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Abstract

We examine challenges to estimation and inference when the objects of interest are nondif-

ferentiable functionals of the underlying data distribution. This situation arises in a number of

applications of bounds analysis and moment inequality models, and in recent work on estimating

optimal dynamic treatment regimes. Drawing on earlier work relating differentiability to the ex-

istence of unbiased and regular estimators, we show that if the target object is not continuously

differentiable in the parameters of the data distribution, there exist no locally asymptotically

unbiased estimators and no regular estimators. This places strong limits on estimators, bias

correction methods, and inference procedures.

1 Introduction

In bounds analysis and inference for treatment effects, certain estimands of interest are nonsmooth

functionals of the underlying distribution of the data, and this creates challenges for standard es-

timation and inference procedures. We examine such cases, and show that nonsmoothness implies

sharp limits on the performance of estimators and inference procedures. In particular, if a limiting

version of the estimand is not continuously differentiable, then there exist no locally asymptotically

unbiased estimators, and there exist no regular estimators, when the underlying set of distributions

is a smooth family. Since no locally asymptotically unbiased estimators exist, bias correction pro-

cedures cannot completely eliminate local bias, and reducing bias too much will eventually cause

the variance of the procedure to diverge. Nonexistence of regular estimators implies that stan-

dard arguments for optimality of estimators, such as the convolution theorem for semiparametric

estimators, cannot be used, and that standard Wald-type inference procedures are not valid.

∗Early versions of this paper were titled “Impossibility Results for Bounds Estimation.” We are grateful to Gary
Chamberlain, Jinyong Hahn, Bruce Hansen, Guido Imbens, Ariel Pakes, Thomas Richardson, Jamie Robins, and
numerous seminar participants for helpful comments and suggestions. Porter thanks the National Science Foundation
for research support under grant SES-0438123.
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We use Le Cam’s limits of experiments approach to provide a simple and intuitive argument

for our impossibility results. Under local asymptotic normality, the multivariate normal location

model serves as a limit experiment, in the sense that any sequence of estimators in the model of

interest is matched by some estimator in the normal model. We show that in the normal location

model, no unbiased or translation equivariant estimators exist if the functional of interest is not

continuously differentiable. Therefore, there exist no sequences of estimators in the original model

that are locally asymptotically unbiased or regular.

In our analysis, we draw upon Blumenthal and Cohen (1968), who showed that no unbiased

estimator exists for the minimum of two independent normal means. We extend their argument

to a multivariate, correlated normal model where the object of interest is a general (but nondif-

ferentiable) function of the mean parameters, and the criterion is either unbiasedness or location

equivariance. Our result on regular estimators is similar to van der Vaart (1991b), who showed

that the existence of a regular estimator, combined with a further mild condition, implies that

the functional is differentiable. We use a different argument, and obtain the stronger result that

regularity implies continuous differentiability of the functional.

2 Examples

Before developing the theory, we begin with some examples of recent work in economics and bio-

statistics in which the estimand is a nondifferentiable functional of the data distribution.

Example 1 Bounds for an Incomplete Auction Model

Haile and Tamer (2003) showed that it is possible to obtain useful inference for valuation dis-

tributions in auction models without fully specifying the structure of the model. Suppose that

bidders i = 1, . . . ,m draw valuations vi independently from a distribution with cumulative distri-

bution function (CDF) F (v). Bidders make bids bi subject to:

1. bi ≤ vi

2. Bidders do not allow an opponent to win the good at a price she is willing to beat.

We do not observe vi, only bi. Let G(b) denote the CDF of bids.

Condition 1 implies F (v) ≤ G(v) for all v. Haile and Tamer observed that this upper bound

can be tightened as follows. Let Fi(v) denote the CDF of the ith order statistic out of m. There

exists a monotone mapping φ such that

F (·) = φ(Fi(·); i).

Then Condition 1 implies:

F (v) ≤ min
i=1,...,m

φ(Gi(v); i) = κ.
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By a similar argument, Condition 2 gives a lower bound for F (v) involving a maximum of estimable

quantities. Haile and Tamer noted that while the empirical analogs of the Gi(v) are consistent and

asymptotically jointly normally distributed, the plug-in estimator for the bound κ will be biased

downward due to the convexity of the minimum operator, and that this problem can be quite severe

for realistic sample sizes. They suggest a bias reduction procedure; similar issues in other bounds

analyses were noted by Manski and Pepper (2000), and Kreider and Pepper (2007) suggested a

bootstrap bias correction. In the analysis below, we will find that it is impossible to completely

eliminate bias, and that reducing bias too much leads to large increases in variance.

Example 2 Imbens-Manski Bounds

Imbens and Manski (2004) considered inference for a partially identified, scalar parameter,

where the identification region is given by a bounded interval, [π, κ]. Under a uniform asymptotic

normality condition for estimators of (π, κ), they propose a confidence interval method for the

parameter. Ensuring uniform validity of the confidence interval requires some care for cases where

π is close to κ. (See Stoye (2008) and Fan and Park (2008) for extensions of the Imbens-Manski

approach.) We consider an extension of their framework where the endpoints are identified by

multiple features of the data. For example, each endpoint could be determined by multiple mo-

ment inequalities. Such cases have received considerable attention in the rapidly growing moment

inequality literature, see Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2007), An-

drews and Guggenberger (2007), Pakes, Porter, Ho, and Ishii (2006), Bugni (2008), Canay (2008),

Rosen (2008), among others, and raise further challenges to estimation and inference.

Suppose we have data Yi
i.i.d.∼ P for i = 1, . . . , n. Let θ(P) = (θ1(P), . . . , θj(P))′ be a vector of

functionals of the data distribution for which there exists a
√

n-asymptotically normal estimator.

Focusing on the upper endpoint, suppose

κ = min{θ1, . . . , θj},

For example, we could observe a j-dimensional data vector Yi with E[Yi] = θ. Then κ is the

minimum of the means of the components of Yi, which is a simple moment inequality model of the

form 0 ≤ E(Yi) − ℓκ with ℓ a j-vector of ones.

As we will see below, there exist no regular estimators for κ. Hence, there exist no estimators

satisfying the uniform asymptotic normality condition in this extension of the Imbens-Manski

framework.

Example 3 Inference for Expected Outcomes under the Best Treatment

Consider a randomized experiment comparing outcomes under two treatments, T = 0, 1. Let Y (0)

and Y (1) denote potential outcomes under the two treatments, and define

θ0 = E[Y (0)]

θ1 = E[Y (1)]

3



Interest often focuses on estimating the average treatment effect θ1 − θ0. Recent work on optimal

treatment assignment rules by Manski (2004), Dehejia (2005), Stoye (2006), Schlag (2006), Tetenov

(2007), and Hirano and Porter (2008) has adopted a decision-theoretic approach for choosing the

optimal treatment. Another object of interest is

κ = max{θ0, θ1}.

This can be interpreted as the expected outcome under the best treatment. Clearly, sample analog

estimators of this quantity will suffer from bias problems, just as in the previous two examples.

In addition to being of interest in their own right, objects of this form play an important role

in recent work on treatment assignment problems in dynamic settings, where backward induction

solutions must take into account the continuation payoffs from choosing the best treatment in later

stages (Murphy (2003)). Robins (2004) noted that estimators for many such models will generally

suffer from bias and lack of regularity, and develops uniform inference procedures. Moodie and

Richardson (2007) and Chakraborty, Strecher, and Murphy (2008) proposed bias-correction proce-

dures. Our results below extend the arguments in Robins (2004) to show that lack of continuous

differentiability leads automatically to impossibility of locally asymptotically unbiased or regular

estimators.

3 Theory

Our argument proceeds in two steps. First, we study finite sample theory in a simple normal model.

Then, we use the exact results in the normal case to obtain a general asymptotic theory for the

problem of estimating non-smooth functionals in a smooth family of distributions.

3.1 Exact Theory for the Multivariate Normal Location Model

Suppose we have a single observation for the k-dimensional random vector Z, where

Z ∼ N(h, Σ),

h = (h1, . . . , hk)
′ ∈ R

k, and Σ is a known variance-covariance matrix. Let κ̇(h) be some function

of the parameters h.1

Let U ∼ Uniform[0, 1], independently of Z, and let T (Z,U) denote a scalar-valued randomized

statistic. Then T (Z,U) is an unbiased point estimator iff

κ̇(h) = Eh[T (Z,U)] =

∫

[0,1]

∫

Rk

T (z, u)f(z|h, Σ)dzdu, ∀h ∈ R
k, (1)

where f(z|h, Σ) denotes the multivariate normal density.

1The dot notation in κ̇ suggests a derivative, and this will be useful for the asymptotic theory in the next subsection.
Here, however, we simply view κ̇ as an arbitrary function.
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In addition to unbiasedness, it is useful to consider an equivariance condition. We say that

T (Z,U) is translation equivariant iff the distribution under h of

T (Z,U) − κ̇(h)

does not depend on h.

To see how lack of smoothness in κ̇ affects the possibility of unbiased or equivariant estimation,

we partition Z into its first component and the remaining subvector, with parameters partitioned

comformably:

Z =

(

Z1

Z2

)

∼ N

((

h1

h2

)

,

(

σ11 Σ1,2

Σ2,1 Σ2,2

))

.

We also use the notation κ̇(h1, h2) for the object of interest.

Assumption 1 κ̇ is not continuously differentiable in h1 at some point h0 in the parameter space.

The dependence of κ̇ on h2 can be arbitrary. For instance, κ̇ may be a function of h1 and a

proper subset of h2. To see why nondifferentiability can lead to problems, suppose that T (Z,U)

is an unbiased estimator. Through a bounding inequality for the exponential function, we can

verify the uniform integrability condition that implies differentiability under the integral sign in

(1). Hence, the derivative of Eh[T (Z,U)] with respect to h1 is well-defined and exists everywhere:

∂

∂h1
Eh[T (Z,U)] =

∫

[0,1]

∫

Rk

T (z, u)
∂

∂h1
f(z|h, Σ)dzdu.

However, by assumption, Eh[T (Z,U)] = κ̇(h) is not continuously differentiable at h = h0, which

is a contradiction. So an unbiased estimator for κ̇(h) cannot exist. We extend this argument to

obtain the following result.

Theorem 1 Suppose Assumption 1 holds, and T (Z,U) is (possibly randomized) estimator of κ̇.

Then T is neither unbiased nor translation equivariant.

Proof: See Appendix.

�

The impossibility of unbiased or equivariant estimation arises from nondifferentiability of κ̇(h)

at a single point h0, even if the function is very well behaved elsewhere. In some cases where the

points of nondifferentiability are isolated, one can construct estimators with arbitrarily small bias

by targeting smoothed versions of κ̇ or employing some sort of iterated bias correction. However,

Doss and Sethuraman (1989) showed the following remarkable result: if there exists no unbiased

estimator, but there exists a sequence of estimators whose bias becomes arbitrarily small (pointwise

in the parameter space), then such a sequence must have variance increasing to infinity at every

point in the parameter space. So if one reduces the bias of the estimator too much, the estimator

will have arbitrarily large variance everywhere in the parameter space.
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3.2 Asymptotic Theory

Although there do not exist exactly unbiased or equivariant estimators for κ̇(h) in the normal model,

one could hope to construct approximately unbiased or equivariant estimators. For example, the

MLE in a parametric model is not generally unbiased in finite samples, but in well-behaved settings

it is asymptotically unbiased and regular. Therefore, we consider asymptotic approximations in

both parametric and infinite-dimensional settings, and examine how lack of smoothness of the

target functional limits the properties of estimators and inference procedures.

3.2.1 Parametric Models

First, consider a parametric family of distributions for the data. Suppose that for i = 1, 2, . . . , n,

the data Yi are IID with

Yi ∼ Gθ,

where θ ∈ Θ ⊂ R
k. We assume that Θ is an open set. Let Y denote the support of Yi. (The

observations Yi could be vector-valued or take values in some more general space.)

We take a standard local approximation about a point θ0 ∈ Θ, and take the family of distribu-

tions to be locally asymptotically normal at θ0 (see van der Vaart, 1998):

Assumption 2 (a) (Differentiability in quadratic mean) There exists a function s : Y → R
m such

that
∫
[

dG
1/2
θ0+h(y) − dG

1/2
θ0

(y) − 1

2
h′ · s(y)dG

1/2
θ0

(y)

]2

= o(‖h‖2) as h → 0;

(b) The Fisher information matrix J0 = Eθ0 [ss
′] is nonsingular.

Given this assumption, it will be useful to adopt the usual local parametrization around a point θ0,

θn,h = θ0 +
h√
n

.

Suppose interest centers on some function of the parameters, κ(θ). Under conventional smooth-

ness conditions on the sequence of experiments En = {Gn
θ : θ ∈ Θ}, the MLE θ̂ml and other

estimators such as the Bayes estimator are asymptotically efficient. However, the limit distribu-

tions of derived estimators of κ(θ) will depend crucially on the smoothness in κ at the point θ0.

Here we want to allow κ to lie in a class of functions that includes certain non-differentiable func-

tions, such as the min and max functions in the examples. For this purpose, define the one-sided

directional derivative of κ at θ0 in the direction λ as:

κ̇θ0(λ) = lim
t↓0

κ(θ0 + tλ) − κ(θ0)

t
.

The following assumption defines the class of functions that we will consider.

Assumption 3 κ has one-sided directional derivatives in all directions at θ0.
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In this setting, an estimator (or estimator sequence) is a sequence of functions Tn : Yn → R.

We focus on estimators that possess limit distributions in the sense that, for all h,

√
n (Tn − κ(θn,h))

h
 Lh, (2)

where
h
 indicates weak convergence under θn,h. The Lh are the limiting laws of the estimator

under different local sequences of parameters. These laws could, in general, be degenerate.

The standard definition of a regular estimator is one that has Lh = L for all h, where L does

not depend on h. This is a local asymptotic version of equivariance, and is intended to capture

the requirement that the centered limit distributions be invariant to small perturbations of the

parameters. Regularity plays an important role in conventional results on optimality of point

estimators, such as semiparametric efficiency bounds and convolution theorems, and is also crucial

for the uniform validity of standard inference procedures.2 In addition, we say that Tn is locally

asymptotically unbiased if, for all h, the laws Lh have mean 0.

Local asymptotic normality in Assumption 2 implies that the Gaussian location model

Z ∼ N(h, J−1
0 )

provides a characterization of the asymptotic behavior of our sequence of statistical models Gn
θ .

In particular, by the Asymptotic Representation Theorem (van der Vaart, 1991a), the limit laws

of
√

n(Tn − κ(θ0)) are matched by a randomized estimator T (Z,U), where U is Uniform[0, 1]

independently of Z. By Assumption 3,

√
n(κ(θ0 + h/

√
n)) − κ(θ0)) −→ κ̇θ0(h).

Together these conclusions imply that T (Z,U)− κ̇θ0(h) ∼ Lh for the limit laws given in (2). Then,

if κ̇θ0 is not continuously differentiable at some point h0, Theorem 1 shows that there exists no

unbiased or translation equivariant estimator in the multivariate normal model. Our asymptotic

impossibility result follows immediately.

Theorem 2 Let Tn be any sequence of estimators based on {Yi}n
i=1. Suppose Assumptions 2 and 3

hold, and κ̇θ0(·) satisfies Assumption 1. Then Tn is not locally asymptotically unbiased and is not

regular.

Remarks:

1. In the Theorem, Tn can be any procedure based on the data, so the result would apply to

multi-step procedures such as bias reduction following an initial estimate, procedures based

on an initial moment selection step, and procedures that use resampling techniques.3

2For instance, regularity is necessary for consistency of the parametric bootstrap in LAN models; see Beran (1997).
3Techniques like the bootstrap often use simulation to approximate a distribution of a statistic or some other

quantity that depends deterministically on the data. Typically the numerical approximation does not change the
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2. Van der Vaart (1991b) contains a closely related result which shows that in a setting with

a possibly infinite-dimensional parameter space, regularity and a further mild property of

an estimator of some functional of the distribution of the data implies differentiability of

that functional. We state and show nonexistence somewhat more simply using the finite-

dimensional normal limit experiment, and obtain the same conclusion under the stronger

condition of continuous differentiability.

3.2.2 Infinite-Dimensional Models

Our analysis so far has considered only smooth parametric models. A more general model for the

data would have

Yi ∼ G ∈ G,

where the set of possible distributions G may be infinite-dimensional.

For these models, one can obtain a Gaussian process limit experiment associated with the

tangent space of G around a centering G0, and derive results for that case, but it is simpler to

extend our results for the parametric case as follows. Suppose that θ(G) = (θ1(G), . . . , θk(G))′ is

a vector-valued functional of G that is estimable at a
√

n rate and Hadamard differentiable with

respect to G. As before, let κ(θ(G)) be a scalar function of θ(G). Then, provided that there exists

an LAN parametric submodel of G containing G0, we can use our parametric result in Theorem 2

to conclude that there exists no locally asymptotically unbiased or regular estimator in the original

semiparametric model.

The three examples in Section 2 can all be fit into this general semiparametric framework. If we

localize around a measure G0 such that at least two of the arguments in the min or max function

defining the estimand are equal, then κ(θ(G0)) has a one-sided directional derivative that satisfies

our Assumption 1, and we can conclude that there exist no locally asymptotically unbiased or

regular estimators.

4 Conclusion

We have used the Le Cam limits of experiments framework to reduce the asymptotic analysis

to an analysis of a multivariate normal location model. Impossibility of unbiased or equivariant

estimation in the normal model implies impossibility of locally asymptotically unbiased estimation

or regular estimation. As a consequence, bias reduction procedures will eventually lead to a large

increase in variance, conventional arguments for optimality of estimators cannot be used, and

standard Wald-type inference procedures cannot be uniformly valid.

limit distributions of the procedure. So our result, which holds for sequences of nonrandomized estimators, applies
equally well for such resampling methods. We could also extend the result to allow the Tn to be inherently randomized,
by expanding the definition of the data {Yi} appropriately.
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Local asymptotic normality also provides a useful way to devise alternative procedures with

good properties. Any sequence of statistics with limit distributions has a matching statistic in the

limiting normal model. This suggests that we could work directly in the normal model, propose

alternative estimators or inference procedures, and compare their distributions under different

parameters. If we find a good procedure in the normal model, it is usually possible to construct

the matching sequence of estimators for the original problem of interest.
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Appendix

Proof of Theorem 1:

We give the argument for equivariance; the argument for unbiasedness works similarly and is

omitted. Suppose that T (Z,U) is equivariant. Let T̃ (z, u) = T (z, u)− κ̇(h). We want to show that

if the distribution of T̃ (Z,U) does not depend on h, then κ̇(h) must be everywhere continuously

differentiable in h1. Let φh(s) = Eh

[

eisT (Z,U)
]

be the characteristic function of T (Z,U) under h,

and let φ̃h(s) be the characteristic function of T̃ (Z,U) under h. We can write φ̃h(s) = e−isκ̇(h)φh(s).

Since T (Z,U) is equivariant,

eisκ̇(h) =
φh(s)

φ̃0(s)
(3)

where φ̃0(s) does not depend on h. Note that φ̃0(s) is non-zero for s in an open neighborhood of

zero. By Lemma 1, φh(s) and hence φh(s)

φ̃0(s)
are continuous in h for all s in a neighborhood of zero.

By Lemma 3, κ̇ is everywhere continuous in h.

Now, we show differentiability of κ̇ in h1. Take a nonzero s in a neighborhood of zero. Both

cos(·) and sin(·) are differentiable at sκ̇(h0), and one of these derivatives must be non-zero. Without

loss of generality, assume cos′(sκ̇(h0)) = − sin(sκ̇(h0)) 6= 0. The real part of the right hand side of

(3) is:

Re(φh(s))Re(φ̃0(s)) + Im((φh(s))Im(φ̃0(s))

[Re(φ̃0(s))]2 + [Im(φ̃0(s))]2

From Lemma 4, both real and imaginary parts of φh(s) are differentiable in h1 at h0, yielding

differentiability of the above expression in h1. We’ve already established that sκ̇ is continuous at

h0 in h, so Lemma 6 gives the desired differentiability. Lastly we show continuous differentiability

of κ̇ in h1 at h0. Differentiating equation (3) for nonzero s in a neighborhood of zero, we get

∂

∂h1
κ̇(h) = −ie−isκ̇(h)

∂
∂h1

φh(s)

sφ̃0(1)
.

So, given the continuity of κ̇, continuity of ∂
∂h1

φh(s) suffices to give the result. Lemma 7 shows the

needed continuity. �

Proof of Theorem 2:

If the estimator sequence does not possess limit distributions as in Equation (2), then it cannot

be regular or locally asymptotically unbiased by definition, and the conclusion of the theorem

holds trivial. Now consider the case where Equation (2) holds for the estimator sequence. By the

argument preceding the statement of the theorem,

√
n(Tn − κ(θ0 + h/

√
n))

h
 T − κ̇θ0(h).

The result follows by Theorem 1. �
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Lemmas

Let

Z =

(

Z1

Z2

)

∼ N

((

h1

h2

)

,

(

σ11 Σ1,2

Σ2,1 Σ2,2

))

.

Here Z1 is scalar, but Z2 is a vector of arbitrary finite-dimensional size. Let f(z|h, Σ) denote

the density of a k-dimensional multivariate normal distribution with mean h and positive definite

variance-covariance Σ.

Lemma 1 φh(s) = Eh

[

eisT (Z,U)
]

is continuous in h for all s.

Proof: We show continuity for the real component below. The proof for the imaginary component

follows similarly. Consider some point h0. Let ζ = suph:‖h−h0‖≤1 f(z|h, Σ) and note ζ < ∞. Set

C = 2 and δ = 1 in Lemma 2, and let q be as given by the Lemma 2. Then

∫ 1

0

∫

sup
h:‖h−h0‖≤1

| cos(sT (z, u))[f(z|h, Σ) − f(z|h0,Σ)]| dz du

≤ 2

∫ 1

0

∫

sup
h:‖h−h0‖≤1

f(z|h, Σ)dzdu

≤ 2

∫ 1

0

∫

z:‖z−h0‖≤2
ζ dz du + 2q−k2/2

∫ 1

0

∫

z:‖z−h0‖>2
f(z|h0, q

−1Σ) dz du

≤ 2 · 4kζ + 2q−k2/2 < ∞

For all z and u, | cos(sT (z, u))[f(z|h, Σ) − f(z|h0,Σ)]| −→ 0 as h −→ h0, so by dominated conver-

gence

|Re(φh(s)) − Re(φh0(s))| ≤
∫ 1

0

∫

| cos(sT (z, u))[f(z|h) − f(z|h0)]| dz du −→ 0.

�

Lemma 2 Given C > δ > 0 and some h0, there exists q > 0 such that

sup
h:‖h−h0‖≤δ

f(z|h, Σ) ≤ q−k2/2f(z|h0, q
−1Σ)

for z such that ‖z − h0‖ ≥ C.

Proof: Let α = inf‖t‖=1 t′Σ−1t and ᾱ = sup‖t‖=1 t′Σ−1t. Σ−1 is positive definite, so α > 0. Set

q = α(C−δ)2

ᾱC2 . For z such that ‖z − h0‖ ≥ C,

inf
h:‖z−h‖≥‖z−h0‖−δ

(z − h)′Σ−1(z − h) = inf
d:d≥‖z−h0‖−δ

d2 inf
t:‖ t

d
‖=1

(

t

d

)′
Σ−1

(

t

d

)

= (‖z − h0‖ − δ)2α ≥ ‖z − h0‖2qᾱ ≥ q(z − h0)
′Σ−1(z − h0).
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Hence, for z such that ‖z − h0‖ ≥ C,

sup
h:‖h−h0‖≤δ

f(z|h, Σ) ≤ sup
h:‖z−h‖≥‖z−h0‖−δ

q−k2/2
(

2π|q−1Σ|
)−k/2

exp

(

−1

2
(z − h)′Σ−1(z − h)

)

= q−k2/2f(z|h0, q
−1Σ).

�

Lemma 3 If eisk(h) is continuous in h for all s, then k(h) is continuous in h.

Proof: The function eist is continuous and periodic in t So, limh−→h0 eisk(h) = eisk(h0) implies

limh−→h0 sk(h) = sk(h0) + rs2π for some integer rs. This can only hold for all s close to zero if

rs = 0. Hence k is continuous at h0.

�

Lemma 4 φh(s) = Eh

[

eisT (Z,U)
]

is everywhere differentiable in h1 for all s, and

∂

∂h1
φh(s) =

∫ 1

0

∫

eisT (z,u) ∂

∂h1
f(z|h) dz du.

Proof: We show differentiability for the real component below. The proof for the imaginary

component follows similarly. First we show

{∣

∣

∣

∣

cos(sT (z, u))
f(z|(h1 + ∆, h2),Σ) − f(z|(h1, h2), Σ)

∆

∣

∣

∣

∣

: |∆| ≤ 1

}

is uniformly integrable, and the result will follow by the Dominated Convergence Theorem. Let

h̄(z2, h) = h1 +Σ1,2Σ
−1
2,2(z2 − h2) and σ̄ = σ11 −Σ1,2Σ

−1
2,2Σ2,1, so Z1| Z2 = z2 ∼ N(h̄(z2, h), σ̄2). By

the mean value theorem,

f(z|(h1+∆, h2),Σ)−f(z|(h1, h2),Σ) =
1

σ̄2
√

2πσ̄2
(z1−h̄(z2, h)−∆̄) exp

(

− 1

2σ̄2
(z1 − h̄(z2, h) − ∆̄)2

)

∆f(z2|h2)

13



for some ∆̄ between zero and ∆. Then,

sup
|∆|≤1

∣

∣

∣

∣

f(z|(h1 + ∆, h2),Σ) − f(z|(h1, h2),Σ)

∆

∣

∣

∣

∣

≤ sup
|∆|≤1

1√
2πσ̄2

∣

∣z1 − h̄(z2, h) − ∆
∣

∣

σ̄2
exp

(

− 1

2σ̄2
|z1 − h̄(z2, h) − ∆|2

)

f(z2|h2,Σ2,2)

≤ sup
|∆|≤1

1√
2πσ̄2

e
1

2σ̄2 exp

(

− 1

2σ̄2
(|z1 − h̄(z2, h) − ∆| − 1)2

)

f(z2|h2,Σ2,2) (by Lemma 5)

≤















1√
2πσ̄2

e
1

2σ̄2 exp
(

− 1
2σ̄2 (z1 − h̄(z2, h) − 2)2

)

f(z2|h2,Σ2,2) if z1 − h̄(z2, h) ≥ 2

1√
2πσ̄2

e
1

2σ̄2 exp
(

− 1
2σ̄2 (z1 − h̄(z2, h) + 2)2

)

f(z2|h2,Σ2,2) if z1 − h̄(z2, h) ≤ −2

sup|∆|≤1
1√

2πσ̄2
e

1
2σ̄2 f(z2|h2,Σ2,2) if − 2 < z1 − h̄(z2, h) < 2

The dominance condition sufficient for uniform integrability follows immediately, and the result

follows by dominated convergence.

�

Lemma 5 Suppose c > 0. For all u ≥ 0, u
c e−

u
2

2c < e
1
2c e−

(u−1)2

2c .

Proof: Note that e
1
2c e−

(u−1)2

2c = e
u

c e−
u
2

2c , and, since ev > v for v ≥ 0, the last term is strictly

greater than u
c e−

u
2

2c .

�

Lemma 6 Suppose (a) w is differentiable at x0 and w′(x0) 6= 0; (b) k is continuous at h0 and

x0 = k(h0); (c) w ◦ k is differentiable at h0. Then, k is differentiable at h0. Moreover,

∂

∂h1
k(h0) =

∂(w◦k)
∂h1

(h0)

w′(k(h0))
.

Proof: By (c),

∂(w ◦ k)

∂h1
(h0) = lim

∆−→0

w(k(h0,1 + ∆, h0,2)) − w(k(h0))

k(h0,1 + ∆, h0,2) − k(h0)
· k(h0,1 + ∆, h0,2) − k(h0)

∆

By (a) and (b),

w′(k(h0)) = lim
∆−→0

w(k(h0,1 + ∆, h0,2)) − w(k(h0))

k(h0,1 + ∆, h0,2) − k(h0)

The result follows by taking the limit of a quotient as a quotient of the limits where the denominator

exists.

�

Lemma 7 ∂
∂h1

φh(s) is everywhere continuous in h for all s.
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Proof: We prove continuity for the real part, and a similar argument yields continuity for the

imaginary part. Consider some point h0. Let ζ = suph:‖h−h0‖≤1 f(z|h, Σ), ς = supz:‖z−h0‖≤2 |z1 −
Σ1,2Σ

−1
2,2z2| and ̺ = suph:‖h−h0‖≤1 |h1 −Σ1,2Σ

−1
2,2h2|. Set C = 2 and δ = 1 in Lemma 2, and let q be

as given by Lemma 2.

∫ 1

0

∫

sup
h:‖h−h0‖≤1

| cos(sT (z, u))
1

σ̄2
[(z1 − h̄(z2, h))f(z|h, Σ) − (z1 − h̄(z2, h0))f(z|h0,Σ)]| dz du

≤ 1

σ̄2

∫ 1

0

∫

sup
h:‖h−h0‖≤1

∣

∣

∣

∣

[(z1 − Σ1,2Σ
−1
2,2z2) − (h1 − Σ1,2Σ

−1
2,2h2)](f(z|h, Σ) − f(z|h0,Σ))

−(h1 − h0,1 − Σ1,2Σ
−1
2,2(h2 − h0,2))f(z|h0,Σ)

∣

∣

∣

∣

dzdu

≤ 1

σ̄2

∫ 1

0

∫

|z1 − Σ1,2Σ
−1
2,2z2| sup

h:‖h−h0‖≤1
|f(z|h, Σ) − f(z|h0,Σ)| dzdu

+
̺

σ̄2

∫ 1

0

∫

sup
h:‖h−h0‖≤1

|f(z|h, Σ) − f(z|h0,Σ)| dz du +
2̺

σ̄2

∫ 1

0

∫

f(z|h0, Σ) dz du

The second term is bounded by the argument in the proof of Lemma 1. The third term is equal to

2̺/σ̄2. So, we need only bound the first term.

1

σ̄2

∫ 1

0

∫

|z1 − Σ1,2Σ
−1
2,2z2| sup

h:‖h−h0‖≤1
|[f(z|h, Σ) − f(z|h0, Σ)]| dz du

≤ 2

σ̄2

∫ 1

0

∫

|z1 − Σ1,2Σ
−1
2,2z2| sup

h:‖h−h0‖≤1
f(z|h, Σ)dzdu

≤ 2

σ̄2

∫ 1

0

∫

z:‖z−h0‖≤2
|z1 − Σ1,2Σ

−1
2,2z2|ζ dz du

≤ 2

σ̄2
· 4kςζ +

2

σ̄2
q−k2/2

∫ 1

0

∫

z:‖z−h0‖>2
|z1 − Σ1,2Σ

−1
2,2z2|f(z|h0, q

−1Σ) dz du

The last integral expression is bounded by the absolute moment of a linear combination of multi-

variate normals, which exists and is bounded. The boundedness of the whole expression follows.

The conclusion follows by the Dominated Convergence Theorem.

�
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