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Information Theory and Knowledge-Gathering  
 

 

 
ABSTRACT 
 
It is assumed that human knowledge-building depends on a discrete sequential decision-making process 
subjected to a stochastic information transmitting environment. This environment randomly transmits 
Shannon type information-packets to the decision-maker, who examines each of them for relevancy and 
then determines his optimal choices. Using this set of relevant information-packets, the decision-maker 
adapts, over time, to the stochastic nature of his environment, and optimizes the subjective expected rate-
of-growth of knowledge. The decision-maker’s optimal actions, lead to a decision function that involves his 
view of the subjective entropy of the environmental process and other important parameters at each stage of 
the process. Using this model of human behavior, one could create psychometric experiments using 
computer simulation and real decision-makers, to play programmed games to measure the resulting human 
performance.         
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Thinking About Knowledge 

Chebyshev, as translated by Khinchin (1957), expressed the magical relationship 

between scientific theory and practice: 

“The bringing together of theory and practice leads to the most 

favorable results; not only does practice benefit, but the sciences 

themselves develop under the influence of practice, which reveals new 

subjects for investigation and new aspects of familiar subjects.”  

 

An objective for a scientist is to understand the phenomena of his or her 

environment. One of the means for understanding is to build hypothetical mathematical 

models that reflect our view of reality and hopefully reach the laws of nature. Without 

this understanding, how are we to conduct experiments to validate our hypothesis and 

then reach out for even more truths about nature?  The risk for a scientific model builder 

is to be able to steer a narrow path between the naivety of oversimplification and the 

morass of overcomplication. The subject of knowledge-gathering in human decision-
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makers is the basis of this paper. Recently, the study of knowledge-gathering in machines 

has been a major part of the new science of Artificial Intelligence. Most of this AI 

research has been to the study knowledge as expressed along semantic or logic network 

lines to enable expert systems. Knowledge systems, as learning systems, have also had a 

long and successful history in the field of psychometrics. The influence of information 

theory on knowledge gathering systems that effect human decision-making has resulted 

in the application of several mathematical discrete sequential system analysis techniques 

that stem from the classical works of H. Poincaré, G.D.Birkhoff and on to the recent 

works of the late Richard Bellman (1960) of the RAND Corporation.  These “dynamic 

programming” techniques have also been successfully in applied to many other diverse 

scientific endeavors.   Applying these same techniques to the analysis of knowledge-

gathering in human decision-makers may appear to be a “tail wagging the dog” to some, 

but sometimes new ideas come by strange paths. The subject of what human knowledge 

is has always occupied the old philosophers from Plato to Husserl. Recently, it has 

become possible to analyze knowledge-gathering as a discrete, sequential stochastic, 

adaptive decision-making process, subjected to the laws of probability, and the step-by-

step actions of human decision-makers, who in Kenneth Arrow’s words, are learning by 

doing (Arrow (1961). 

In this paper, in its simplest form, I will develop the mathematical structure of a 

human knowledge-gathering mathematical process of this type. Despite the simplicity of 

this model, the mathematical details are still extensive and, for the sake of the balance 

between the simple and the complex, I have delegated those details to the Appendix, 

herein after.  

Observation of a human, decision-maker, behaving in a knowledge-gathering 

process, indicates that, on the average, his intelligence increases over time and tends to 

simplify the decision-maker’s gathering process by decreasing his relative entropy. This 

process can occur in the face of a stochastic environment, a “deus ex machina” that feeds 

the decision-maker a variety of random information-packets. Some of these information-

packets are valuable to the decision-maker, but most are irrelevant. Somehow, the 

decision-maker is able to sort, these random information packets into a list of increasing 

acceptance from the irrelevant to the relevant, depending on the decision-maker’s 
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previous experience, stored in his memory. In this process, the decision-maker tends to 

decrease, both his relative entropy (his uncertainty or chaos), in the face of a world where 

the net entropy is believed to be always increasing. Non-intelligent dynamic systems, for 

example, Brownian motion of micro-particles in suspension, do not seem to behave in 

this manner. It appears that these non-intelligent systems lack a means of organizing 

against, or adapting to the hidden mechanisms in their environment. For the most part, 

except for some chemical processes that tend oscillate back and forth from chaos to 

order, with obvious consequences to the effect on their entropy, these non-intelligent 

processes, in the end, always increase their local entropy. Ilya Prigogine (1996) has given 

many examples of this kind of pseudo lifelike behavior. 

In this paper, I postulate that lifelike systems have several necessary unique 

facilities to effect relative entropy decreases through their organized knowledge-

gathering activity. The first of these is the basic ability to make decisions. This ability, in 

the face of complex world, enables living beings to adapt and control their decision- 

making through the acceptance or rejection of random information-packets transmitted 

by their environment. Within these systems, we find the human knowledge-gathering 

activity enables the optimal acceptance or rejection of random information-packets, 

received into their senses from their immediate stochastic environment and stored in their 

mind. As Shakespeare aptly put it for poets (and mathematicians), 

 

“And as imagination bodies forth 

The forms of things unknown, the poet’s pen 

Turns them to shapes, and gives to airy nothing 

A local habitation and a name.” 

   “A Midsummer Night’s Dream,” 

   Act V, Scene I. 

 

In general, human knowledge-gathering systems possess a unique and essential 

memory capability that enables them to optimize their personal and social decision-

making behavior. The research of the late Hans Reichenbach (1999) in his book “The 

Direction of Time” has shown that memory (of some kind) is an essential element, 
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forcing time to always seem to flow in an increasing direction. This human memory is 

the second necessary element that enables the human decision-maker, to reduce his 

relative entropy and optimize his decisions. The mathematical model, described herein, is 

a embodiment of how these key dependences, decision-making and memory, enable the 

human knowledge-gathering process and produce its decreasing effect on his relative 

entropy. 

It takes nerve for an economist and computer scientist to leap into a world 

dominated by cognitive scientists and philosophers, and worse yet, propose yet another 

mathematical model for man’s capability to accumulate knowledge. My previous 

research in mathematical statistics, information theory and economic decision processes 

forced me pass down this dangerous path. It all started when Claude Shannon (1948) 

developed an original idea. In his paper, he introduced a rational measure for information 

based on the needs of the communication engineers at Bell Telephone Labs and thus 

launched the formal ideas we now fondly call “Information Theory.”  In his original 

concept, Shannon considered all information-packets had equal value. Since his primary 

focus was on the efficiency of the transmission of electronic information over a 

bandwidth limited communications channel, he was not directly concerned with the value 

of that information. In Shannon’s original view the value of a transmitted information-

packet was always in the eyes of the sender or receiver - not the communications service 

provider. Leon Brillouin (1963) pointed out that the value of Shannon’s measure of 

information is dependent on the potential use of that information by a decision-maker.  

Shannon and his associates soon rectified that omission in their later papers. J. Marshack 

(1960) advanced the classical theory of economics by his consideration the role of 

information as a new kind of “factor” in the production function and was soon followed 

by several other similar papers. Recently, Kenneth Arrow (1996) extended Shannon’s 

cost of information theory to a remarkable level. Arrow has shown how information 

theory, applied to modern economic theory, causes the generation of strong increasing 

economic returns to scale in production that dominates today’s new economic growth in 

this “information” age. Vittorio Somenzi (1965) has extended the aspects of entropy 

found in the information theory to the “Mind-Body” philosophic controversy. Finally, 

specially for the non-mathematical philosopher, Fred Dretske (1999) has recently drawn 
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together, in great detail, all of these knowledge and information fragments . These new 

economic and philosophic applications of information theory provide the jumping off 

point for this paper. 

In the early 1900’s Henri Poincaré gave a lecture before the Societe de 

Psychologie in Paris on Discovery in Mathematics. This lecture forms chapter III of his 

book, “Science and Method.” Poincaré (1953) , agreeing with Helmholtz, felt that the 

phenomenon of knowledge gathering was composed of three distinct phases. After 

attending Poincaré’s famous lecture, Jacques Hadamand (1954) pulled all this together in 

his book, ”The Psychology of Invention in the Mathematical Field.” He named the three 

distinct phases as, “Preparation, Incubation and Illumination.” I will paraphrase these 

three phase names in less formal terms: 

1. Research it! 

2. Sleep on it! 

3. Aha! 

Poincaré explained his view of these phases as follows: 

 

“One is at once struck by these appearances of sudden illumination, obvious 

indications of a long course of previous unconscious work. The part played by 

this unconscious work in mathematical discovery seems to me indisputable, and 

we shall find traces of it in other cases where it is less evident. Often when a man 

is working at a difficult question, he accomplishes nothing the first time he sets to 

work. Then he takes more of less of a rest, and then sits down again at his table. 

During the first half hour he still finds nothing, and then all at once the decisive 

idea presents itself to his mind.”  

 

Hadamand’s concept of “Incubation,” or as I call it, the “Sleep on it” phase, is a 

familiar experience for most scientists as they “invent” new concepts. The “Aha” phase 

always seems to appear later, almost any time after, the “Incubation” phase or as I call it 

the “Sleep on it” phase. I will postulate that each stage in my knowledge-gathering 

process passes through each of these three phases. Poincaré goes further and borrows 
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Epicurus’s interesting “idea hooks” argument and gathers a call for wide diversity in 

research. He says: 

 

“Among the combinations [of ideas] we choose, the most fruitful are often those 

which are formed of elements borrowed from widely separated domains.” 

  

I might also add to Poincaré’s concept of Epicurean “idea hooks,” a reference to 

Leibnitz’s concept of “monadology” where mysterious supernatural “beings” transmit 

ideas to humans! More realistically, a fascinating recent study on the “Sleep On It” phase, 

by Matthew Walker (2000), “Sleep to Remember,” describes in detail the beneficial 

effect of multiple cycles of REM (Rapid Eye Movement) sleep on developing human 

memory. Many psychometric and neuropsychological studies are reported in the 

literature about the importance of REM sleep on the creation of ideas. It has been said 

that Einstein, when asked how much sleep he needed to create physical theory, impishly 

replied – at least ten hours a night!     

Now, I must take a broader view of information, not only the value of information 

but also the roll of information as a generator of knowledge. Consider a TV viewer 

watching a news broadcast, a broad range of Shannon information-packets assail him, 

some of them are intensely important to him, others are possibly interesting and still 

others are virtuously useless. From experience we know that the TV watcher is able to 

classify the information-packets he receives, by some measure of value, and thus make 

decisions based on these value judgments.  

I propose to define a measure, a “control” vector, that I will call the decision-

maker’s information-relevance vector. Each component of this vector is the relevance 

decision-maker attaches to each of the types of information-packets he receives from his 

environment. Using this information-relevance concept, consider the evaluation of the ith 

information increment the decision-maker receives during the tth stage in a discrete 

sequential decision process. We have for each component  

, ,i t i t i
k r= y ,         (1.1) 

        

where 
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,i t
r  is the ith component of the decision-maker’s information-relevance vector 

assigned to the ith kind of information-packet during stage t of his discrete 

sequential decision process, 

i
y  is the ith component of an independent random valued vector that measures the 

Shannon information content of an information-packet for the ith kind of 

information, and 

,i t
k  is the ith component, also an independent random valued vector, and is a 

measure of the decision-maker’s relevant  information from the ith information-

packet, transmitted to him by the environment, during the tth stage of his 

sequential decision process. 

 

So how can the decision-maker assign an optimal value to each  for each 

information-packet from the i

,i t
r

th source during stage t?  Since the information–packets are 

components of a random vector, determined solely by the decision-maker’s environment, 

I propose that the decision-maker will base his optimal value of each , partly, on the 

maximization of the statistical expectation of the compounded rate-of-growth of 

knowledge from each of the i

,i t
r

th information-packet sources during each stage of the 

process. Because of this “rate-of-growth” evaluation, the statistical expected value of the 

compounded growth of knowledge for the process takes on a natural logarithmic form.  

Why “compounded” growth? Why a “logarithmic” function? The most familiar 

example of compounded rate-of-growth is in the conventional evaluation of an 

investment for a retirement fund. Suppose each year you reinvest the earned increment on 

your fund, so that the value of your fund will grow exponentially as time passes. So also 

can be viewed the decision-maker’s investment in his knowledge, since his knowledge is 

a kind of investment for his life. One could say, “the more you know today, the more you 

are capable of knowing tomorrow;” or “what the decision-maker will know tomorrow is 

what you know today plus the contribution of any new relevant information you have 

gained today.” In other words, a student must know about numbers to know about 

algebra and he must know about algebra to know about the calculus, and so on. 



Knowledge-Gathering 9/11/06 3:37 PM   8 

Let’s take a look at a very simple discrete deterministic compounded sequential 

knowledge-gathering process for the compounded rate-of-growth of knowledge, KT, 

given a constant increment of a decision-maker’s relevant information during each stage 

of the process. We form the following deterministic discrete sequential process 

( )1 0 1K K k= + , 

( )2 1 1K K k= + , 

            iii  

( )1 1
T T

K K k−= + . 

By repeated substitution, this leads to a more concise result 

( )0 1
T

T
K K k= + , 

taking the natural logarithm of this we get 

( ) (0

0

1
ln ln 1T

K
g K k

T K
= +� )

)

,       (1.2) 

      

where  

( 0g K  is defined as the compounded rate-of-growth of knowledge for a T stage 

process. 

 

The Decision-Maker’s “Research It” Phase Begins  

 

Now we enter into the decision-maker’s “Research it” phase and postulate a 

mathematical model for the decision-maker’s compounded rate of growth of knowledge 

by considering a simple single stage process at stage t  

( )1
, ,

1

ln ln 1
M

t
i t i t i

it

K
n r

K

+

=

= +∑ y M 1,2,...i =      (1.3) 

where      

M is the number of components in the random valued environmental vector, that 

is, it is the size of the set of information-packet types the environment can 

transmit, 
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i is the index for the component or kind of information–packet,     th
i

t is the index signifying the  stage of the process, and th
t

,i t
n  is the frequency (the number of ) transmissions for the ith kind of information-

packet during stage t of the process. 

Remembering that the 
i

y ’s are components of an independently chosen random vector 

and since that forces  to also be a random vector, it is customary to view this process 

analytically by considering the statistical expectation of the random process. So, we have 

for one typical stage of the decision-maker’s knowledge process at time t 

1t
K +

( ) (1
, ,

1

ln ln 1
M

t
i t i t i

it

K
E E n )r

K

+

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ 1,2,...My , for i = .   (1.4)

 Now it is realistic to assume that the probability distribution for the environment’s 

random value vector generator to be chosen from a multinomial beta distribution. 

Therefore, in this case, the statistical expectation of  is given by ,i t
n

( ),i t iE n t p=          (1.5) 

where we also insist on the usual probability space conditions,  

  
i

p
1

1 and 1
M

i

i

p
=

≤ =∑ , ,      (1.6)  1, 2,...i = M

 and we also assume that this random process is quasi-ergodic – that is the
i

p ’s 

will remain constant during the duration of the process.  

So in this case, it can be shown that the rate-of-growth for our knowledge process 

at stage t is given by 

( ),
11

1
ln ln 1

M
t

t i i t i

it

K
g E p r y

t K =−

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑� 1,2,...i M, for = ,   (1.7) 

where   

the “
1

t
” signifies that this is for just one stage of a process after already 

experiencing t stages, 

the information-relevance vector is subject to the additional special conditions 
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M

,
1

0 and r 1i t

i

r
=

≥ ∑ i,t = M, for stage t for 1, 2,...i = ,    (1.8) 

and each of the environment’s information-packages is assigned to a probability 

of 
i

p  during stage t.  

At this point equation (1.7) and the constraints of  (1.6) and (1.8) completes the decision-

maker’s “Research it” phase for a single current stage. th
t

   

The Decision-maker’s “Sleep-On-It” Phase Begins 
 

The optimal expected compounded rate-of-growth of knowledge for a single stage 

t of a T stage process can now be evaluated. This operation begins our decision-maker’s 

“Sleep on it” phase, where he mulls over during his “REM” sleep or in his subconscious, 

the information-packets he has received for t stages during his “Research it” phase and 

decides what to do about it. In the “Sleep on it” phase, I postulate that the decision-maker 

constructs within his mind an ordered list for each component of the information-

relevance vector, the set of ’s, that tends to maximize the stage’s rate of growth. 

Because of constraints, in (1.6) and (1.8), on the 

,i t
r

i
p ’s and the ’s , finding the optimal 

values for the decision-maker’s, the *’s, at stage t is a non-linear mathematical 

optimization procedure. The simple “marginal value” procedure for optimizing equation 

(1.7), one that is based only on the determination of the first and second derivatives of 

equation (1.7), will not assure that the special constraints on the

,i t
r

,i t
r

i
p ’s and the ’s will 

hold.  

,i t
r

Also negative components of the decision-maker’s information-relevance vector 

are somewhat questionable. Since I have assumed that zero relevance is already an 

automatic rejection of an information packet, as far as an actual contribution to the 

decision-maker’s optimal rate-of-growth of knowledge, for these rejected packets, 

nothing really happens!  On the other hand, a negative , could be considered some 

form of conscious “unknowing” or “forgetting” for that kind of information-packet. This 

expansion of the model seems overly complex and, at this point, and I will not consider it 

in this paper.  

,i t
r
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What is needed now is a prototype for a non-linear optimization technique that 

will enable a decision-maker to create this intuitive list of optimal relevant values for the 

’s for each kind of information-packet. This should be a mathematical procedure that 

emulates what could possibly go on within the decision-maker’s subconscious mind 

while he decides to accept or reject each information-packet delivered by his 

environment. There is such a non-linear optimization technique for determining a list of 

constrained optimal ’s that could be used to generate this list of relevant components 

under the non-linear constraints. This optimization technique is an expanded version of 

the classical method of Lagrange, coupled with special conditions that handle the non-

linear constraints as set forth by the Kuhn-Tucker (1951) theorem. Other more 

“computer” oriented methods such as the “Branch and Bound” procedure, Wagner 

(1969), could also be used, but I will employ the typical Kuhn-Tucker procedure as 

outlined here in the Appendix. This method divides the indexes of the 

,i t
r

,i t
r

i
y ’s, into two 

subsets, , that is of size 1,2, ,i
+= … M M

+ , for the first set and ( )1 , ,i M= + …  for the 

second set that is of size 0
M . It is assumed that the first subset of the 

i
y ’s, will meet the 

special constraints for  and the second subset of ,i t
r M +∈

i
y ’s will violates the special 

constraints for .  0
,i t

r M∈

But wait, in reducing the components of the set of i’s we have altered the 

probability space upon which the 
i

p ’s were originally defined. In other words, it is 

possible that . Therefore, we must renormalize the original probability space to 

that represented only by the set of 

1

1
M

j

j

p

+

=

<∑

1,2, ,i M
+= …  where M M

+ ≤ .  This can be done with 

the relations 

1

i
i M

j

j

p
q

p

+

=

=

∑
,         (1.9) 

1 
i

q ≤ , and . 
1

1
M

i

i

q

+

=

=∑
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The set { }iq now reflects the proper probability space over just the M
+ subset assigned to 

the information-packets that the decision-maker has determined that are relevant for the 

optimization of 
t

g . Assuming that this procedure is now employed, we get the equation 

for determining the optimal relevant ’s ,i t
r

( )
, ,

,
11

* max ln max ln 1
i t i t

M
t

t i i t iy
r r

it

K
g E E q r

K

+

=−

⎧ ⎫
⎡ ⎤= +⎨ ⎬ ⎣ ⎦

⎩ ⎭
∑� 1,2, , += ….  i M  . (1.10) 

By reference to the Appendix, and using the Kuhn-Tucker the non-linear optimization 

method, we can find the *’s that optimize (1.10) by ,i t
r

,
1

1 1
* 1

M

i t i

j j i

r q
y y

+

=

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ , 1, 2, ,i M

+= … ,     (1.11) 

where 

 M M
+ ∈  is the sub-set of the decision-maker’s relevant information-packets.  

 

The Decision-Maker Adapts to his Environment   

 

We are still not done with the decision-maker’s “Sleep on it” phase. There is a 

serious human problem with equations (1.9), (1.10) and (1.11). The decision-maker really 

does not know the values of the 
i

p ’s and thus also does not know the ’s! What the 

decision-maker does know, is the memory resulting from his history of the past frequency 

of occurrences of the types of information-packets previously transmitted by the 

environment, in other words, the frequency of occurrence of the 

i
q

i
y ’s. I now assume that 

the decision-maker will adapt to his stochastic environment by using this mental history 

to estimate the value if the unknown ’s and thereby compute the optimal ’s  in an 

equation similar to (1.11).  

,i t
q ,i t

r

Note, that now the estimated or subjective values of the probabilities are 

subscripted with an addition of a  “t” because these estimated values of the ’s will be   

developed by adapting over time to the history of the environment over a number of 

stages, say for example all t stages of a T stage process. An appropriate statistical method 

,i t
q
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to enable the decision-maker to adapt to the environment is to assume that the unknown 

probabilities are defined by the multinomial beta distribution. Given this assumption, the 

decision-maker can determine or estimate the subjective ’s (the hat “^” indicates that 

the are the subjective probabilities) by the Bayes estimation procedure, Good(1965). 

The actual ’s, of course, are known only to the “deus ex machina” (the random 

environment). There are many other statistical procedures that closely resemble this 

possible mental or subjective process, but I propose the method of Bayes, for several 

reasons. This is an intuitive procedure that would be natural for a human decision-maker 

to mentally or subjectively undertake. The Bayes estimator also has the useful property 

for being statistically consistent and sufficient.  

,
ˆ

i t
q

,
ˆ

i t
q

i
q

This is one major reason to consider the Bayes estimator as rational procedure 

because with it the estimation can begin as a complete guess on the part of the decision-

maker and still evolve over time into an approximation of the actual probabilities. 

Suppose initially the decision-maker has no history of any past occurrences of the 
i

y ’s, 

that is, he is at the initial stage of the process. Carnap (1950) has suggested an initial (a 

priori) equation, as a “hunch” or “guess,” that can “start” the decision-makers learning 

experience to estimate the ’s. Using his method we have then for the first stage of the 

process, where the decision-maker guesses the values for the subjective probabilities for 

the occurrence of each kind of information-packet 

,
ˆ

i t
q

,0

1

ˆ i
i M

j

j

q
α

α
+

=

=

∑
 , , 1, 2, ,i j M

+= … ,      (1.12) 

where the 
i

α ’s are Carnap’s “logical width” parameters and represent the 

decision-makers initial guesses for the ’s. ,
ˆ

i t
q

Now if the decision-maker has progressed as far as stage t, he should possesses a history 

of the actual environmental events over his t stages, he would have for the subjective 

estimate of the probabilities  
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 ,

,

1

ˆ i t i

i t M

j

i

n
q

t

α

α
+

=

+
=

+∑
,    , 1, 2, ,i j M

+= … ,       (1.13) 

where the ’s are the decision-maker’s observations of the frequency of 

occurrence for each of the random 

,i t
n

i
y ’s, up to and including the tth stage. 

One particular set of values for Carnap’s parameters for an initial a priori estimate 

of the probabilities has important properties. If the decision-maker has no guess for the 

initial priorities it would be appropriate to assume that initially the probability for every 

information-packet is as likely as any other. In other words the set { }iα has one identical 

value for 
i

α in (1.12) and (1.13) for all 1, 2,...,i M
+= . In this case, such a decision-maker 

will be suffering from total ignorance. In total ignorance the a priori value of the 

probabilities would be simply be 

,0

1
ˆ

iq
M += , for 1, 2,...,i M

+= .       (1.14) 

We will assume for simplicity that the decision-maker will start in total ignorance 

of these initial probabilities. Note that after a few stages of the process and  

observations for the information-packets have occurred, the ’s are likely to deviate 

from this equal likely condition. On the first few stages of this adaptive, stochastic 

knowledge-gathering process, when the decision-maker still has few values for the ’s, 

the decision-maker may exhibit wild instability in his estimates for the ’s. Fortunately, 

since the Bayes estimator is known to be both statistically consistent and sufficient, the 

estimator is one that will “settle down” and even have an “end,” that is, if the estimation 

of the ’s continues forever it will ultimately converge, in probability, to the true ’s. 

Thus we can say 

,i t
n

,
ˆ

i t
q

,i t
n

,
ˆ

i t
q

,
ˆ

i t
q

i
q

( ),
t

ˆ plim   for 1, 2, ,
i i t

q q i M +

→∞
= = " . 

We can now write the adaptive version of equations (1.10) and (1.11) that reflect 

the decision-maker’s use of subjective probabilities to generate the optimal adaptive 
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relevance factors, the ’s, by using the decision-maker’s known subjective probabilities. 

We have 

,î t
r

( )
, ,

, ,
11

1ˆ ˆ ˆ* max ln max ln 1
i t i t

M
t

t
r r

it

K
g E E q r

t K

+

=−

⎧ ⎫⎡ ⎤⎪ ⎪
i t i t iy⎡ ⎤= +⎨ ⎬⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

∑� ,     (1.15) 

and 

, ,
1

1
ˆ ˆ* 1

M

i t i t

j j i

r q
1

y y

+

=

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ,   for , 1, 2, ,i j M

+= … ,    (1.16)  

also 

,

,

,
1

ˆ
ˆ

ˆ

i t

i t M

i j

j

p
q

p

+

=

=

∑
,  .       (1.17)

Remember that

,i j M
+∈

,
1

ˆ
M

i j

j

p

+

=
∑  may not be equal to 1, since M M

+ ≤ .  

By substitution of (1.16) into (1.15) we can determine the optimal rate-of-growth 

of knowledge for this single tth stage. This substitution will bring up several important 

relationships with respect to the entropy of the environmental process, but first we must 

consider the whole sequential process in detail. So, with the completion of the equations 

(1.15) (1.16) and (1.17) above we have come to the end of the “Sleep on it” phase for a 

one stage, the tth , of a discrete, sequential, adaptive, stochastic knowledge-gathering 

process, we now are ready to turn to the “Aha” phase, where we finalize the whole 

sequence of T stages, where . 1, 2, ,t T= …

 

The Decision-Maker’s “Aha!” Phase Begins 

  

We have seen above that the estimates of the subjective probabilities requires 

some kind of history of the decision-maker’s observations, so we must extend the concept 

developed above to an entire time sequence, where for each stage, t, the decision-maker’s 

relevant sequential event history can be generated.   

First, it is important that the basic mathematical structure for multistage sequential 

processes of this type be well understood before we continue and apply this technique to 
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the knowledge-gathering process. A sequential discrete process is composed of a series of 

linked, causally ordered (irreversible) stages. Each stage begins and ends with one or 

more similar values, or vectors, called the input state and produces the output state. 

During the execution of a stage, one or more events occur that transform the input state 

into the output state. The input state is transformed into the output state by the events of 

the current stage. In our stochastic version of such a process, one or more of the state 

input vectors are independently randomly distributed vectors. In these cases, the stage’s 

event transformation involves taking the statistical expectation of the random state 

variables. This use of the expectation function makes it possible to analyze, 

mathematically, stochastic processes.   

The backbone of many of these discrete sequential processes is based on 

Markov’s concept, see Doob (1952), for stage-by-stage transformations of expectation 

values of these random state variables. In general, for a Markovian discrete sequential 

process, after any number of stages, say t, we insist that the value of the remaining (T-t) 

stages will depend only on the values of the state variables at the end of the tth stage.  

Thus, in a Markovian process, all the historical content that the decision-maker has 

gathered during the process up to the tth stage is transformed and carried forward to the 

next stage as the current output state vector. This means that for a Markovian 

process we can be assured that the decision-maker will not have lost any relevant history 

by using the previous state vector at stage t, that might be required for the decision-maker 

in the following stages. 

( 1)th
t +

It is important to be clear that, because of the assumed Markov properties, the 

decision-maker does not need to remember the entire sequence of the history of his past 

events to determine his new, current subjective probabilities. He needs only to remember 

his last subjective probabilities to re-compute his newest subjective probabilities from the 

previous values by transforming the former Bayes estimates into the new Bayes estimates 

using the new frequency data he obtains due to the occurrence of the new environmental 

events.  An objection voiced by many neurological scientists regarding the massive 

number of neurons required for the human brain to store complete historical records is 

avoided, at least in this mathematical model, thanks to the recursive nature of the Bayes 

estimation procedure and the Markovian property for sequential processes.  
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With the use of the details about sequential dynamic processes in the Appendix 

we see how the decision-maker can maximize an entire sequential knowledge-gathering 

process, that consists of T stages. This extension is not just a simple substitution of T and 

T-1 for the single stage t and t-1 equations. Fortunately, maximizing the first stage of the 

sequential process is relatively easy, since the decision-maker has, by definition, no 

previous history on which to base estimates of the subjective probabilities (and therefore 

he relies on his Carnap guess for the initial subjective probabilities) and only his initial 

conditions, his initial state of knowledge, . As we saw in equations (1.15) and (1.16), 

the decision-maker has sufficient information to determination of the optimal values of 

his relevancy vector for the first stage of the T stage process, but just how does the 

decision-maker determine this optimal values for all the rest of the stages of the process?  

0K

Writing the equation for an entire T stage process in an explicit format we get, 

( ) 1 2
0

1 2 1

1 ˆˆ *  max ln ln ln lnT T

T T

K K K K
g K E

T K K K

−

− −

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
" 1

0K
+ .  (1.18) 

Because of the additive property of statistical expectations we can rewrite (1.18) as,   

( )0

1 2

1 2 1

ˆ *

1 ˆ ˆ ˆ ˆmax ln max ln  max ln max lnT T

T T

g K

K K K
E E E E

T K K K

−

− −

=

⎡ ⎤
+ + + +⎢ ⎥

⎣ ⎦
" 1

0

K

K

. (1.19)  

 
Because each of the above terms is based on the immediately previous value of 

the rate-of-growth of knowledge and the previous values of the subjective probabilities 

for the information-packets, except the first term that is based on the initial conditions  

and the initial guess of the subjective probabilities (that the decision-maker already 

knows) we can maximize each of these terms with respect to the stages’s information-

relevance vector, one at a time, recursively. We have here a multistage Markov 

transformation equation where each element has an unknown input to produce an 

unknown output, except for the first stage, that the decision-maker already knows. We 

can formulate this function as a “dynamic program” as introduced by Richard Bellman. 

We define the Bellman functional relationship for the one, first stage process, given, , 

and Carnap’s, . We have 

0K

0K

,0
ˆ

i
q



Knowledge-Gathering 9/11/06 3:37 PM   18 

 

( )
{ } { }

( )
,0 ,0

1 0 0 1 ,0 ,0 0
1

ˆ ˆ ˆmax ln max ln 1 ln
i i

M

i i i
r r

i

f K E K q r y

+

=

= +∑� K+    (1.20) 

 and 

,0

1

ˆ i
i M

i

i

q
α

α
+

=

=

∑
 where the 

i
α ’s are Carnap’s “logical width”, that is, the decision-

maker’s initial guesses of the estimators for the initial subjective probabilities. 

Continuing on the same Bellman functional scheme, we have for the second and 

following stages  

( )
{ }

( ) (
.1

2 0 ,1 ,1 1 0
1

ˆ ˆmax ln 1
i

M

i i i
r

i

)ˆf K q r y f

+

=

+ +∑� K

)0
ˆ
T

        (1.21) 

    i i i

( )
{ }

( ) (
, 1

0 , 1 , 1 1
1

ˆ ˆmax ln 1
i T

M

T i T i T i
r

i

f K q r y f

+

−
− − −

=

+ +∑� K     (1.22) 

Following Bellman’s approach to the solution of dynamic processes, equation (1.22) 

encloses the entire sequence of terms with in the brackets of equation (1.19) to one 

functional equation. Returning to the objective of the paper, the maximum compounded 

rate-of-return for knowledge-gathering, we form the final result 

 ( ) ( )0

1 ˆˆ *T Tg K f K
T
⎡= ⎣ 0

⎤
⎦        (1.23) 

This terse functional is best analyzed using computer simulation. 

 

Implications of the Results 

 

Referring back to equations (1.15) and (1.16), it is appropriate to actually 

substitute the decision maker’s optimal relevance vector from (1.16) into (1.15). For 

example, we can maximize a typical tth stage of the compounded rate-of-growth for 

knowledge-gathering and obtain some interesting single stage results. After considerable 

algebra, we get the optimal functional for a typical, tth stage as  
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 ( ) ( ) ( ) (1 0 0

1 1ˆ ˆ ˆ* ln lnt t t t t t t )f K H H E Y E f K
M

+ +

⎧ ⎫⎡ ⎤⎪ ⎪= − + + + +⎨ ⎬⎢ ⎥Φ⎪ ⎪⎣ ⎦⎩ ⎭
    (1.24) 

 
where  
 

( 0t )f K  is the optimal value (already determined by the decision-maker) from the 

previous t-1 stages of the process,  

( ) ,
1

ˆ ˆln ln
M

t t i t

i

E Y q y

+

=

=∑ i

,i tq

 , 

,
1

ˆ ˆ ˆln
M

t i t

i

H q

+

=

−∑� (the decision-maker’s subjective entropy for the environment 

at the current stage), and  since ,
1

ˆ 1
M

i t

i

q

+

=

=∑ ,  

,
1

1
ˆ* ln ln

M

t i t

i

H q
M

+

M
+

+
=

= −∑� (this is the maximum subjective entropy for the 

environmental process at  the current stage). 
 

Furthermore, Φ  is the geometric mean for all the information-packets in set { }tY  

 , where +for i M∈ Φ  is defined by, 

1

1M

j i

M

y

+

+

=

Φ

∑
� . 

  

The notation,  always means that we are taking the expectation with respect to the 

decision-maker’s set of current subjective probabilities, 

ˆ
t

E

{ },
ˆ

i tq , at stage t.  

So then what is the entropy,  , mean?  According to Shannon,  ˆ
t

H

 
“H is a measure of how much “choice” is involved in the selection of the event or how 

uncertain we are of the outcome.”  

 

In other words,  is the decision-maker’s subjective measure of the uncertainty about 

the underlying stochastic environmental information-packet generation process at stage t . 

Now the maximum of  is , and it occurs when all the possible kinds information-

packets at the current stage, appear to be equal likely, as viewed by the decision-maker, 

thus there is a maximum degree of uncertainty for the decision-maker’s choice. So he is 

ˆ
t

H

t
H *

t
H
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indifferent and may chooses to receive all or none of them. In other words, the decision-

maker would be in the state of total ignorance! On the other hand, if any one information-

packet is for certain, that is, its probability is unity, the rest must be zero (or not 

transmitted) so there is no uncertainty about the optimal relevance-vector for the certain 

information-packet, and therefore  is zero. (Note: 1 ln 1 is taken as 0). In this case the 

decision-maker just accepts only the single relevant information-packet and passes on to 

the next stage.  

ˆ
t

H

What then is the quantity ( * – )?  It is often considered as a measure of 

marginal or relative uncertainty. We note that Shannon has defined  

t
H ˆ

t
H

*C H H−�          (1.25)  

as a system’s “information channel capacity.” The information capacity is zero if the 

probabilities defining H (that are generating the randomness) are equal likely. On the 

other hand the information capacity is unity if any one of these probabilities is one and 

therefore H is zero.  

On the other hand, Heinz Von Foerster (1967) has suggested a similar function 

that he has called a measure of “order” of a stochastic process. Von Foerster’s order 

function is given as  

 

*
1

* *

H H H

H H

−
Ω = −� .        (1.26) 

 

A random process is in a completely disorganized state is when *H H= , the  condition 

of total ignorance, where anything and everything is possible, that is, all probabilities are 

independent and equal; thus . On the other hand, if the process is deterministic and 

thus in perfect order,  is zero and  

0Ω =

H 1Ω = . 

Now consider a sequential decision process for knowledge-gathering process, 

where the decision-maker estimates the subjective probabilities based on his experiencing 

continuing reception of information-packets as he goes along during each stage of the 

transformational process.  We note that there is an actual entropy for the knowledge-

gathering process that, by our definition, is independently generated by the random 

process transmitting information-packets to the decision-maker.  We have assumed that 
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the decision-maker has no control over this environmental process and, therefore, has no 

control over the magnitude of the actual H of the process.  

Now consider our sequential decision-making process for knowledge-gathering 

where the decision-maker estimates the subjective probabilities based on his reception of 

random information-packets during each stage. In the “flavor” of Shannon’s definition of 

channel capacity, I propose a subjective measure of relative entropy or uncertainty for an 

adaptive sequential decision process given by 

ˆ ˆ| | ,          (1.27) 
t t

H Hθ −�

ipwhere the actual entropy of the process, , is fixed and based on 

the probabilities of the entire set of 

1

ln
M

i

i

H p
=

= −∑

{ }iy , 1, 2,...,i M= . If the actual entropy of the 

environmental process is H, no matter what the decision-maker’s initial estimate of his 

subjective, , might be, then even though he might start totally ignorant, his relative 

entropy would fall over time. We have 

ˆ
t

H

H , and ,  ˆ 0
t

t
θ

→∞
→ =ˆ

t
t

H
→∞
→

and because the Bayes estimation procedure is consistent, the decision-maker’s relative 

entropy for the knowledge-gathering process, in probability, would tend toward zero.  

 

Some Concluding Remarks 

 

In this hypothetical model, the key assumption made is the ability of a human 

decision-maker to draw out of his memory of the past events and adapt to the most 

rewarding information-packets available to him, while rejecting all the others, thereby, 

enabling him to optimize his compounded rate-of-growth of knowledge. At the risk of 

over simplifying an impossibly difficult human process, I hypothesize that: 

 

Intelligent decision-makers attempt to maximize their subjective expectation of 

their compounded rate-of- growth of knowledge by partitioning, at each stage, a set of 

received information-packets into two sets; one of acceptable, and another of 
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unacceptable packets. The decision-maker does this selection by mentally determining an 

optimal relevancy-vector, and that provides a means for him to divide the information-

packets into these two subsets. Acting on these relevant information-packets the decision-

maker chooses an optimal set that, in probability, decreases his relative entropy during 

his sequence of experiential events as he maximizes his expected compounded-rate-of 

growth of knowledge over the duration of his activities.      

  

Many simplifying technical assumptions must be made to make this hypothesis 

amenable to mathematical analysis. Some of these assumptions are: 

1. The process can be decomposed into a sequence of discrete causal stages, 

each of which receives the a posteriori state from the previous stage. During 

each stage a decision-maker takes an action that generates the a priori state 

for the following stage.   

2. During this transformation the decision-maker optimizes his statistical 

expected compounded rate-of-growth of knowledge at each stage of the 

process. This assumption is based on the simple concept, “The more you 

know today; the more you are capable of knowing tomorrow.” 

3. The environment for this process is characterized by a hidden underlying 

stochastic mechanism that produces a discrete sequence of mutually 

independent events, the information-packets transmitted to the decision-maker 

and generated by a given quasi-stationary statistical process of the 

multinomial beta type. 

4. The events produced by the environment at each stage of the discrete 

sequential process for each type of information-packet are the transmission of 

Shannon information-packets that are made available to the senses of the 

decision-maker. At each stage of this process, the environmental stochastic 

process exclusively controls the type of this information-packet transmitted 

and the actual probability of this transmission is unknown to the decision-

maker.   

5. The decision-maker can only observe the stochastic events produced by the 

environment, but not the underling probability generating parameters. This 
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observation of events is augmented by the decision-maker’s memory and that 

is used to construct a Bayes estimate at each stage for the subjective 

probability for each relevant event, given the arbitrary a priori distribution 

function of the multinomial beta type. The Bayes estimator, is statistically 

sufficient and consistent, and is used by the decision-maker to compute a 

relevance-vector for the information-packet types, at each stage in the process.  

6. The decision-maker, during a stage of the process, is capable of determining a 

set of optimal, relevant information-packets that maximizes the subjective 

value of his compounded rate-of-growth of knowledge. 

7. In the process of knowledge-gathering, the statistical expectation of the 

stochastic vectors in the process must be “Markovian,” that is, the current 

statistical expectation can be estimated solely by the single immediately 

proceeding probability estimates and the environmental events at the current 

stage. This means that the immediately proceeding statistical expectation 

must, in itself, contain a summation of all the estimation history of all the 

previous statistical expectations. This assumption makes the decision-making 

process an adaptive process that can be optimized stage-by-stage recursively.  

8. Because Bayesian probability estimators are consistent, the subjective 

compounded rate-of- growth of knowledge approaches the theoretical rate-of-

growth, in probability, as the number of stages in the process approaches 

infinity. Thus an intelligent decision-maker gets more intelligent as the 

number of observed events increase, and the decision-maker’s relative 

entropy, as defined in (1.27) above decreases as he adapts to his environment 

over the course of the process.  

 

None of these assumptions are, for the most part, restrictive for a real knowledge-

gathering process; but, as a final word of advice from the Buddha, 

 

Believe nothing, no matter where you read it, 

 or who said it, 

no matter if I have said it, 
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 unless it agrees with your own reason and 

your own common sense. 

 

Suggestions for Further Research 
 
 

Testing the hypothesis presented in this paper is required to justify the 

assumptions made herein. The art of psychometric testing has entered a new 

technological phase. With modern personal computer technology and specialized 

computer game development software the psychometric researcher can create realistic 

decision-making situations with complex, but controlled, environments. Built-in, behind 

the scenes, random event generators, with probability driving functions known only to the 

experimenter, can easily be programmed. For example, presenting students with realistic 

decision-making computer games, coupled with behind the scenes data collection 

software can accumulation their reaction times and performance measures. Properly 

designed by the careful experimenters, these techniques can verify hypotheses for human 

behavior such as presented in this paper.     

From the neuropsychological point of view, reverse memory searching, as the 

decision-maker relies on his memory to adapt and form estimates of subjective 

probabilities is in agreement with recent psychometric experiments with rats conducted 

by Davis J. Foster and Matthew A Wilson (2006) at MIT.21 These researchers were able 

to actually observe the “replay” of the rat’s experienced memories by measuring the 

activity of the neurons in the rat’s hippocampus region of the brain. That is the location 

where current memory events are formed. Dr. Wilson seems to believes that the 

hippocampus region replays, in reverse, the rat’s previous memorized events, then 

another part of the rat’s brain, perhaps the prefrontal cortex, provides reward signals that 

enable a decision-function to determine which memory events are to be retained and 

which are to be discarded to generate an advantageous memory sequence for the rat.  

 

APPENDIX 
  

The Theory of Optimal Discrete Sequential Decision Processes 
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The study of dynamic processes as a sequence of stages linked with inputs (a 

priori) states and output (a posteriori) states where a sequence of transformation 

equations describing dynamic action for each stage was pioneered by H. Poincaré and 

extensively studied by G. D. Birkhoff (1927).   This method is widely used with great 

success today, for example, in the mathematics of quantum physics. 

Suppose at the nth stage of a dynamic process, the a priori state is modified by a 

transformation function that is dependent on the action of a decision-maker during that 

stage and results in an a posteriori state for the stage. We write a typical transformation as 

( )1 , ,  1, 2,
n n n n

x T x d n+ = = " ,       (2.1) 

 here the variable  is the action of the decision-maker at stage n. We write 
n

d

     

The equations for N of these stages can be written as the sequence 

          

( )
( )

( )

( )

2 1 1 1

3 2 2 2

1 1 1

1 1 1

, ,

, ,

, ,

, ,

n n n n

N N N N

x T x d

x T x d

x T x d

x T x d

− − −

− − −

=

=

=

=

i i i

i i i

where 1x  is the initial condition for the process and is known. 

These N-1 equations can be collapsed into 

( )(((1 2 2 1 1 1,
N N N

x T T T T x d− −= iii )))

)

.      (2.2) 

Or, if the transformation functions are assumed to be identical in form for each stage, we 

have the special notation 

( 1 1,N

N
x T x d= .        (2.3) 

Now we choose a decision action set, { } , 1, 2, ,
n

d n N 1= −" , that achieves some 

particular result for the process, such as for the decision-maker to determine the set, { }d , 

that optimizes the process for each of the stages. Since the 1n
x + ’s are related to the 

n
x ’s 

through the transformation functions, (2.3), the decision-maker can maximize the entire 

system consisting of the variables, 1 2 1, , , , ,
n N

x x x x −" "  and . 1 2 1, , , , ,
n N

d d d d −" "
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In many cases, and this is one of them, the Markovian property holds, so we can 

maximize this kind of function, term by term, individually, for each of the x’s, with 

respect to the d’s. So we have 

{ }
( ) ( ) ( ) ( )1 1 2 2 1 1max , , , ,

n n N N
d

g x d g x d g x d g x d− −+ + + + +⎡ ⎤⎣ ⎦" " ,  (2.4) 

 where the transformation functions will be  

( )1 ,  for n = 2,3, , 1
n n n n

x T x d N+ = " −       (2.5) 

For the decision-maker’s maximization operation we define the functional, ( )1N
f x , and 

write  

   ( )
{ }

( ) ( ) ( )1 1 1 2 2 1max , , ,
n

N N
d

f x g x d g x d g x d− −+ + +⎡ ⎤⎣ ⎦� " 1N
, for .      (2.6) 1N ≥

Note that the first term of (2.6), ( )1 1,g x d , can be easily maximized with respect to  

because this term is a simple function of the initial condition 

1d

1x  that is already known. 

But maximization of the remaining terms is not so easy, for example the term  

requires the transformation of the 

( )2 2,g x d

( )
1

1 1max ,
d

g x d⎡ ⎤⎣ ⎦  to generate the optimal value of 2x  

before it can be further maximized with respect to . Likewise, for all the remaining 

terms, each requires the transformation of the previous term in the sequence before they 

can be maximized. This sequential dependency is the outgrowth of the Markovian nature 

of the process, to wit: 

2d

 

After any number of decisions, say k, we must assure that the effect of 

the remaining N-k stages of the decision process, upon the total 

return, to depend only upon the state of the system at the end of the 

kth decision. 

 

The Markovian nature of the above equation applies, therefore, let us 

rewrite (2.6) and introduce the following form of the functional, 

            ( ) ( ) ( ) ( )
1 2 3 1

1 1 1 2 2max max max max , , ,
N

N N N
d d d d

f x g x d g x d g x d
−

− −+ + + 1 1⎡ ⎤⎣ ⎦� " " .  (2.7) 
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This functional can be rewritten so as to identify and maximize the “easy” initial term 

separately 

           (2.8) ( ) ( ) ( ) ( ){ }
1 2 3 1

1 1 1 2 2 1max , max max max , ,
N

N N N
d d d d

f x g x d g x d g x d
−

− −
⎡ ⎤= + + +⎢ ⎥⎣ ⎦

" " 1

Note that the maximization of the remaining terms 

 ( ) ( ){ }
2 3 1

2 2 1 1max max max , ,  for 2
N

N N
d d d

g x d g x d N
−

− −+ + ≥" " , 

is not yet known and is identical to the maximizing an ( )1N −  sequence  starting with 2x . 

So we define an (N-1) functional starting with 2x  

( ) ( ) ( ){ }
2 3 1

1 2 2 2 1 1max max max , ,  for 2
N

N N N
d d d

f x g x d g x d N
−

− − −+ + ≥� " " . (2.9) 

Using (2.9), equation (2.7) can be simplified and we get 

      ( ) ( ) ( )
1

1 1 1 1max , ,N
d

f x g x d f x−= +⎡⎣ 2N ⎤⎦

)1

     (2.10) 

but from (2.3) we have 

(2 1,x T x d=           (2.11) 

and so, continuing this procedure for each stage, we have  

( ) ( ) ( )( )
1

1 1 1 1 1max , ,N N
d

f x g x d f T x d−⎡= +⎣ 1
⎤⎦ .     (2.12) 

Now we can write out for the whole sequence of N stage equations that can be 

evaluated one at a time from ( )1 1f x   to ( )2 2f x  to … ( )1 1N N
f x− − , and embed the 

transformation relations, (2.3), to get each equation in terms of the known initial 

condition, 1x  

( ) ( )(
1

1 1 1 1max , ,
d

f x g x d= )         

( ) ( ) ( )(
1

2 1 1 1 1 1max , ,
d

f x g x d f x= + )        

i i i  

 ( ) ( ) ( )
1

1 1 1 1 2 1max ,N
d

Nf x g x d f− = +⎡⎣ x− ⎤⎦ ,        

( ) ( ) ( )
1

1 1 1 1max , .N
d

f x g x d f x−= +⎡⎣ 1N ⎤⎦      (2.13) 

 
This final functional, (2.13), is our goal; the optimization for the entire N set of 

functional equations for the dynamic decision process. 
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Procedure for Optimizing a Single Stage at t 

 

Because of the Markovian properties of the sequential knowledge-gathering 

process, we have seen that each individual stage of the knowledge-gathering process can 

be maximized with respect to the decision-maker’s information relevance-vector, and the 

resulting state from the previous stages. The recursive relationship between the stages 

will enable the accumulation of each of these maximized single stages into a total process 

maximization, since each maximized stage result will become the initial state for the 

following stage. Now I can turn to the procedure to maximize a single stage in the 

sequential process, at stage t, with respect to the decision-maker’s determination of the 

relevance-vector for the environment’s information-packets. The procedure, herein, 

follows a similar procedure found in Murphy (1965). 

The subjective expectation, in general, of the compounded rate-of-growth at stage 

t, for one single stage is given by  

   (1 , ,
1

ˆln ln ln 1
M

t t t i t i

i

g E K K p r y−
=

= − = +∑ )t i

≥

,     (3.1)   

 where the decision-maker’s relevance factors are subject to the constraints 

, ,
1

1 and 0
tM

i t i t

i

r r
=

≤∑  for i =1,2,…, M ,      (3.2) 

and   is an initial condition determined from the previous stage.   1ln
t

K −

The partial derivative of 
t

g  (the rate of growth of knowledge during stage t) with 

respect to each of the  kinds of information-packets is given by th
i

( )
,

, ,

ˆ
,  for 1,2,...,

1

i t it

i t i t i

p yg
i

r r y

∂
= =

∂ +
M ,        (3.3) 

where the decision-maker’s subjective probabilities are subject to the constraints 

, ,
1

ˆ ˆ0 and 1 for 1, 2,...,
M

i t i t

i

p p i
=

≥ = =∑ M .     (3.4) 

We find that the maximization of  (3.1) with respect to the relevance-vector under the 

constraints (3.2) is a nonlinear optimization problem. Consequently, we can use the 
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method of Lagrange, but subjected to the Kuhn-Tucker special conditions. First, we split 

the set of indexes, M  into two subsets, the subset M
+  (the elements soon to be 

determined) contain the indexes that apply to the decision-maker’s relevance factors that 

are positive. The remainder of these indexes will be contained in the subset 0
M  and are 

for the relevance-vector components that are zero or negative. Kuhn-Tucker recognizes 

two special kinds of constraints: 

For the Kuhn-Tucker condition ,
1

* 1
M

i t

i

r
=

<∑  we have  

,

,

* 0 for t
i t

i t

g
r i

r

+∂
= ∈

∂
M        (3.5)  

and  

0
,

,

* 0 for t
i t

i t

g
r i

r

∂
≤ ∈

∂
M .       (3.6) 

For the Kuhn-Tucker condition ,
1

* 1
M

i t

i

r
=

=∑  (our case) we have         

, ,

,

* 0 for t
i t i t

i t

g
r

r
λ i M

+∂
− = ∈

∂
       (3.7) 

and 

0
, ,

,

* 0 for t
i t i t

i t

g
r

r
λ∂

− ≤ ∈
∂

i M ,       (3.8) 

where the ,i t
λ  is the Lagrangian for the  kind of information-packet during stage 

 and we note that it is to be a non-negative number. Also, in general 

th
i

th
t

,

,

, ,

ˆ
*  for 

1 *

i t it
i t

i t i t i

p yg
r

r r y

∂
=

∂ +
i M∈ .      (3.9) 

    

Conditions (3.5) and (3.6) are not useful, since it is assumed that the decision-

maker ignores the information-packets that are of zero or negative relevance and are not 

part of his optimality decisions. Therefore, we will limit the set of relevant information-

packets to only those that have positive relevance, so   
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,
1 1

*
M M

i t i t

i i

r r

+

= =

=∑ ∑ , *.        (3.10) 

Now, we can determine the index of the boundary between the subsets, M
+ and 0

M . The 

complete Lagrangian can be determined as the sum of the individual Lagrangians, (3.7) 

using (3.9) and (3.10) for each relevant index in the complete set, i M∈ . So  

, ,
1 1

,
1

,
1 1 1, ,

ˆ ˆ

1 1
1

M M

i t i tM
i i

t i t M M M
i

i t

i i ii t i t

p p

r
y y

λ λ

+ +

+ + +
= =

=

= = =

= = =
+ +

∑ ∑
∑

∑ ∑ ∑
.     (3.11) 

Substituting this value for 
t

λ  into (3.7) into (3.8) we find that    

,

,
1

,
1

ˆ 1 1
* 1

ˆ

M
i t

i t M
j j i

j t

j

p
r

y y
p

+

+

=

=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑

∑
− M, for  and ji

+∈     (3.12) 

and  

, 0

1

,
1

ˆ 1 1
0 1 for   and 

ˆ

M
i t

M
j j i

j t

j

p
i M j M

y y
p

+

+
+

=

=

⎡ ⎤
≥ + − ∈ ∈⎢ ⎥

⎢ ⎥⎣ ⎦
∑

∑
.   (3.13) 

Since * > 0 for indexes in ,i t
r M

+  equations (3.12) and (3.13) can write 

 

,
1

,

1

ˆ

ˆ  for ,
1

1

M

j t

i
i t i M

j j

p

p y i

y

+

+ j M +=

=

>
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∑

∑
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and 

 
,

1 0
,

1

ˆ

ˆ  for and 
1

1

M

j t

j

i t iM

j j

p

p y i M j M

y

+

+

= +

=

≥ ∈ ∈
+

∑

∑
.     (3.15) 
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Now we order the ’s of subset ,i t
r M

+  in descending magnitude starting with  

and ending at an arbitrary index, m, as . Also in the subset 

1,tr

,m t
r

0
M the ’s are ordered 

descending from 

,i t
r

1,m t
r +  to ,M t

r .  We have from (3.14) and (3.15) 

,
1

, 1, m+1 

1

ˆ

ˆ ˆ y
1

1

M

j t

i
m t m m tM

j j

p

p y p

y

+

+
=

+

=

> ≥
+

∑

∑
M for i +∈      (3.16) 

Using this relation, we can find the index boundary, m, that separates the subset M
+ from 

the subset 0
M  by substituting, one at a time, all the permissible values of m into (3.16) 

until the inequality holds. When the inequality holds, this m is index that divides the set 

M into the subsets M
+  and 0

M .  

As we assumed in the text, we have shown how the decision-maker can create a 

mental list, just for the relevant information-packets in subset M
+ .  Now that we know 

M
+ , we can determine the optimal value of each relevance component in the subset M

+  

only, but first we must reduce the probability space to match the size of the subset 

M
+ and this requires a redefinition of the probability space be established over only the 

space of M
+ . So we renormalize the probability space to refer only to the set of 

permissible components and define, 

,

, , ,
1

,
1

ˆ
ˆˆ ˆ where 1 and q 0 for ,

ˆ

M
j t

i t i t i tM
i

j t

j

p
q q

p

+

+ i j M
+

=

=

= = >∑
∑

∈ .   (3.17) 

 

Also note that ,
1

ˆ
M

j t

j

p

+

=
∑ is not necessarily equal to 1, because the subset M

+  may not be 

equal to the complete set M  upon which the original probabilities, { },
ˆ

i tp  are based. 

Since it is now assured that * 0 for 
i

r i M
+> ∈  we can write (3.12) as 

, ,
1

1 1
ˆ* 1

M

i t i t

j j i

r q for i M
y y

+

+

=

⎡ ⎤
= + − ∈⎢ ⎥
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∑ .     (3.18) 
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Now we can do some more algebra to bring out certain important features of the 

optimal equation (3.18). First multiplying (3.18) by 
i

y  we get 

, ,
1

1
ˆ* 1 1 ,

M

i i t i t i t

j j

y r q y for i j M
y

+

+

=

⎡ ⎤
= + − ∈⎢ ⎥
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∑ . 

Transferring the “1” to the left side and taking the log, we get  

 ( ), ,
1

1
ˆln 1 * ln ln ln 1 ,
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i i t i t i

j j

y r q y for i j
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+

M
+

=

⎡ ⎤
+ = + + + ∈⎢ ⎥

⎢ ⎥⎣ ⎦
∑ , 

we then substitute this expression into the definition of the subjective, statistical 

expectation of the compounded rate-of-growth and get 

( ), , , , , ,
1 1 1 1

1
ˆ ˆ ˆ ˆ ˆ* ln 1 * ln ln ln 1

MM M M M
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   ,for i j M
+∈ .      (3.19) 

Defining  

,
1

ˆ ˆ ˆln
M

t i t

i

H q

+
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− ∑� ,i tq

i

,       (3.20) 

as the decision-maker’s subjective entropy upon reaching stage t, and  

     

{ } ,
1
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i

E y q y

+
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=∑        (3.21) 

as the subjective expectation of the set { }ty we get 
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We note that 

1

1M

j j

M

y

+

+

=

Φ

∑
� , is defined as the harmonic mean of { }ty , so we get 
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1
1 1
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and so then 
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Dividing ln 1
M

+⎡ ⎤
+⎢ ⎥Φ⎣ ⎦

 by M
+  we get  

1 1
ln lnM
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 . 

Then 
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but,  

1
ln ln *tM H

M

+
+= − �  , 

(this is the maximum value of entropy for the process), so we finally get 

*
t

g = ( ) { } 1 1ˆ ˆ ˆ* ln lnt t tH H E y E
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