W ∗ < ln(800)}. In this case, we say that the dependent variable is truncated to the right,

and we have a truncated regression model because neither W ∗ nor X∗ are observed when

the wage is greater than $800/hour.

Let fY ∗ and FY ∗ be the density function (PDF) and the cumulative distribution function

(CDF) of Y ∗, respectively. If Y is left truncated at c, then the PDF of Y is,

fY (y) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if y ≤ c

fY ∗(y)

1− FY ∗(c)
if y > c

(4)

1In some applications, we may be also interested in the estimation of the distribution function of the error
term ε.

2Only if Y ∗ and X∗ are independently distributed, then a random sample of (Y,X) implies a random
sample of X∗.
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If Y is right truncated at c, then

fY (y) =

⎧
⎪⎪⎨
⎪⎪⎩

fY ∗(y)

FY ∗(c)
if y < c

0 if y ≥ c

(5)

The following figures present the density functions of left truncated and right truncated

normal random variables.

(b) Censored Regression Model (or Tobit Model). The main difference between this model

and the truncated regression model is that now we have a random sample of the exogenous

regressors X∗. That is, the random variables X and X∗ are identical. For the dependent

variable, if Y is left censored we have that:

Y = max [Y ∗ ; c] =

⎧
⎨
⎩

c if Y ∗ ≤ c

Y ∗ if Y ∗ > c
(6)

If Y is right censored, then

Y = min [Y ∗ ; c] =

⎧
⎨
⎩

Y ∗ if Y ∗ < c

c if Y ∗ ≥ c
(7)

Example 2: Consider the log-wage equation in Example 1. Now, we have a different dataset.

The data include information for every individual regardless her income level. There is a

random sample of individuals with information on the X variables. However, for confiden-

tiality reasons, data on wages is top-coded. If an individual has an hourly wage lower than
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$800/hour, we observe the actual wage. But we do not observe wages of individuals earning

more than $800/hour. Therefore, for every individual in the sample we observe the censored

or top-coded log-wage W = min[W ∗ ; ln(800)]. The dependent variable is censored to the

right, and we have a censored regression model.

Example 3: Consider the following model of firm investment in a particular type of capital

equipment, e.g., computers. Let Q∗ represent the “desired” investment of a firm according

to some economic model of firm investment behavior, e.g., the amount of investment that

maximizes profit if we do not restrict Q∗ to be positive: i.e., Q∗ = argmaxq Π(q), where

Π(q) is the (intertemporal) profit function. Suppose that this model implies the following

regression-like equation: Q∗ = X β + ε. The vector X includes characteristics of the firm

and the capital market where the firm operates such as its capital stock of the equipment,

and the price of new capital. β is a vector of parameters with clear economic interpretation

within the model. We have a random sample of firms for which we observeX and the amount

of investment Q. Looking at the empirical distribution of investment Q, we realize that this

variable is always positive and there is mass of probability at zero. These features in the

distribution of investment cannot be explained by the previous regression model, unless we

make very unreasonable assumptions on the distribution of ε. Furthermore, our model for

investment assumes that Q∗ can be either positive or negative, and this is in contradiction

with our observation of Q. Then, we consider the following model for Q, Q = argmaxq Π(q)

subject to q ≥ 0. If the profit function Π(q) is strictly concave, then it is simple to show

that Q = Q∗ if Q∗ > 0, and Q = 0 if Q∗ ≤ 0. That is, Q = max[Q∗ ; 0], with Q∗ = X β + ε.

From an economic point of view this model can be interpreted as a model of irreversible

investment. From an econometric point of view this is a censored regression model.

Examples 2 and 3 present two different censored regression models. It is interesting

to point out some relevant differences between these two examples. They are based on

very different economic and statistical assumptions. In Example 2, censoring is the result

of the sampling features of our data set. The wage of individuals with wages greater than
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$800/hour is not a theoretical concept, it is something that actually exists, though we do not

observe it in our sample. In Example 3, censoring is a modelling assumption. Given certain

features in the distribution of investment we consider that a censored regression model can

be a reasonable model for this variable. The variable Q∗ is a theoretical concept, and we

can never get a random sample of Q∗. However, the parameters β can have a clear economic

interpretation in this model, and they are our parameters of interest.

Let fY ∗ and FY ∗ be the PDF and the CDF of Y
∗, respectively. If Y is left censored at c,

then the PDF of Y is,

fY (y) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if y < c

FY ∗(c) if y = c

fY ∗(y) if y > c

(8)

If y is right censored at c, then

fY (y) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fY ∗(y) if y < c

1− FY ∗(c) if y = c

0 if y > c

(9)

The following figures present the density functions of left censored and right censored normal

random variables.

(c) Sample Selection Model. In a sample selection model, we observe Y ∗ only for those

individuals in the sample for which a certain binary variable, D, is equal to one. This binary
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variable is not independent of Y ∗.

Y = { Y ∗ | D = 1 } (10)

and pdf(Y ∗|D = 1) 6= pdf(Y ∗|D = 0). Note that if D and Y ∗ are independent, then the

random variables Y and Y ∗ are the same and there is not a sample selection problem. There

are two types of sample selection models: the truncated type, and the censored type. In the

truncated type, X∗ is also unobserved when D = 0. Then, in a truncated selection model:

(Y,X) = { (Y ∗,X∗) | D = 1 } (11)

In the censored type, we have a random sample of X∗ (i.e., X = X∗). Then,

(Y,X) = { ([Y ∗|D = 1] , X∗} (12)

In this censored-type selection model, sometimes it is convenient to define Y as follows:

Y = Y ∗ whenD = 1, and Y = 0 whenD = 0, . Or in a more compact form, Y = DY ∗. Note

that truncated and censored regression models are particular cases of the selection model.

When D = I(Y ∗ > c), the sample selection model becomes the left truncated/censored

regression model, and similarly, when D = I(Y ∗ < c), we have the right truncated/censored

model.

Example 4: Consider again the log-wage equation in Examples 1 and 2. However, now we

are not only interested in the population of individuals working but in the whole population

of individuals in the labor force either working or not. Now, we interpret W ∗ as the latent

market wage of individual, and this wage exists regardless the individual is working or not.

We have a random sample of individuals, working or not. Therefore, we have a random

sample of X∗, i.e., censored-type of selection model. But we observe the market wage W ∗

only for those individuals who are actually working. Let D be the indicator of the event

“the individual is working”. Therefore, we have a random sample if the variable W , where

W = {W ∗|D = 1}. The working indicator D depends on different factors, including human

6



capital characteristics observed and unobserved to the econometrician. Therefore, D and

W ∗ are not independent, and we have a sample selection problem.

The specification of a sample selection model should include some assumptions on the

joint distribution of Y ∗ and D. A common specification is,

D = 1 { Z γ − u > 0} (13)

where 1{.} is the indicator function; Z is a vector of observable variables; γ is a vector of

parameters; and u is unobservable. The variables (X,Z) are exogenous in the sense that

they are independent of the disturbances (u, ε). Conditional on (X,Z) the unobservables u

and ε are not independently distributed.

(d) Generalized Sample Selection Model. Consider the following system of J linear equations,

Y ∗1 = X∗ β1 + ε1
Y ∗2 = X∗ β2 + ε2
...

...
Y ∗J = X∗ βJ + εJ

(14)

Suppose that we observed a random sample of X∗, i.e., censored-type of sample selec-

tion model with X = X∗.3 However, we do not observe all the J dependent variables

{Y ∗1 , Y
∗
2 , ..., Y

∗
J } for every individual in the sample. Instead, for every individual, we observe

a discrete variable D ∈ {1, 2, ..., J} and a dependent variable Y such that:

Y =
PJ

j=1 1(D = j) Y ∗j (15)

Each individual is observe in one and only one regime. Importantly, the discrete variable D

is not independently distributed of the disturbances ε0js in the system of linear equations.

Example 5 (Roy Model4): Consider an individual choosing between two possible occu-

pations, 1 and 2. Suppose that this individual chooses the occupation that provides her the

highest (lifetime) earnings. Given individual observable and unobservable characteristics,

3We can also consider a version of this model where X∗ is trucated for some regime j ∈ {1, 2, ..., J}.
4See Roy (1951), and Heckman and Honore (1990).

7



earnings in the two occupations are:

W ∗
1 = X β1 + ε1

W ∗
2 = X β2 + ε2

(16)

The vector X contains observable human capital characteristics such as education and labor

market experience. The vectors of parameters β1 and β2 represent the returns to human

capital characteristics in occupation 1 and 2, respectively. ε1 and ε2 represent returns to

unobservable (for the econometrician, but not for the individual) human capital characteris-

tics. Each individual is observed in only one occupation. Let D be the indicator of the event

“the individual chooses occupation 1”. Therefore, the observed earnings of an individual,

W , can be represented as:

W = D W ∗
1 + (1−D) W ∗

2 (17)

Under the assumption that individuals maximize earnings, we have that,

D = 1 {W ∗
1 > W ∗

2 } = 1 {X (β1 − β2)− (ε2 − ε1) > 0} (18)

It is clear that the unobservable variable in the equation for the selection dummy, ε2− ε1, is

not independent of the unobservable in the earnings equations, ε1 and ε2. We have a random

sample of individuals characteristics X and wages W . Given this sample we are interested

in the estimation of β1 and β2.

Example 6 (Treatment effects): We are interested in evaluating the effect on firm capital

investment of a policy that provides a certain subsidy to investment. Let Q∗1 and Q∗0 be

a firm’s amount of investment if it receives treatment (the subsidy) and if it does not,

respectively. Q∗1 and Q∗0 are latent variables. The Treatment Effect (TE) for an individual

firm is defined as TE = Q∗1 − Q∗0. We are interested in the estimation of the Average

Treatment Effect (ATE), that is defined as ATE = E(Q∗1 −Q∗0). We may be also interested

in conditional Average Treatment Effects, ATE(X) = E(Q∗1 −Q∗0|X), where X is a vector

of exogenous firm characteristics. We have a random sample of firms. Each firm is observed

only once, either under treatment (D = 1) or not (D = 0). That is, if D = 1 we observe
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Q = Q∗1, and if D = 0 we observe Q = Q∗0. Typically, participation in the subsidy program

is not completely random. We do not have a perfect experimental data. The treatment

dummy D depends on observable characteristics Z and on an unobservable u that may be

correlated with Q∗0 or/and Q∗1. We want to use our sample of {Q,D,X,Z} to estimate

consistently effect of the subsidy program on investment as measured by the unconditional

or the conditional average treatment effect.

Example 7 (Friction model): Consider a model of capital investment similar to the one

in Example 3. However, now investment is not fully irreversible and it is possible to disinvest

or to sell used capital. Let Kt be a firm’s capital stock that is productive at period t. Let

Π(Kt, Kt−1) be the (intertemporal) profit function. Profits depends both on Kt and Kt−1

because the existence of adjustment costs. More specifically, there is an asymmetry between

the price of new capital and the price of used capital, or in other words, between the cost of

capital when Kt > Kt−1, and the cost of capital when Kt < Kt−1.

Π(Kt, Kt−1) =

⎧
⎨
⎩

Π(+)(Kt,Kt−1) if Kt ≥ Kt−1

Π(−)(Kt,Kt−1) if Kt ≤ Kt−1

(19)

Functions Π(+) and Π(−) are continuous, differentiable, and strictly concave in Kt. Profit

function Π is continuous everywhere, but it has a kink (i.e., a point of non-differentiability)

at Kt = Kt−1. Define K
(+)
t ≡ argmaxk Π(+)(k,Kt−1), and K

(−)
t ≡ argmaxk Π(−)(k,Kt−1).

Under the previous conditions, it is straightforward to show that K
(+)
t < K

(−)
t , and the

optimal amount capital at period t is:

Kt =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K
(+)
t if Kt−1 < K

(+)
t

Kt−1 if K
(+)
t ≤ Kt−1 ≤ K

(−)
t

K
(−)
t if Kt−1 > K

(+)
t

(20)

The model is completed with the specification of K
(+)
t and K

(−)
t in terms of observable and

unobservables. For instance, K
(+)
t = α(+) + Xtβ + εt, and K

(−)
t = α(−) + Xtβ + εt, where

α(+) and α(−) are parameters and α(+) < α(−). Given a random sample of {Kt,Kt−1,Xt},

we are interested in the estimation of the parameters α(+), α(−) and β.
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2 Estimation of the Truncated Regression Model

2.1 Bias of the OLS Estimator

Consider a truncated regression model described by the expression (Y,X) = {(Y ∗, X∗) |

Y ∗ > c}, with Y ∗ = X∗β + ε. Since the constant c is known, we can make c = 0 without

lost of generality.5 Suppose that we run an OLS regression of Y on X. The following figure

illustrates graphically the bias of the OLS estimator. The true slope of the regression line is

1.5, and the OLS estimate of this slope is 1.15 (s.e. = 0.05).6

More formally, we have that Y = {Y ∗|Y ∗ > 0} = X∗β+εTrun, where εTrun ≡ {ε|Y ∗ > 0}.

Therefore,

E(Y | X) = E(X∗β + εTrun | X) = X β +E(εTrun|X) (21)

The term E(εTrun|X) is the sample selection term in the conditional mean of Y given X.

Note that E(εTrun|X) = E(ε|ε > −Xβ), that in general is not zero and it depends on X. If

ε is independent of X, the sample selection term depends on X only through the index Xβ.

Then, we can represent the selection term as a function s(Xβ). It is simple to show that the

5If c is not zero, we can always re-define Y ∗ as the original Y ∗ minus c.
6The DGP is such that X∗ and ε are independent standard normal, Y ∗ = 1.0 + 1.5 ∗ X∗ + ε, and the

left-truncation point is at y = 0. The sample size is n = 500.
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selection term s(Xβ) is a decreasing function of the index Xβ. To see this, note that:
⎧
⎨
⎩
As Xβ → +∞, s(Xβ)→ E(ε|ε > −∞) = E(ε) = 0

As Xβ → −∞, s(Xβ)→ E(ε|ε > +∞) = +∞
(22)

Therefore, s(Xβ) is negatively related with Xβ. In a right-truncated regression model, the

selection term is also a decreasing function of Xβ. Taking into account that E(Y |X) =

Xβ + s(Xβ), we can write the following regression equation for Y on X:

Y = X β + s(Xβ) + ε̃ (23)

The error term of this regression, ε̃, is equal to εTrun−s(Xβ), and by construction it is mean

independent of X. This expression shows the inconsistency of an OLS regression that ignores

sample selection. Ignoring sample selection implies that the error term in the regression is

s(Xβ) + ε̃, and this error term is negatively correlated with Xβ.

2.2 Maximum Likelihood Estimation

To obtain a MLE of β we have to incorporate an additional assumption into the model:

a parametric assumption on the distribution of ε. The typical assumption in this class

of models is that ε is i.i.d. over observation with a distribution N(0, σ2). Then, the log-

likelihood function of this model and data is: l(β, σ) =
Pn

i=1 ln Pr(Y = yi | X = xi), where

the conditional probabilities have the following form:

Pr(Y = yi|X = xi) = Pr(Y ∗ = yi | X = xi ; Y
∗ > 0)

=
Pr(ε = yi − xiβ)

Pr(ε > −xiβ)

=

1

σ
φ

µ
yi − xiβ

σ

¶

Φ

µ
xiβ

σ

¶

(24)

where φ(.) and Φ(.) are the PDF and the CDF of the standard normal. Therefore, the

log-likelihood can be written as follows,

l(β, σ) = −n ln(σ)− 1

2σ2

nX

i=1

(yi − xiβ)
2 −

nX

i=1

lnΦ

µ
xiβ

σ

¶
(25)

11



The first term in this function is the log-likelihood of the classical linear regression model.

The second term accounts for truncation. Note that, in contrast to the case of a binary

choice model, the log-likelihood not only depends on β/σ, but it depends separately on β

and σ such that both can be identified.7

The log-likelihood l(β, σ) is not globally concave in (β, σ). This is an important issue.

The maximizing of globally concave functions is a very simple task, i.e., we can use simple

algorithms such as Newton, or BHHH. However, the maximization of non-globally concave

functions is computationally more complicated because it requires global search over the

parameter space in order to guarantee that our estimate is really the global maximum and

not just a local maximum. However, for this model, it is simple to re-parameterized the log-

likelihood to get a globally concave function. Define the parameters θ = 1/σ, and γ = β/σ,

and consider the log-likelihood in terms of these parameters:

l(γ, θ) = n ln(θ)− 1
2

nX

i=1

(θ yi − xiγ)
2 −

nX

i=1

lnΦ (xiγ)

The function l(γ, θ) is globally concave in (γ, θ). Note that there is a one-to-one relationship

between (γ, θ) and (β, σ). Therefore, by the invariance-to-reparameterization property of

maximum likelihood estimation, the MLE of (β, σ) is σ̂MLE = 1/θ̂ and β̂MLE = γ̂/θ̂. The

variance matrix can be obtained using the delta method.

In the context of linear regression models, the OLS estimator is consistent as long as

the regressors are not correlated with the error term. Consistency of the OLS estimator is

robust to heterocedasticity, serial correlation, and non-normality of the error term. Hetero-

cedasticity is a very common feature in most cross-sectional data sets. Therefore, a relevant

question is whether the previous MLE is robust to heterocedasticity in ε. Is this estimator

still consistent when ε is heterocedastic but the likelihood function is the one of an homo-

cedastic model? The answer is no. In fact, several Monte Carlo studies have shown that the

estimator can be seriously biased. This issue motivates the study of other estimators which

are robust to heterocedasticity and non-normality of the disturbance.

7Note also that in this model we can obtain residuals ε̂ which are consistent estimates of the errors ε.
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2.3 Symmetrically Trimmed Least Squares

James Powell’s work was seminal for the semiparametric estimation of truncated and cen-

sored regression models. Powell (1984) proposes Least Absolute Deviations (LAD) estima-

tors which are robust to heterocedasticity and non-normality. Powell (1986) proposes other

robust estimator based upon symmetric truncation (or censoring) of the tails of the distrib-

ution of the dependent variable. Here I describe this Symmetrically Trimmed Least Squares

(STLS) estimator.

Consider a left-truncated regression model and define the following dependent variable,

8

Ỹ ≡ {Y ∗ | 0 < Y ∗ < 2Xβ}

= {Y | Y < 2Xβ}
(26)

The variable Ỹ is truncated to the left and to the right. Note that the truncation points

of Ỹ (i.e., 0 and 2Xβ) are equidistant to the conditional mean E(Y ∗|X) = Xβ. Given this

“symmetric trimming", we have that:

E
³
Ỹ | X

´
= E (Xβ + ε | X, 0 < Xβ + ε < 2Xβ))

= Xβ +E (ε | X, −Xβ < ε < Xβ)

(27)

In a linear regression of Ỹ on X, the term E(ε | X, −Xβ < ε < Xβ) represents the sample

selection term. It should be clear that this selection term is zero if the density of ε is

symmetrically distributed around zero.

Therefore, we could obtain a consistent estimator of β by running an OLS regression

of Ỹ on X. This estimator is robust to heterocedastic in ε. Furthermore, the symmetry

assumption on the distribution of ε is more general than the normality assumption. However,

we do not observe Ỹ . In order to obtain a random sample of Ỹ we have to truncate the

observed dependent variable Y to the right at 2Xβ. But β is unknown. To deal with this

issue, we can consider the following sample criterion function:

Q(β) =
Pn

i=1 1 {yi < 2xiβ} (yi − xiβ)
2 (28)

8Similarly, for a right-truncated regression-model, we define Ỹ ≡ {Y ∗ | 2Xβ < Y ∗ < 0} = {Y | 2Xβ < Y }.
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This function is the symmetrically-trimmed residual sum of squares. The STLS estimator

is defined as the value of β that minimizes this criterion. The estimator is consistent an

asymptotically normal. The asymptotic variance matrix of the STLS estimator is:

V (β̂STLS) = = C−1D C−1

where:
C = E (1{Y < 2Xβ} XX 0)
D = E (1{Xβ > 0} min{ε2; (Xβ)2} XX 0)

(29)

Note that the function Q(β) is discontinuous and non-differentiable with respect to β

at many different points (as many as sample points). Therefore, the minimization of this

criterion function may be complicated. A simple method to compute a (local) minimum

is the following. Step 1: start with an initial value of β, say β̂
(1)
. For instance, the OLS

estimator when we use the whole sample of {yi, xi}. Step 2: obtain the trimmed variable

ỹ
(1)
i = {yi|yi < 2xiβ̂

(1)
}. That is, we eliminate all the observations with yi > 2xiβ̂

(1)
. Step

3: run an OLS regression of ỹ
(1)
i on xi to obtain a new value of β, β̂

(2)
. Iterate in Steps 2

and 3 until convergence, i.e., until ||β̂
(k) − β̂

(k−1)
|| < small value. Upon convergence, this

procedure provides a local minimum of Q(β). To check for global minimization, we have to

implement a global search by applying this procedure with different initial values of β.

This method is straightforward and particularly useful when we have a large sample and

the magnitude of truncation is not too severe. For relatively small samples or with severe

amount of truncation, the loss of efficiency associated with the symmetric trimming may be

very important, and the estimates imprecise.

Hausman test of heterocedasticity and non-normality. To implement a Hausman test we

need an estimator that is efficient under the H0 and inconsistent under H1, and a estimator

that is consistent both under H0 and under H1. Therefore, we can use the MLE and Powell’s

estimator to construct a test of heterocedasticity and non-normality. The null hypothesis is

εi ∼ iid N(0, σ2), and the test statistic is:

Hausman = (β̂STLS − β̂MLE)
0

h
var(β̂STLS)− var(β̂MLE)

i−1
(β̂STLS − β̂MLE) (30)

that under H0 is distributed as a Chi-square with k degrees of freedom.
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3 Censored Regression Model (Tobit)

3.1 Bias of the OLS Estimator

Consider a censored regression model such that we have a random sample of X = X∗, and of

Y = max{Y ∗, c}, where Y ∗ = Xβ + ε. Again, we can make c = 0 without lost of generality.

Suppose that we run a regression of Y on X. The following figure illustrates graphically the

bias of the OLS estimator. The true slope of the regression line is 1.5, and the OLS estimate

of this slope is 1.10 (s.e. = 0.04).9

More formally, we have that Y = max{Xβ + ε, 0}, or in a linear regression-like form,

Y = Xβ + εCens, where εCens ≡ max{ε,−Xβ}. Therefore,

E(Y | X) = Xβ +E(εCens | X) = X β +E(max{ε,−Xβ}|X) (31)

The term E(εCens | X) is the sample selection term in the conditional mean of Y given X.

Note that E(εCens | X) = E(max{ε,−Xβ}|X), that in general is not zero and it depends

on X. If ε is independent of X, the sample selection term depends on X only through the

index Xβ: i.e., E(εCens | X) = s(Xβ), and s(.) is a decreasing function. Then, taking

9The DGP is such that X∗ and ε are independent standard normal, Y ∗ = 1.0 + 1.5 ∗ X∗ + ε, and the
left-censoring point is at y = 0. The sample size is n = 500.
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into account that E(Y |X) = Xβ + s(Xβ), we can write the following regression equation:

Y = Xβ + s(Xβ) + ε̃, where ε̃ ≡ εCens − s(Xβ) and it is mean independent of X. An OLS

regression that ignores the sample selection term s(Xβ) is inconsistent.

3.2 Maximum Likelihood Estimation

The log-likelihood function of this model and data is: l(β, σ) =
Pn

i=1 lnPr(Y = yi|X = xi),

where the conditional probabilities have the following form:

Pr(Y = yi | X = xi) =

⎧
⎨
⎩
Pr(Y ∗ = yi | X = xi) = fε(yi − xiβ) if yi > 0

Pr(Y ∗ < 0 | X = xi) = Fε(−xiβ) if yi = 0
(32)

Under the assumption εi ∼ iid N(0, σ2), the log-likelihood is:

l(β, σ) = −n1 ln(σ)−
1

2σ2

X

yi>0

(yi − xiβ)
2 +

X

yi=0

lnΦ

µ−xiβ
σ

¶

(33)

where n1 is the number of observation with yi > 0. All the comments I have made about

the MLE in the truncated regression model apply also in the censored model.

3.3 Symmetrically Trimmed Least Squares

Consider a left-censored regression model, and define the following dependent variable:

Ỹ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if Y ∗ ≤ 0

Y ∗ if 0 < Y ∗ < 2Xβ

2Xβ if Y ∗ ≥ 2Xβ

= min {Y ; 2Xβ} (34)

The variable Ỹ is censored both to the left and to the right. It should be clear that the

censoring points of Ỹ (i.e., 0 and 2Xβ) are equidistant to Xβ, the conditional mean of

Y ∗. Given this symmetric censoring, we have that Ỹ = min{Y ; 2Xβ} = min{max{Xβ +

ε; 0}; 2Xβ}.10 Or in a linear-regression-like format,

Ỹ = Xβ + 1{ε < −Xβ}(−Xβ) + 1{ε > Xβ}(Xβ) + 1{−Xβ ≤ ε ≤ −Xβ}ε (35)

10Note that max{Xβ+ ε; 0} = Xβ +max{ε;−Xβ}. Therefore, min{max{Xβ + ε; 0}; 2Xβ} = min{Xβ +
max{ε;−Xβ}; 2Xβ} = Xβ +min{max{ε;−Xβ};Xβ}. Or what is equivalent, Xβ + 1{ε < −Xβ}(−Xβ) +
1{ε > Xβ}(Xβ) + 1{−Xβ ≤ ε ≤ −Xβ}ε.
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In a linear regression of Ỹ on X, the selection term is the expected value conditional on X

of the error term 1{ε < −Xβ}(−Xβ) + 1{ε > Xβ}(Xβ) + 1{−Xβ ≤ ε ≤ −Xβ}ε. As in

the truncated case, this selection term is zero if the density of ε is symmetrically distributed

around zero.

The STLS estimator of the censored regression model is defined as the value of β that

minimizes the following criterion function:

Q(β) =
Pn

i=1 (min {yi ; 2xiβ}− xiβ)
2 (36)

This criterion function is the residual sum of squares in the linear regression of Ỹ on X. The

estimator is consistent, and asymptotically normal, and it is robust to non-normality and

heterocedasticity in ε.

4 Sample Selection Models

Consider a sample selection model where Y = (1−D)Y ∗0 +DY ∗1 , where:

Y ∗0 = Xβ0 + ε0

Y ∗1 = Xβ1 + ε1

(37)

and

D = 1{Zγ − u > 0} (38)

The unobservables ε0, ε1, and u are not independently distributed. For instance, suppose

that D is the indicator of the event “the individual belongs to a union”, Y ∗1 is the wage of

the individual if he is unionized, and Y ∗0 represents his wage when non-unionized. We are

interested in the estimation of the parameters β0 and β1. Sometimes, we may be interested

more specifically in the average treatment effect ATE(X) = X(β1 − β0), i.e., the average

return to unionization of an individual with characteristics X.

4.1 Bias of the OLS Estimator

It is possible to construct two the following OLS estimators of the vectors β0 and β1: (a)

a joint OLS estimator, where we run an OLS regression of Y on X and DX, i.e., Y =

17



Xβ0 + DX(β1 − β0) + e; (b) separate OLS regressions, i.e., a regression Y = Xβ0 + e0

using the subsample of observations with D = 0, and a regression Y = Xβ1 + e1 using the

subsample of observations with D = 1. It should be clear that if there are not cross-equation

restrictions between the parameters β0 and β1, the two OLS estimators are identical, and

therefore we can concentrate in only one of them, say (b).

By construction, the error term ej is ej ≡ {εj|D = j}. Therefore,

E(e0|X) = E(ε0 | X,D = 0) = E(ε0 | X, u ≥ Zγ)

E(e1|X) = E(ε1 | X,D = 1) = E(ε1 | X, u < Zγ)
(39)

If ε0s and u are not independent, and unless X and Z are independent (which is extremely

unrealistic with non-experimental data), these selection terms are correlated with X. There-

fore, the error terms e0 and e1 are correlated with X, and these OLS estimators provide

inconsistent estimates of β0 and β1.

Let us interpret this bias in the context of the example of the return to unionization. The

OLS estimation of β1−β0, in the regression Y = Xβ0+DX(β1−β0)+e, is the combination of

two effects: (1) the actual return to unionization, β1−β0; and (2) the fact that those workers

who decide to be unionized tend to be the ones who have larger "treatment effect" or wage

differential Y ∗1 −Y ∗0 . The first factor is the causal effect that we want to estimate. The second

factor is spurious, it is not a causal effect of unionization. For the sake of illustration, suppose

thatX is just a constant term. Suppose also that unionization has two effects: it increases the

constant term, i.e., β1 > β0, and it reduces wage dispersion, i.e., ε1 = λε0 where λ < 1. Also,

suppose that the only factor that affects the unionization decision is the wage differential

(i.e., Roy model) such that Zγ−u = Y ∗1 −Y ∗0 = (β1−β0)+(ε1−ε0) = (β1−β0)− (1−λ)ε0.

In this example, it is clear that:

p lim β̂
OLS

0 = E(Y |D = 0) = β0 + E

µ
ε0 | ε0 >

β1 − β0
1− λ

¶
> β0

p lim β̂
OLS

1 = E(Y |D = 1) = β1 + λ E

µ
ε0 | ε0 <

β1 − β0
1− λ

¶
< β1

(40)

Therefore, in this example, β̂
OLS

0 overestimates β0 because non-unionized workers have higher
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values of ε0 (e.g., higher productivity), ε0 >
β1 − β0
1− λ

. Also, β̂
OLS

1 underestimates β1 because

unionized workers have lower values of ε0, i.e., ε0 <
β1 − β0
1− λ

. As a result, under the previous

assumptions, the OLS estimator of β1 − β0 underestimates the true return of unionization.

4.2 Maximum Likelihood Estimation

The dependent variables of the model are Y and D, and the exogenous explanatory variables

are X and Z. The log-likelihood function of this model and data is,

l(β, γ,Ω) =
nX

i=1

ln Pr(Y = yi,D = di | X = xi, Z = zi) (41)

with probabilities,

Pr(Y = yi,D = 0 | X = xi, Z = zi) = Pr(ε0 = yi − xiβ0 ; ui > ziγ)

=

Z +∞

ziγ

fε0,u(yi − xiβ0, u) du
(42)

and
Pr(Y = yi,D = 1 | X = xi, Z = zi) = Pr(ε1 = yi − xiβ1 ; ui < ziγ)

=

Z ziγ

−∞
fε1,u(yi − xiβ1, u) du

(43)

where fε0,u and fε1,u are the joint densities of (ε0, u) and (ε1, u), respectively.

When using a MLE of this model, researchers generally assume that (ε0, ε1, u) have a joint

normal distribution. The variance of u is normalized to 1. The parameters that enter in this

likelihood function are β0, β1, γ, the standard deviations σ0 and σ1, and the covariances

σ0u and σ1u. In general, this likelihood function is not globally concave and it can have

several local maxima. Furthermore, in contrast to the truncated regression model and the

censored regression model, there is not a reparameterization under which the likelihood is

concave. Therefore, we should initialize our optimization algorithm with different values of

the parameters, keep track of the likelihood values obtained upon convergence, and then

compare these likelihood values to obtain (hopefully!) the global maximum.
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4.3 Heckman’s Two Step Method

Heckman (1976, 1979) proposed an alternative two-stage approach that provides consistent

estimates of the sample selection model and that is very simple to implement. The computa-

tionally simplicity of this two-step method make it very attractive in applications. However,

there is at least other important reason why Heckman’s two-step method has been so popu-

lar in applications. As in the case of truncated and censored regression models, the MLE is

not robust to heterocedasticity and non-normality. Although Heckman’s two step approach

was proposed in the context of a parametric model with normal and homocedastic distur-

bances, one of the most attractive features of this estimator is that it can be extended to a

semiparametric context with non-normal and heterocedastic errors.

Let’s consider first this estimator in the context of a fully parametric model with normal

and homocedastic unobservables. First, note that:

E(Y | X,Z,D = 0) = Xβ0 +E(ε0 | X,Z,D = 0)

= Xβ0 +
1

1− Fu(Zγ)

Z +∞

Zγ

E (ε0|u) fu(u) du
(44)

and,
E(Y | X,Z,D = 1) = Xβ1 +E(ε1 | X,Z,D = 1)

= Xβ1 +
1

Fu(Zγ)

Z Zγ

−∞
E (ε1|u) fu(u) du

(45)

Under normality of {u, ε0, ε1}, these expressions become:

E(Y | X,Z,D = 0) = Xβ0 + σ0u λ(−Zγ)

E(Y | X,Z,D = 1) = Xβ1 − σ1u λ(Zγ)
(46)

where the function λ(c) ≡ φ(c)

Φ(c)
is called Mill’s inverse ratio or Heckman’s lambda.

Based on this result Heckman proposed the following two step procedure. Step 1: esti-

mate γ by ML in the Probit model D = 1{Zγ− u > 0}. Obtain {ziγ̂} for every observation

in the sample, and compute estimates for the Heckman’s lambdas, λ̂0i = φ(−ziγ̂)/Φ(−ziγ̂),

and λ̂1i = φ(ziγ̂)/Φ(ziγ̂). Step 2: run an OLS regression for Y on X and λ̂0 using the sub-

sample of observations with D = 0, and run an OLS regression for Y on X and λ̂1 using the
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subsample of observations with D = 1. This procedure provides consistent estimates of β0,

β1, σ0u and σ1u. Amemiya (1985, pp. 370-371) provides an expression to correct standard

errors of the parameter estimates taking into account the estimation error in the variables

λ̂0 and λ̂1.

How are we controlling for selection bias in this procedure? We are controlling for se-

lection bias by including in the regression the (estimated) selection term λ̂. How can we

identify separately the causal effect of X on Y (through Xβj) and the effect though the

selection bias λ̂j? Or in other words, why λ̂ and X are not collinear? There are two possible

reasons. First, there may be variables in Z which are not in X (i.e., exclusion restrictions).

If that is the case, and if these variables have enough explanatory power in the Probit model,

λ̂j has sample variation that is independent of X. And second, λ̂ is a non-linear function

of Zγ̂. Even if Z ⊆ X, the variable λ̂ has sample variation that is linearly independent of

X. The first source of identification is called identification from exclusion restrictions, and

it does not depend on our functional form assumptions, i.e., we have identification even if

the model specifies a nonparametric relationship between Y ∗j and X. The second source of

identification is called identification through functional form and it crucially depends on our

parametric assumptions, i.e., linearity of the relationship between Y ∗j and X, and normality

of the disturbances.

The previous discussion illustrates an additional reason why we might be interested in

relaxing the normality assumption. Even if we are interested in linear effects of X on Y ∗j , we

would like that the identification of these effects do not only rely on the linearity assumption

and a parametric assumption on the distribution of the unobservables. We now describe

an extension of Heckman’s two stage procedure that allows for a general distribution of

the unobservables. Consider the sample selection where the unobservables (ε0, ε1, u) are

independent of (X,Z) and they have an arbitrary probability distribution with support the

Lebesgue measure on the Euclidean space. In fact, we can allow for heterocedasticity in

(ε0, ε1, u) as long as the variances and covariances of these variables depend on (X,Z) only
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through the index Zγ. Without further assumptions, the model implies that:

E(Y | X,Z,D = 0) = Xβ0 + s0(Zγ)

E(Y | X,Z,D = 1) = Xβ1 + s1(Zγ)
(47)

where now the functional form of the selection functions s0(.) and s1(.) is unknown. However,

we know that they are single-index functions. These functions only depend on Zγ. Given an

estimate of γ from the binary choice model,11 we can approximate arbitrarily well the terms

sj(Zγ̂) using a polynomial of order q in Zγ̂. That is, in the second stage we can estimate by

OLS the regressions:

{Y |D = 0} = Xβ0 +

qX

j=1

ρ0j (Zγ̂)
j + e0

{Y |D = 1} = Xβ1 +

qX

j=1

ρ1j (Zγ̂)
j + e1

(48)

Some authors have proposed also two use a polynomial in estimated Heckman’s lambda, or

a polynomial in the estimated discrete choice probability (i.e., propensity score). We can

also use other type of semiparametric estimators for partially linear models (see Robinson,

1983, and Yatchew, 2003). It is clear that the identification of β0 and β1 is based only

on exclusion restrictions. This makes also clear that in order to identify these parameters

using this approach, the index Zγ̂ should have enough sample variability independent of X.

Also, we will have to justify our exclusion restrictions based on economic arguments and our

knowledge of the problem.

11The parametric specification of the discrete choice model is not important here. We can also use a
polynomial in zi in the probit model.
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